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1. Introduction

Longitudinal data analysis is concerned with regression modelling and inference
for data consisting of repeated measures on units, such as humans in a medical
study. Since the seminal work of Harville [12] and Laird and Ware [17], linear
mixed models have been the mainstay of longitudinal data analyses. The pre-
dominant distinguishing feature of linear mixed models, when compared with
linear models, is the dichotomization of effects into fixed and random types. The
fitting of fixed and random effects differ in that the latter is subject to a degree
of shrinkage, dependent on the values of covariance parameters in the model.
The concept of best linear unbiased prediction appealingly accommodates the
handling of both types of effects (e.g. [26]). Expositions on longitudinal data
analysis, including the role of linear mixed models, can be found in Diggle et al.
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[6], Fitzmaurice, Laird and Ware [9], Fitzmaurice et al. [8], McCulloch, Searle
and Neuhaus [19] and Verbeke and Molenberghs [35].

Kernel machines is a younger field that has most of its literature outside
of Statistics. Essentially, kernel machines are flexible non-linear regression-type
methods that use regularization to avoid overfitting. The name ‘kernel’ comes
from the fact that the theory and methods of kernel machines is underpinned
by reproducing kernel Hilbert space (RKHS) theory (e.g.[1, 16]), although other
frameworks such as Gaussian process theory (e.g. [25]) can also be used. Whilst
kernel machines can handle general response variables, the majority of their
literature is geared towards classification in which the response is categorical.
In particular, support vector machines (e.g. [4, 20]) are a sub-class of kernel
machines and, in the 1990s, emerged as a powerful and elegant family of classi-
fiers. The monograph of Schölkopf and Smola [29] and the web-site maintained
by these authors, www.kernel-machines.org, are two portals to the large and
expanding literature on kernel machines.

The main goal of this article is to expose the commonalities shared by lon-
gitudinal data analysis and kernel machines. In particular we show, explicitly,
that many popular longitudinal fitting procedures are special types of kernel
machines. There are at least two potential payoffs from such links: (a) the en-
richment of longitudinal models to cope with non-linear predictor effects, and
(b) adaptation of kernel machine classifiers to account for within-subject corre-
lation when applied to longitudinal data. Sections 4.1.1–4.1.3 give some details
on (a). Section 5.2 contains an illustration of (b).

Some recent related work is Gianola, Fernando and Stella [10] and Liu, Lin
and Ghosh [18], each of whom combine linear mixed models with kernel machines
to analyze very high-dimensional genetic data-sets. However, neither of these
papers deal with regular longitudinal data analysis models. James and Hastie
[15] and Müller [21] are examples of articles concerned with classification when
the data are longitudinal.

The connections between longitudinal data analysis and kernel machines are
stronger in the case of continuous responses. A concise overview of continuous
response longitudinal data analysis is given in Section 2. A summary of kernel
machines and their RKHS substructure is given in Section 3. Section 4 forms the
main body of the paper and gives an explicit case-by-case description of kernel
machine representations of popular longitudinal data analytic models, as well
as explaining some non-linear (kernel-based) extensions. Generalized response
models and kernel machines are treated in Section 5. Concluding discussion is
given in Section 6.

2. Continuous response longitudinal data analysis

In this section, and for following two sections, we suppose that the response
variables are continuous, and without strong departures from normality. In this

www.kernel-machines.org
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case, the main vehicle for longitudinal data analysis is the linear mixed model

y = Xβ + Zu + ε,

[
u

ε

]
∼
([

0

0

]
,

[
G 0

0 R

])
(1)

where, for a general random vector v, the notation v ∼ (µ,Σ) is shorthand for
the mean vector E(v) equal to µ and the covariance matrix Cov(v) equal to Σ.
A common special case of (1) is

[
u

ε

]
∼ N

([
0

0

]
,

[
G 0

0 R

])
. (2)

The use of (1) for longitudinal data analysis dates back to Laird and Ware [17].
Good summaries of estimation and prediction within this linear mixed model
structure may be found in, for example, Robinson [26], Verbeke and Molenberghs
[35], McCulloch et al. [19] and Ruppert, Wand and Carroll (Chapter 4) [28]. We
will just present the main results here.

For given covariance matrices G and R the theory of best linear unbiased
prediction (BLUP) can be used to guide choice of β and u, and results in the
criterion:

(y − Xβ − Zu)T R−1(y − Xβ − Zu) + uT G−1u. (3)

This is minimized by

β
BLUP

= (XT V −1X)−1XT V −1y,

uBLUP = GZT V −1(y − Xβ
BLUP

)
(4)

where V = Cov(y) = ZGZT + R. Expressions (4) are known as the BLUPs of
β and u.

In practice, longitudinal data are fitted via the steps:

1. Estimation of G and R. Usually, these matrices are restricted to a para-
metrized class of covariances matrices. Most commonly, estimation is ach-
ieved via maximum likelihood, or restricted maximum likelihood (REML),
under the normality assumption (2).

2. Substitution of the estimated covariance matrices into (4). The result-

ing estimators, β̂ and û, are commonly known as estimated BLUPs, or
EBLUPs for short.

The EBLUP phrase can be transferred to any linear function of β̂ and û.
Thus, Aβ̂ + Bû is the EBLUP of Aβ + Bu for any pair of matrices A and B

for which the multiplications and summation are defined.
These two steps show a division into two types of estimation targets that

arise in longitudinal data analysis: the covariance parameters in the G and R

matrices, and the effects β and u. The strong connections between longitudinal
data analysis and kernel machines occur at the EBLUP step for estimation of the
fixed and random effects. For this reason, we will not dwell on the estimation
of the covariance parameters. These will be taken as given when we revisit
longitudinal data analysis in Sections 4 and 5.
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3. Kernel machines

In the past decade or so kernel machines have emerged as an important method-
ology for classification and regression problems. A special sub-class of kernel
machines is support vector machines where classifiers are constructed with re-
spect to constraints on the margin of the classification boundary, and may be
represented as a regularized optimization problem with respect to the hinge
loss function (e.g. [4]). However, through the allowance of general loss func-
tions, kernel machines are a much broader class of methods. Kernel machines
with squared error loss (e.g. [33]) include popular statistical methods such as
kriging (e.g. [5, 32]), smoothing splines (e.g. [11, 36]) and additive models (e.g.
[13]). Zhu and Hastie [40] explored the use of binomial log-likelihood loss in
the kernel machine framework and coined the term kernel logistic regression.
Kernel logistic regression and support vector machines are both special cases
of large margin kernel machines (e.g. [39]). Another prominent class of kernel
machines is that corresponding to robust loss functions (e.g. [30]). Pearce and
Wand [24] delineated connections between kernel machines and penalized spline
methodology.

General kernel machines can be formulated in a number of ways. Among
the most common are: optimization and projection within reproducing Hilbert
spaces (e.g. [16]), maximum a posterior estimation in Gaussian processes (e.g.
[25]) and Tikhonov regularization of ill-posed problems (e.g. [34]). Because of
its prominence in the Statistics literature (e.g. [36]) we will use the first of these
formulations in the remainder of the paper. Recent summaries of RKHS theory
include Wahba [37] and Evgeniou, Pontil and Poggio [7]. An early reference is
Aronszajn [1]. Relevant background material on Hilbert space projection theory
may be found in, for example, Simmons [31] and Rudin [27].

In Section 3 of Pearce and Wand [24] we summarized the theory of RKHS for
the purpose of explaining connections between kernel machines and penalized
splines. That same section also provides useful background material for the
current paper. For convenience, we reproduce the core aspects of it here. A
RKHS on R

d is a Hilbert space of real-valued functions that is generated by
a bivariate symmetric, positive definite function K(s, t), s, t ∈ R

d, called the
kernel. The steps for RKHS construction from K are:

1. Determine the eigen-decomposition of K: K(s, t) =
∑∞

j=0 λjφj(s)φj(t).
This series is assumed to be well-defined (e.g. uniformly convergent).

2. Define the space of real-valued functions on R
d:

HK =



f : f =

∞∑

j=0

ajφj, such that

∞∑

j=0

a2
j/λj <∞



 .

3. Endow HK with the inner product
〈

∞∑

j=0

ajφj,
∞∑

j=0

a′jφj

〉

HK

=
∞∑

j=0

aja
′
j/λj.
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4. Complete HK by including limits.

It follows from Step 3 that the norm of f =
∑∞

j=0 ajφj in HK is

‖f‖2
HK

=

∞∑

j=0

a2
j/λj.

The adjective ‘reproducing’ arises from the result

〈K(s, ·), K(t, ·)〉HK
= K(s, t). (5)

This has important implications, and gives rise to the ‘kernel trick’ that we
discuss shortly.

Let (xi, yi) ∈ R
d × R, 1 ≤ i ≤ n be a data set, L(·, ·) be a loss function and

λ > 0 be a regularization parameter. The fit f̂ within HK , with respect to L
and λ, is the solution to

min
f∈HK

{
n∑

i=1

L(yi, f(xi)) + λ‖f‖2
HK

}
. (6)

The solution to (6) can be shown to be of the form f̂(x) =
∑n

i=1 ĉiK(xi,x) for
some ĉi, 1 ≤ i ≤ n, depending on L, λ and the data. This result is known as the
representer theorem of reproducing kernel Hilbert spaces. The ‘kernel trick’ is
that we do not need to calculate the eigenfunctions, φ0, φ1, . . ., in order to find
the ĉi. Because of (5) we only need evaluations of the inner products of the form
K(s, t). Popular kernels, particularly in machine learning contexts, include the
pth degree polynomial kernel, K(s, t) = (1 + sT t)p, and the radial basis kernel,
K(s, t) = exp

(
−γ ‖s − t‖2

)
, for some γ > 0.

The λ‖f‖2
HK

term in (6) imposes a penalty on f . However, it is often desirable
that certain functions in HK are unpenalized. The simplest example of this is
as follows. Let H0 be a subspace of HK for which penalization is not desired.
Mathematically, this means that fits over H0 are found by simply minimising∑n

i=1 L(yi, f(xi)). Let H1 = H⊥
0 be the orthogonal complement of H0 and P1

denote the linear operator corresponding to projection onto H1. Then

HK = H0 ⊕H1 ≡ {v0 + v1 : v0 ∈ H0 and v1 ∈ H1},

with H0 being the null space of P1, i.e.,

H0 = {v ∈ HK : P1v = 0}.

With respect to the null space H0, smoothing parameter λ, and loss function
L, we define fits f̂ according to

min
f∈HK

{
n∑

i=1

L(yi, f(xi)) + λ‖P1f‖2
HK

}
. (7)

It can also be shown ([1]) that H0 and H1 are reproducing kernel Hilbert spaces
in their own right, with kernels K0 and K1 satisfying K0 +K1 = K.
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4. Explicit connections for continuous responses

In this section we show, explicitly, how longitudinal data analyses are connected
intimately with kernel machine methodology. Indeed, all longitudinal data anal-
yses that use EBLUPs are actually just fitting a special type of kernel machine.
To make these connections clear, and accessible to readers with a longitudinal
data analysis background, we first treat some special cases of (1). We build up
to fuller generality in the later subsections.

4.1. Random intercept model

The simple linear random intercept model is

yij = β0 + β1 xij + Ui + εij , 1 ≤ j ≤ ni, 1 ≤ i ≤ m (8)

where (xij, yij) is the jth predictor/response pair for subject i, and the εij ∼
(0, σ2

ε) are independent within-subject errors. The regression coefficients β0 and
β1 are fixed effects, while the subject-specific intercepts Ui ∼ (0, σ2

u) are inde-
pendent random effects.

Given estimates σ̂2
u and σ̂2

ε of the variance components, the fitted line for
subject i is

β̂0 + β̂1 x+ Ûi, 1 ≤ i ≤ m, (9)

where β̂0 , β̂1 and the Ûi are EBLUPs, as given by (4), with

X =




1 x11

...
...

1 x1n1

1 x21

...
...

1 x2n2

...
...

...
...

1 xm1

...
...

1 xmnm




and Z =




1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 1 0 · · · 0
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1




. (10)

Figure 1 shows the EBLUPs for data on longitudinally recorded weights of 48
pigs (source: [6]), with σ2

u and σ2
ε estimated via REML.

We now explain how (9) and the fitted lines in Figure 1 can be obtained as a
solution to a RKHS optimization problem – thereby making them a special case
of kernel machines. In the following discussion, we assume that the estimates of
σ2

u and σ2
ε have been obtained (either via REML, or some other means) and are

equal to σ̂2
u and σ̂2

ε, respectively.
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Fig 1. The EBLUP-fitted lines to the pig-weights data for the simple linear random intercept
model. The panels are ordered according to the size of the 48 pigs.

Let n =
∑m

i=1 ni and re-subscript the (xij, yij) and εij sequentially; i.e. ac-
cording to the map:

(1, 1), . . . , (1, n1), (2, 1), . . . , (2, n2), . . . , (m, 1), . . . , (m, nm)
↓ · · · ↓ ↓ · · · ↓ · · · ↓ · · · ↓
1, . . . , n1, n1 + 1, . . . , n1 + n2, . . . ,

∑m−1
j=1 nj + 1, . . . , n.

(11)

This leads to the representation

yi = β0 + β1 xi +

m∑

j=1

UjZij + εi, 1 ≤ i ≤ n,

where Zij is (i, j) entry of Z as given in (10) and is an indicator of (xi, yi) being
measurements for subject j (1 ≤ i ≤ n, 1 ≤ j ≤ m). Next, form the RKHS of
real-valued functions on R

m+1 :

HK =



f : f(x, z1, . . . , zm) = β0 + β1x+

m∑

j=1

Ujzj,



 (12)
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with kernel

K(s, t) = K((s1 , . . . , sm+1), (t1, . . . , tm+1)) = 1 + s1t1 +

m∑

j=1

s1+jt1+j. (13)

Note that, while HK is defined on the whole of R
m+1, its members of interest

in longitudinal data analysis are actually on:

R × (1, 0, 0, . . . , 0) × (0, 1, 0, . . . , 0) × (0, 0, 0, . . . , 1) ⊂ R
m+1 .

Let
Hβ = {f : f(x, z1, . . . , zm) = β0 + β1x} (14)

be a subspace of HK .

Theorem 1. Let (xi, yi, Zi1, . . . , Zim), 1 ≤ i ≤ n, be a sequentially subscripted
longitudinal data set. Consider the RKHS HK defined by (12) and (13) and
subspace Hβ given by (14). Let Pu be the projection operator onto Hu ≡ H⊥

β .
Then the solution to the RKHS optimization problem

min
f∈HK

[
n∑

i=1

{yi − f(xi, Zi1, . . . , Zim)}2 + λu‖Puf‖2
HK

]
(15)

with λu ≡ σ̂2
ε/σ̂

2
u corresponds to the observed EBLUPs of (9). Explicitly, the

solution to (15) is

f̂(x, 1, 0, . . . , 0) = β̂0 + β̂1 x+ Û1,

f̂(x, 0, 1, . . . , 0) = β̂0 + β̂1 x+ Û2,

...

and f̂(x, 0, 0, . . . , 1) = β̂0 + β̂1 x+ Ûm,

where x ∈ R, β̂0, β̂1 and the Ûi are given by (4) with G = σ̂2
uI and R = σ̂2

εI

and X and Z are given by (10).

Proof. Note that the inner product for HK (induced by K) is given by

〈
β0 + β1x+

m∑

j=1

Ujzj , β
′
0 + β′

1x+

m∑

j=1

U ′
jzj

〉

HK

= β0β
′
0 + β1β

′
1 +

m∑

j=1

UjU
′
j .

Next, if f(x, z1, . . . , zm) = β0 + β1x +
∑m

j=1Ujzj is a typical element of HK ,
then

yi − f(xi, Zi1, . . . , Zim) = (y − Xβ − Zu)i,

where y is the n× 1 vector containing the yis, β = (β0, β1)
T and

u = (U1, . . . , Um)T .
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It follows immediately that

n∑

i=1

{yi − f(xi, Zi1, . . . , Zim)}2 = ‖y − Xβ − Zu‖2

where ‖ · ‖ denotes Euclidean norm. The orthogonal complement of Hβ is

Hu = H⊥
β =



f : f(x, z1, . . . , zm) =

m∑

j=1

Ujzj ,



 .

Then Puf =
∑m

j=1 Ujzj and

‖Puf‖2
HK

=

〈
m∑

j=1

Ujzj ,

m∑

j=1

Ujzj

〉

HK

=

m∑

j=1

U2
j = ‖u‖2.

The RKHS optimization problem (15) is therefore equivalent to

min
β,u

{(1/σ̂2
ε)‖y − Xβ − Zu‖2 + (1/σ̂2

u)‖u‖2}

which corresponds to EBLUP for the random intercept model.

4.1.1. Kernel-based extension to general mean curves

Note that the kernel for the simple linear random intercept model can be written
as

K((s1 , . . . , sm+1), (t1, . . . , tm+1)) = Kβ(s, t) +Ku(s, t)

where Ku(s, t) ≡
∑m

j=1 s1+jt1+j corresponds to the random intercept structure
and Kβ(s, t) ≡ 1 + s1t1 corresponds to the population mean structure. More
general population mean structures can be obtained by replacement of Kβ(s, t)
by K0(s, t) +Kc(s, t) where, for all s, t ∈ R

m+1,

K0(s, t) = K0,1(s1, t1) and Kc(s, t) = Kc,1(s1, t1)

for kernels K0,1(s1, t1) and Kc,1(s1, t1) defined on R
2. The kernel K0,1 corre-

sponds to unpenalized functions and, typically, K0,1(s1, t1) = 1. We can take
Kc,1 to be any positive definite function on R

2 such that its eigen-decomposition
does not include functions in the RKHS generated by K0,1. Usually we would
want Kc,1 to have a rich eigen-decomposition so that non-linear mean structure
can be well-handled. Examples include:

Kc,1(s1, t1) = exp{−ω2(s1 − t1)
2}

and
Kc,1(s1, t1) = (1 + ω|s1 − t1|) exp(−ω|s1 − t1|)
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where ω > 0 is a scale factor. Each of these kernels have infinite-length eigen-
decompositions and result in an infinite dimensional RKHS. The ‘kernel trick’
implies that fitting and representation only depends on evaluations of Kc,1.

Let Hc be the RKHS generated by K0 and Kc, respectively. Then

HK = H0 ⊕Hc ⊕Hu (16)

is the RKHS generated by K0 + Kc + Ku. Let Pc : HK → Hc be the linear
operator corresponding to projection onto Hc and let Pu be defined similarly
for Hu. Then a mean curve, with random intercept shifts, can be fitted via the
RKHS minimization problem

min
f∈HK

[
n∑

i=1

{yi − f(xi, Zi1, . . . , Zim)}2 + λc‖Pcf‖2
HK

+ λu‖Puf‖2
HK

]
. (17)

By the RKHS representer theorem, the solution is

f(x) = β0 +

n∑

i=1

ciKc(xi, x) +

m∑

j=1

UiZij

for coefficients c1, . . . , cn. Via arguments similar to those used in the proof of
Theorem 1, (17) reduces to the matrix algebraic problem,

min
β0,c,u

(
‖y − 1β0 − Kc − Zu‖2 + λcc

T Kc + λu‖u‖2
)
.

where c ≡ (c1, . . . , cn)T and K = [Kc(xi, xi′)]1≤i,i′≤n. Explicit solutions are a
special case of (20) below.

4.1.2. Extension to additional linear predictors

Our final extension of the random intercept model involves the possible inclusion
of additional predictors, assumed to have a linear effect on the mean of the
response variable. Corresponding to each yi, 1 ≤ i ≤ n, let xℓ

i an p × 1 vector
of such predictors. Then we should replace (16) by

HK = Hβ ⊕Hc ⊕Hu

where each of these RKHSs are now on R
m+p+1 and

Hβ = {f : f(xℓ, x, z1, . . . , zm) = [1 (xℓ)T ] β }

corresponds to the fixed effects. The RKHS minimization problem is now of the
form

min
f∈HK

[
n∑

i=1

{yi − f(xℓ
i , xi, Zi1, . . . , Zim)}2 + λc‖Pcf‖2

HK
+ λu‖Puf‖2

HK

]
, (18)
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which reduces to

min
β,c,u

(
‖y − Xβ − Kc − Zu‖2 + λcc

T Kc + λu‖u‖2
)

(19)

where X = [1 (xℓ
i)

T ]1≤i≤n. Vector differential calculus, combined with some
algebra, lead to the solutions:

β̂ = (XT V −1X)−1XT V −1y, ĉ = λ−1
c V −1(y − Xβ̂)

and û = λ−1
u ZT V −1(y − Xβ̂) where V ≡ λ−1

c K + λ−1
u ZZT + I .

(20)

We now provide illustration of fits for this most general random intercept
model for longitudinal data on spinal bone mineral density for 230 girls and
young women (source: [2]). The subjects are categorized as belonging to one
of the four ethnicity groups: Asian, Black, Hispanic and White. With double
subscript notation, the model is

yij = [1 (xℓ)T ] β + Ui + c(xij) + εij (21)

where the yij are spinal bone mineral measurements (g/cm2), the xℓ
i contain

indicators for ethnicity and the xij are age measurements. The function c(·)
indicates a curve corresponding to the kernel Kc. We used the Gaussian kernel
Kc(s, t) = exp{−0.05(s−t)2}. The values of λc and λu were chosen using REML.

Figure 2 shows the fitted mean curves for each ethnicity group. The mean
age effect is clearly non-linear and is estimated well by the Gaussian kernel.

Figure 3 shows the fitted curves for those subjects that had four spinal bone
mineral density measurements. Note that the fitted random effects Ûi are re-
quired for this display. The fits are very good for about half of the subjects.
Some lack-of-fit is apparent for the other half.

4.1.3. Extension to multivariate kernels

We briefly mention one last extension: the replacement of c(xi) by c(xi) where
the xi ∈ R

d. This can be achieved by making Kc a d-variate kernel as opposed
to the univariate kernels treated so far in this section. The relevant RKHS is
now on R

m+p+d , but the optimization problems (18) and (19) are only different
in that xi ∈ R is now xi ∈ R

d and K = [Kc(xi,xi′)]1≤i,i′≤n where the kernel
Kc is on R

d ×R
d. Models of a similar type were recently considered by Liu, Lin

and Ghosh [18].

4.2. Random intercept and slope model

Close inspection of Figure 1 shows that the parallel lines restriction imposed by
the random intercept model is questionable. A more realistic model is one that
allows each pig to have his/her own slope. This is achieved through the random
intercept and slope model

yij = β0 + Ui + (β1 + Vi)xij + εij , 1 ≤ j ≤ ni, 1 ≤ i ≤ m (22)
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Fig 2. Kernel-based fit to the spinal bone mineral density data.

where, as with (8), εi ∼ (0, σ2
ε) are independent, while

[
Ui

Vi

]
∼
([

0
0

]
,

[
σ2

u ρσuσv

ρσuσv σ2
v

])
, independently, (23)

allow for subject specific deviations in both intercept and slope from the mean
line β0 + β1x. Figure 4 shows an EBLUP fit of this model to the pig weights
data, with the covariance matrix parameters estimated via REML.

The extension to random slopes involves replacement of Z and G by

Z =




1 x11 · · · 0 0
...

...
. . .

...
...

1 x1m · · · 0 0
...

...
...

...
...

0 0 · · · 1 xn1

...
...

. . .
...

...
0 0 · · · 1 xnm




and G ≡ blockdiag
1≤i≤m

[
σ2

u ρσuσv

ρσuσv σ2
v

]
(24)

in the BLUP equations (4).
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Fig 3. Fitted subject-specific curves corresponding to model (21) for 25 randomly chosen
subjects among those with 4 measurements each.

We will now re-write (22) in a canonical form that is amenable to RKHS
representation. It involves the singular value decomposition (or spectral decom-
position) of the random effects covariance matrix:

[
σ2

u ρσuσv

ρσuσv σ2
v

]
=

[
α

√
1 − α2√

1 − α2 −α

] [
du 0
0 dv

] [
α

√
1 − α2√

1 − α2 −α

]

where the eigenvalues du and dv are given by

du = du(σu, σv, ρ) ≡ (σ2
u + σ2

v)/2 +
√

(σ2
u − σ2

v)2/4 + (σuσvρ)2,

and dv = dv(σu, σv, ρ) ≡ (σ2
u + σ2

v)/2 −
√

(σ2
u − σ2

v)2/4 + (σuσvρ)2 .

The first normalized eigenvector component α takes the form

α = α(σu, σv, ρ) ≡
{
σuσvρ/

√
(σuσvρ)2 + (σ2

u − du)2, if ρ 6= 0 or σu 6= σv,
1, otherwise.

The matrix

UUU ≡
[

α
√

1 − α2√
1 − α2 −α

]
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Fig 4. The EBLUP-fitted lines to the pig-weights data for the simple linear random intercept
and slope model. The panels are ordered according to the size of the 48 pigs.

is orthogonal: UUUUUUT = UUUTUUU = I. Even though UUU is symmetric in this case,
we will write UUUT to allow comparison with more general results. The random
intercept and slope model (22) can be written as

yij = β0 + β1xij + [1 xij]UUU UUUT

[
Ui

Vi

]
+ εij

= β0 + β1xij +

(
UUUT

[
1
xij

])T (
UUUT

[
Ui

Vi

])
+ εij

= β0 + β1xij + [x̃U
ij x̃

V
ij]

[
Ũi

Ṽi

]
+ εij

= β0 + β1xij + Ũix̃
U
ij + Ṽix̃

V
ij + εij

(25)

where, for 1 ≤ j ≤ ni, 1 ≤ i ≤ m,

Ũi ≡ αUi +
√

1 − α2 Vi, Ṽi ≡
√

1 − α2Ui − αVi,

x̃u
ij ≡ α+

√
1 − α2 xij and x̃v

ij ≡
√

1 − α2 − αxij

are linear transformations of the random effects and predictors based on the UUU



N.D. Pearce and M.P. Wand/Longitudinal data analysis and kernel machines 811

matrix. Note that
[
Ũi

Ṽi

]
∼
([

0
0

]
,

[
du 0
0 dv

])
, independently, 1 ≤ i ≤ m.

Suppose that the covariance parameters are replaced by estimates: σ̂u, σ̂v,
σ̂ε ρ̂ and consider the EBLUPs

β̂0 + Ûi + (β1 + V̂i)x (26)

based on (4). Let d̂u = du(σ̂u, σ̂v, ρ̂), d̂v = dv(σ̂u, σ̂v, ρ̂) and α̂ = α(σ̂u, σ̂v, ρ̂) be
the estimates for the eigen-parameterization of the random effects covariance
matrix.

We now describe RKHS representation of these EBLUPs. A first step is to
switch from the double subscripting of longitudinal data analysis to single sub-
scripting via (11). The single subscript version of the random intercept and slope
model (22) is

yi = β0 + β1 xi +

m∑

j=1

(Uj + xiVj)Zij + εi, 1 ≤ i ≤ n

where, as before, Zij is (i, j) entry of Z as given in (10). Form the RKHS of
real-valued functions on R

2m+1:

HK =



f : f(x, zu

1 , . . . , z
u
m, z

v
1 , . . . , z

v
m)=β0 + β1x+

m∑

j=1

(Ũjz
u
j + Ṽjz

v
j )



 (27)

with kernel

K(s, t) = K((s1 , . . . , s2m+1), (t1, . . . , t2m+1)) = 1 + sT t. (28)

Note that
K(s, t) = K0(s, t) +Ku(s, t) +Kv(s, t)

where
Kβ(s, t) = 1 + s1t1, Ku(s, t) =

∑m
j=1 s1+jt1+j

and Kv(s, t) =
∑m

j=1 sm+1+j tm+1+j .
(29)

Let Hβ, Hu and Hv be the RKHSs generated by Kβ, Ku and Kv, respectively,
so that

HK = Hβ ⊕Hu ⊕Hv.

Theorem 2. Let (xi, yi, Zi1, . . . , Zim), 1 ≤ i ≤ n, be a sequentially subscripted
longitudinal data set as in Theorem 1. For 1 ≤ i ≤ n define xu

i = α̂+
√

1 − α̂ xi

and xu
i =

√
1 − α̂ xi−α̂ where α̂ = α(σ̂u, σ̂v, ρ̂) is based on covariance parameter

estimates appropriate for the random intercept and slope model (22) and (23).
Consider the RKHS HK defined by (27) and (28) and subspaces Hβ, Hu and
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Hv be generated by (29). Let Pu and Pv be, respectively, the projection operators
onto Hu and Hv. Then the solution to the RKHS optimization problem

minf∈HK

[∑n
i=1{yi − f(xi, Zi1x̃

u
i , . . . , Zimx̃

u
i , Zi1x̃

v
i , . . . , Zimx̃

v
i )}2

+λu‖Puf‖2
HK

+ λv‖Pvf‖2
HK

]
,

(30)

with λ̂u = σ̂2
ε/d̂u and λ̂v = σ2

ε/d̂v, corresponds to the EBLUPs (26). Explicitly,
the solution to (30) is

f̂(x, α̂+
√

1 − α̂2 x, 0m−1,
√

1 − α̂2 − α̂ x, 0m−1) = β̂0 + Û1 + (β̂1 + V̂1)x,

f̂(x, 0, α̂+
√

1 − α̂2 x, 0m−1,
√

1 − α̂2 − α̂ x, 0m−2) = β̂0 + Û2 + (β̂1 + V̂2)x,

...

f̂(x, 0m−1, α̂+
√

1 − α̂2 x, 0m−1,
√

1 − α̂2 − α̂ x) = β̂0 + Ûm + (β̂1 + V̂m)x,

where x ∈ R and β̂0, β̂1 and the Ûi, V̂i are given by (4) with X given by (10), Z

given by (24), R = σ̂2
εI and G given by (24) with (σu, σv, ρ) = (σ̂u, σ̂v, ρ̂), and

0r denotes the string 0,0,. . . ,0 of length r.

Proof. The inner product for HK (induced by K) is given by

〈
β0 + β1x+

m∑

j=1

(Ũjz
u
j + Ṽjz

v
j ), β′

0 + β′
1x+

m∑

j=1

(Ũ ′
jz

u
j + Ṽ ′

j z
v
j )

〉

HK

= β0β
′
0 + β1β

′
1 +

m∑

j=1

(Ũj Ũ
′
j + Ṽj Ṽ

′
j ).

Let

f(x, zu
1 , . . . , z

u
m, z

v
1 , . . . , z

v
m) = β0 + β1x+

m∑

j=1

(Ũjz
u
j + Ṽjz

v
j )

be a typical member of HK . Then, using a reversal of the argument presented
at (25),

yi − f(xi, Zi1x̃
u
i , . . . , Zimx̃

u
i , Zi1x̃

v
i , . . . , Zimx̃

v
i )

= yi − (Xβ)i −
m∑

j=1

Zij(Ũj x̃
u
i + Ṽj x̃

v
i )

= yi − (Xβ)i −
m∑

j=1

Zij(Ui + Vixi)

= (y − Xβ − Zu)i
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where u ≡ (U1, V1, U2, V2, . . . , Um, Vm)T and Z, given by (24), are the random
effects vector and corresponding design matrix for the random intercept and
slope model. (In the definition of Z at (24), double subscripting is being used
on the xs for clarity reasons.) Finally

(1/d̂u)‖Puf‖2
HK

+ (1/dv)‖Pvf‖2
HK

=

m∑

j=1

(Ũ2
j /d̂u + Ṽ 2

j /dv)

=

m∑

j=1

[Ũi Ṽi]

[
d̂u 0

0 d̂v

]−1 [
Ũi

Ṽi

]

=

m∑

j=1

[Ũi Ṽi]ÛUU
T

(
ÛUU
[
d̂u 0

0 d̂v

]
ÛUUT

)−1

ÛUU
[
Ũi

Ṽi

]

=

m∑

j=1

[Ui Vi]

[
σ̂2

u ρ̂σ̂uσ̂v

ρ̂σ̂uσ̂v σ̂2
v

]−1 [
Ui

Vi

]
= uT Ĝ

−1
u

where

Ĝ ≡ blockdiag
1≤i≤m

[
σ̂2

u ρ̂σ̂uσ̂v

ρ̂σ̂uσ̂v σ̂2
v

]

is the estimated covariance matrix of u. The criterion in the RKHS optimization

problem (30) is therefore equivalent to (1/σ̂2
ε)‖y−Xβ−Zu‖2 +uT Ĝ

−1
u, the

EBLUP criterion for the random intercept and slope model.

4.2.1. Kernel-based extension to general mean curves

As in Section 4.1.1 we can extend the random intercept and slope model to allow
for non-linear mean structure by introducing a kernel. Here we will consider the
extension of (22):

yij = β0 + Ui + c(xij) + Vixij + εij, 1 ≤ j ≤ ni, 1 ≤ i ≤ m. (31)

In this model β0 +c(·) is the smooth overall function. Subject specific deviations
in both intercept and slope are allowed. The relevant RKHS is

HK = H0 ⊕Hc ⊕Hu ⊕Hv

where H0 and Hc are as defined in Section 4.1.1, whilst Hu and Hv carry the
definitions ascribed to them in the lead up to Theorem 2. The RKHS mini-
mization problem is similar to that given by (30) with the addition of a penalty
term

λc‖Pcf‖2
HK

.

The minimization problem reduces to

min
β,c,u

{
‖y − 1β0 − Kc − Zu‖2 + λcc

T Kc + uT G−1u
}
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where u ≡ (U1, V1, U2, V2, . . . , Um, Vm)T , Z ≡ blockdiag1≤i≤m([1 xij]1≤j≤ni
)

and G = Im ⊗ Σ for some 2 × 2 symmetric positive definite matrix Σ. Here ⊗
denotes Kronecker product. The solution is

β̂0 = (1T V −11)−11T V −1y, ĉ = λ−1
c V −1(y − 1β̂0)

and û = GZT V −1(y − 1β̂0) where V ≡ λ−1
c K + ZGZT + I .

4.3. Extension to general random effects structure

The general form of the Xβ + Zu, u ∼ (0,G), structure for parametric longi-
tudinal data analysis has

X =




1 XF
1

...
...

1 XF
m


 , Z = blockdiag

1≤i≤m
(XR

i ), and u =




u1

...
um




with
G = Cov(u) = blockdiag

1≤i≤m
(Σ) = Im ⊗ Σ.

Here XF
i is an ni×p matrix corresponding to the ith subject’s fixed effects con-

tribution (XF
i β) , XR

i is an ni×q matrix and ui is a q×1 random effects vector
corresponding the ith subject’s contribution (ZR

i ui) and Σ is an unstructured
q × q covariance matrix satisfying Cov(ui) = Σ, 1 ≤ i ≤ m.

Let Σ = UUUdiag(d)UUUT be the spectral decomposition of Σ, where

d = (d1, . . . , dq)

are the eigenvalues of Σ and UUU is a q × q orthogonal matrix of normalized
eigenvectors. Set

Z̃ = Z (Im ⊗UUU) and ũ = (Im ⊗ UUUT )u

so that the model has canonical form

Xβ + Z̃ũ, ũ ∼ (0, diag(d)).

The BLUPs for β and ũ minimize

(1/σ2
ε)‖y − Xβ − Z̃ũ‖2 + ũ

T
diag(1/d)ũ

= (1/σ2
ε)‖y − Xβ − Z̃ũ‖2 +

∑q
k=1(1/dk)‖˜̃uk‖2

(32)

where

˜̃u1 ≡




ũ11

...
ũm1


 , ˜̃u2 ≡




ũ12

...
ũm2


 , . . . , ˜̃uq ≡




ũ1q

...
ũmq



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and ũij is the jth entry of ũi, 1 ≤ i ≤ m, 1 ≤ j ≤ q.
Theorems 1 and 2 can be generalized to the situation where BLUP corre-

sponds to the solution of a RKHS optimization problem. The relevant RKHS,
HK , consists of real-valued functions on R

p+mq with kernel

K(s, t) = K((s1, . . . , sp+mq), (t1, . . . , tp+mq)) = 1 + sT t.

Sub-spaces of interest are those generated by

KF (s, t) ≡ 1 +

p∑

j=1

sjtj and
˜̃
Kk(s, t) =

m∑

j=1

sp+(k−1)m+jtp+(k−1)m+j , 1 ≤ k ≤ q.

We denote these by HF ,
˜̃H1, . . . ,

˜̃Hq. Then we have

HK = HF ⊕ ˜̃H1 ⊕ · · · ⊕ ˜̃Hq.

Next, let

˜̃x ≡




1 XR
1

...
...

1 XR
m


UUU ,

Zi = (Zi1, . . . , Zim) be the ith row of Z and ˜̃xi be the ith row of ˜̃x. Then
the BLUPs given by (32) correspond to the RKHS optimization problem

min
f∈HK

[
n∑

i=1

{yi − f(˜̃xi ⊗ Zi)}2 + λ1‖ ˜̃P1f‖2
HK

+ . . .+ λq‖ ˜̃Pqf‖2
HK

]

where, for 1 ≤ k ≤ q, λk ≡ σ2
ε/dk and

˜̃
Pk is the projection operator onto

˜̃Hk.

4.4. Correlated errors

Each of the longitudinal models considered so far have

R = Cov(ε) = σ2
ε I .

However, in longitudinal data analysis it is common to allow more general struc-
ture in the R matrix. An example is the random intercept model with first-order
autoregressive (AR(1)) errors:

yij = β0 + Ui + β1 xij + εij , εij = ρεij + ξij ,

for 1 ≤ i ≤ m, 1 ≤ j ≤ ni, where |ρ| < 1 and the ξij ∼ (0, σ2
ξ) are independent.

The R matrix in this case is

R = σ2
ξ blockdiag

1≤i≤m




1 ρ · · · ρni−1

ρ 1 · · · ρni−2

...
...

. . .
...

ρni−1 ρni−2 · · · 1


 .
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Longitudinal data analysis models such as these do not fit as comfortably into
the RKHS framework. However, if the first term of the BLUP criterion (4) is
written as

(y−Xβ−Zu)T R−1(y−Xβ−Zu) = ‖R−1/2y−(R−1/2X)β−(R−1/2Z)u‖2

then it is apparent that the RKHS theory with L(s, t) = (s−t)2 applies provided

we work with the transformed data vector yR ≡ R−1/2y and corresponding
transformation of the predictor structure.

4.5. Alternative loss functions

So far in this section we have only considered squared error loss L(s, t) = (s−
t)2. However, the connections between longitudinal data analysis and kernel
machines remain if other continuous response loss functions are used instead.
For example, to counteract the influence of outliers in the response data it is
common to work with a different loss such as absolute error L(s, t) = |s− t| or
those arising in M-estimation (e.g. [14]):

L(s, t; δ) =

{
(s− t)2, |s− t| ≤ δ
2δ|s− t| − δ2, |s− t| > δ

where δ > 0 is the ‘bending’ parameter. Another class robust of loss functions is
that which arises from modelling the responses as having a t-distribution with
ν degrees of freedom and scale parameter σ > 0:

L(s, t; σ, ν) = log

{
1 + ν−1

(
s− t

σ

)2
}
.

Yet another alternative loss function is L(s, t; ε) = (|s − t| − ε)+, for a fixed
ε > 0. It is known as ε-insensitive loss and ignores errors of size less than ε.
Finally, we mention the possibility of non-convex loss functions, such as those
described in Shen, Tseng, Zhang and Wong [30].

5. Generalized response extension

Many longitudinal studies have a non-continuous response; such as count or bi-
nary variable. In such circumstances the linear mixed model (1) is not appropri-
ate and alternative approaches are required. The most common involve general-
ized linear mixed models (GLMM) and generalized estimating equations (GEE).
In this section we describe explicit connections between kernel machines and
the popular penalized quasi-likelihood (PQL) methodology for fitting GLMMs
to generalized response longitudinal data. The main message is that the RKHSs
developed in Section 4 for longitudinal data analysis all apply to the generalized
response situation. Only the loss functions require modification.
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To keep the notation simple, we will work with GLMMs confined to the
canonical one-parameter exponential family framework:

f(y|u) = exp{yT (Xβ + Zu)− 1T b (Xβ + Zu) + 1T c(y)}, u ∼ (0,G) (33)

where f(y|u) denotes the conditional distribution of y given u and b and c
depend upon the family member. The most common examples are Bernoulli,
with b(x) = log(1+ex), c(x) = 0, and Poisson with b(x) = ex, c(x) = − log(x!).
The matrices in the linear predictor η ≡ Xβ+Zu, as well as G, have definition
and structure identical to those in the continuous response situation described
in Sections 2 and 4. The simplest example is the generalized response random
intercept model

f(yij |U1, . . . , Um) = exp
[∑m

i=1

∑ni

j=1

{
yij(β0 + β1 xij + Ui)

−b (β0 + β1 xij + Ui)
}] (34)

with Ui are independent (0, σ2
u), 1 ≤ i ≤ m, which corresponds to (33) with X

and Z as in (10) and G = σ2
uI .

A common approach to fitting GLMMs is maximum likelihood for (β,G) and
best prediction for u under the normality assumption u ∼ N(0,G). However
this requires numerical integration techniques and, especially if the integrals
are multi-dimensional, approximations are used instead. The most common of
these is PQL (e.g. [3]). However, we will not treat quasi-likelihoods here, so the
label penalized likelihood (PL) is appropriate. For (33) with u ∼ N(0,G) and
G known this involves maximization of the penalized likelihood

exp{yT (Xβ + Zu) − 1T b (Xβ + Zu) − 1
2uT G−1u} (35)

to obtain the estimates β̂
PL

and ûPL.
We now show that the penalized likelihood (35) can be treated as an RKHS

optimization problem. Hence, obtaining β̂
PL

and ûPL for a given G involves
a particular kernel machine. Again, with simplicity in mind, we give the full
explanation for the random intercept model (34). The general case follows via
the linear algebraic arguments and structures given in Sections 4.2 and 4.3.

Re-subscript the (xij, yij) sequentially (as in Section 4) and, as before, let
Zij be the (i, j) entry of the matrix Z defined at (10). Then (34) is

f(yi|U1, . . . , Um)=exp
[ n∑

i=1

{
yi

(
β0+β1 xi+

m∑

j=1

ZijUj

)
−b
(
β0+β1 xi+

m∑

j=1

ZijUj

)}]
.

Let HK ,K and Hβ be defined by (12), (13) and (14) respectively. Then penalized
likelihood estimation of β and u is equivalent to the RKHS optimization problem

min
f∈HK

[ n∑

i=1

L(yi, f(xi, Zi1, . . . , Zim)) + λ‖Puf‖2
HK

]
(36)
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where Pu is the projection operator onto Hu = H⊥
β , λ = 1/σ2

u and the loss
function is given by L(s, t) = −2{st− b(t)}. For example,

L(s, t) =

{
−2{st+ log(1 + et)}, in the Bernoulli case,
−2(st+ et), in the Poisson case.

If f̂ is the solution to (36) then

f̂(x, 1, 0, . . . , 0) = β̂0 + β̂1 x+ Û1,

f̂(x, 0, 1, . . . , 0) = β̂0 + β̂1 x+ Û2,

...

and f̂(x, 0, 0, . . . , 1) = β̂0 + β̂1 x+ Ûm,

where (β̂0 , β̂1) = β̂
PL

and (Û1, . . . , Ûm) = ûPL.

5.1. Kernel extension

Let HK = Hβ ⊕ Hc ⊕ Hu be the RKHS defined in Section 4.1.1. Recall that
Hβ handles linear predictors (‘fixed effects’), Hc handles non-linear effects of
a predictor x and Hu handles random intercepts. The same structure can be
used for the general response situation. For example, if yi is binary then the
appropriate minimization problem is

minf∈HK

(
∑n

i=1[−2{yi − f(xi, Zi1, . . . , Zim) + log(1 + ef(xi,Zi1,...,Zim))}]

+λc‖Pcf‖2
HK

+ λu‖Puf‖2
HK

)
.

By arguments similar to those given in Section 2, this reduces to the matrix
algebraic problem

max
β,c,u

{yT (Xβ + Kc + Zu)− 1T log(1 + eXβ+Kc+Zu) − 1
2λcc

T Kc − 1
2λu‖u‖2}

which may be solved via Newton-Raphson iteration.

5.2. Alternative loss functions

Other loss functions, appropriate for the type of generalized response at hand,
may be considered. For example, in the binary response case the Bernoulli log-
likelihood loss could be replaced by hinge loss:

L(s, t) = {1 − (2s− 1)t}+,
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which corresponds to support vector machine classification (e.g. [4]). Alternative
large margin loss functions could also be considered, such as

L(s, t) = [{1− (2s−1)t}+]q, q > 1 and L(s, t) = {ρ− (2s−1)t}+ , ρ > 0.

The definition of the class of large margin loss functions, and a fuller list of
examples, is given in Section 2 of Wang and Shen [39].

We performed a small comparison of Bernoulli log-likelihood loss and hinge
loss for a binary response longitudinal data set. The data involves longitudinal
measurements on Indonesian children (source: [6]). The response variable is an
indicator of presence of respiratory infection. The comparison between the two
loss functions is cleaner if the response is coded as ±1, so we let

yij =

{
1 if child i has respiratory infection at time of measurement j,

−1 otherwise

and xij denote the age, in years, corresponding to yij . Then, with (xi, yi), 1 ≤
i ≤ n, denoting the sequentially subscripted (xij, yij) we considered two versions
of

min
f∈HK

{
n∑

i=1

L(yi, f(xi, Zi1, . . . , Zim)) + λc‖Pcf‖2
HK

+ λu‖Puf‖2
HK

}
(37)

where HK = Hβ ⊕ Hc ⊕ Hu is the RKHS defined in Section 4.1.1. The first
version has

L(s, t) = log(1 + e−st),

corresponding to Bernoulli log-likelihood, while the second is hinge loss:

L(s, t) = (1 − st)+. (38)

For Hc we used a low-rank kernel

Kc(s, t) =

k∑

j=1

zj(s)zj(t)

based on a set of k canonical O’Sullivan spline basis functions {zj(·) : 1 ≤ j ≤ k}
and corresponding to equation (6) of Wand and Ormerod [38]. In the case of
hinge loss, such a kernel gives rise to a low-rank quadratic programming problem.
This enabled us to use the methodology described in Ormerod, Wand and Koch
[23] and the corresponding R package LowRankQP ([22]).

In the original data, there are many more values with yij = −1 than with
yij = 1 and a weighted version of hinge loss is appropriate. So that we could
use ordinary hinge loss (38) for illustration we worked with a sub-sample of
the yij = −1 data so the sample sizes for each type are equal (107 each).
The regularization parameter for the random subject effect was obtained via
penalized quasi-likelihood to be λu = 3.6. We then varied the regularization



N.D. Pearce and M.P. Wand/Longitudinal data analysis and kernel machines 820

parameter for the Kc component over the values λc ∈ {10, 1, 0.1, 0.01}. The
fitted functions:

f̂c(x; λc) =

n∑

i=1

ĉiKc(x, xi)

are shown in Figure 5. Note that the ĉi depend on λc.

age (years)

di
sc

rim
in

an
t −1.0

−0.5

0.0

0.5

1.0

λc = 10

2 4 6

λc = 1

2 4 6

λc = 0.1

−1.0

−0.5

0.0

0.5

1.0

λc = 0.01

two random intercept classifiers
Bernoulli log−likelihoood loss hinge loss

Fig 5. Results of fitting (37) for both Bernoulli log-likelihood loss and hinge loss, with 4
different values of the regularization parameter λc corresponding to the spline kernel machine
age effect. If viewed as a classification problem then the curves correspond to discriminants.
The longitudinal data are jittered to enhance visualization.

Even though the Indonesian children respiratory study was concerned with
determination of risk factors, rather than classification, it is useful to suppose
that the latter is the case when viewing Figure 5. Under this scenario, the
f̂c(·; λc) are discriminants for classification of having respiratory infection or
not based on age. Hinge loss is seen to be less wiggly and more decisive on
either side of the classification boundaries.

Both discriminants possess the rare property of taking account of the longi-
tudinal nature of the data, through the presence of the λu‖Puf‖2

HK
term in the

fitting process. While the classification rules themselves are minimally affected
by this additional regularization, precision estimates are likely to change. Since
precision estimates require additional probabilistic structure we do not do such
comparison here.
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6. Discussion

In this article we have shown that two ostensibly different areas of research –
longitudinal data analysis and kernel machines – are, in fact, very similar in
their underlying mathematics. It is anticipated that the explicit connections
that have been established here will facilitate a more fluid exchange of ideas
between the two fields. For longitudinal data analysis, there is the possibility of
using kernel machines to better deal with non-linearity and to develop improved
classification procedures. From the kernel machine perspective, we envisage ker-
nel methodology that is tailored to longitudinal data models and accounts for
complications such as within-unit correlation.
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