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Abstract: One of the most popular class of tests for independence be-
tween two random variables is the general class of rank statistics which are
invariant under permutations. This class contains Spearman’s coefficient of
rank correlation statistic, Fisher-Yates statistic, weighted Mann statistic
and others. Under the null hypothesis of independence these test statis-
tics have a permutation distribution that is usually approximated by using
asymptotic normal theory to determine p-values for these tests. In this note
we suggest using a saddlepoint approach that is almost exact and needs no
simulations in order to calculate the p-value for tests in this class.
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1. Introduction

Suppose we observe N independent pairs of random variables (X1 , Y1), (X2 , Y2),
. . . , (XN , YN) and we wish to test the null hypothesis H0 that the two vari-
ables Xi and Yi are independent for each i. Rearrange all N pairs of ob-
servations according to the magnitude of their first coordinate into the se-
quence (Xd1

, Yd1
), (Xd2

, Yd2
), . . . , (XdN

, YdN
) in such a way that Xd1

< Xd2
<

· · · < XdN
. Then put Ri equal to the rank of Ydi

among the observations
Yd1

, Yd2
, . . . , YdN

. Under the assumption of independence and assuming no ties,
all N ! orderings (R1, . . . , RN) are equally likely with probability 1/N !. If we are
willing to assume that the two variables have a positive association, the {Ri}
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should reveal an upward trend, with large values tending to occur on the right
of the sequence and low values on the left. An appropriate test statistic that
reflects this idea is

D =

N
∑

i=1

(Ri − i)2 (1)

with small values of D indicating significance.
The statistic D is related to the well known Spearman’s coefficient of rank

correlation statistic, Sp, with the relation Sp = 1− 6D/N(N2− 1), see Gibbons
and Chakraborti (2003). It is also related to the weighted Mann statistic, D′,
by D′ = 1

6
N(N2 − 1) − 1

2
D.

Expanding (1), D can be written as

D =
1

3
N(N + 1)(2N + 1) − 2

N
∑

i=1

iRi

which gives an equivalent simple statistic

V ′ =

N
∑

i=1

iRi (2)

Hajek, Sidak and Sen (1999).
The statistic V ′ is equivalent to a general class of rank statistics whose null

distributions are invariant under permutations. This class can be written as

S =

N
∑

i=1

fN(i)fN (Ri) (3)

which contains the Fisher-Yates normal score test with fN (i) = EU
(i)
N , where

U
(1)
N < U

(2)
N < · · · < U

(N)
N are an ordered sample of N observations from

the standardized normal distribution; the van der Waerden test statistic with
fN (i) = Φ−1( i

N+1 ), where Φ is the standard normal distribution function; and

the quadrant test statistic with fN (i) = sign(i − N+1
2 ), Hajek, Sidak and Sen

(1999).
This paper is concerned with approximating p-values for tests in the class (3)

based on their permutation distributions. The approximation is based on the
saddlepoint approximation rather than normal approximation or simulation.
Generally, the saddlepoint approximations are accurate up to O(N−3/2) when
considered over sets of bounded central tendency, in contrast to O(N−1/2) for
the central limit theorem.

The presented method is a useful tool when accuracy and speed are needed.
For example, the need to evaluate a very large number of p-values is increas-
ingly common with modern genetic data. Testing the association between hap-
lotype scores and a trait is a basic problem in genomic studies. In this situ-
ation, the asymptotic distribution is not easily available since the haplotype
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scores are not directly observed but are estimated from genotype data. Per-
mutations are typically used to obtain p-values for large number of tests, but
these can be computationally infeasible in large problems. For more details see
Seaman and Müller-Myhsok (2005), Lin (2005) and Kustra et al. (2008).

Saddlepoint approximations to randomization distributions were introduced
by Daniels (1958) and further developed by Robinson (1982) and Davison and
Hinkley (1988). Booth and Butler (1990) showed that various randomization
and resampling distributions are the same as certain conditional distributions
and that the double saddlepoint approximation attains accuracy comparable to
the single saddlepoint approach.

Abd-Elfattah and Butler (2007) and Abd-Elfattah and Butler (2009) used
the double saddlepoint approximation to calculate the p-values and confidence
intervals for two different problems. The first paper treats the two-sample prob-
lem when both treatment and control observations are subject to right censoring.
The test statistics are the class of linear rank tests. The second paper deals with
extensions of the first paper to three or more treatment levels and considers tests
of trend. Both of these papers deal with a survival time data, that is a time to
event, which usually is subject to censoring. The current paper concerns non-
parametric association with regression type data in which each subject has (x, y)
values and we are interested in testing independence of X and Y . Bingyi (1998)
also used the double saddlepoint approximation to approximate the p-values of
the two sample permutation tests.

Our approximation is also a double saddlepoint approximation which requires
no simulations. The following lemma reformulates the class (3) to more appro-
priate simple form to use the double saddlepoint.

Lemma 1. The class of statistics (3) can be written in an equivalent form as

V = LT
N

∑

i=1

fN(i)Zi (4)

where LT = (fN (1), fN(2), . . . , fN (N)), and Z1, Z2, . . . , ZN are N × 1 vectors
of the form ZRi

= ηi, i = 1, . . . , N , where the N × N identity matrix IN =
(η1, η2, . . . , ηN).

Proof. Simple algebra.

For example, if R1 = 2 is arithmetical rank so that Z2 = η1 and
∑N

i=1 iZi

has a 2 in its first component for R1.
Section 2 presents the saddlepoint approximation approach. A real data ex-

ample is illustrated in section 3 along with a simulation study to show the
performance of the saddlepoint method. An application of the method to the
Cuzick (1982) test statistic in case of interval censoring is discussed in section 4.

2. Saddlepoint approximation for tests of independence

Under the null hypothesis H0 of independence, the permutation distribution of
V places a uniform distribution on the set of N ×1 indicator vectors {Zi}. This
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distribution may be constructed from a corresponding set of i.i.d. N ×1 vectors
of Multinomial(1, θ1 , θ2, . . . , θN ) indicator vectors ζ1, ζ2, . . . , ζN . The permuta-

tion distribution over all one way designs for which
∑N

i=1 Zi = (1, . . . , 1)T is
constructed from the i.i.d. Multinomial variables as the conditional distribution

Z1, . . . , ZN
D
= ζ1, . . . , ζN |

N
∑

i=1

ζi = (1, . . . , 1)T
N×1.

The dependence in the statistic can be removed by using the (N − 1) × 1
vectors Z−

i and ζ−i , the first N − 1 components of Zi and ζi respectively, then

Z−

1 , . . . , Z−

N
D
= ζ−1 , . . . , ζ−N |

n
∑

i=1

ζ−i = (1, . . . , 1)T
(N−1)×1.

Then V can be represented in terms of {Z−

i } as

V = LT
−

N
∑

i=1

fN (i)Z−

i + Q

where LT
−

=(fN (1)−fN (N), . . . , fN(N−1)−fN (N)) and Q = fN (N)
∑N

i=1 fN (i).

If v0 is the observed statistic value of V , and T (ζ−) = LT
−

∑N
i=1 fN (i)ζ−i +Q,

then the null distribution of V is

Pr{V ≥ v0} = Pr

{

T (ζ−) ≥ v0 |
N

∑

i=1

ζ−i = (1, . . . , 1)T

}

Assuming any probability vector {θ1, θ2, . . . , θN} for the Multinomial dis-
tribution, the conditional distribution of T (ζ−1 , ζ−2 , . . . , ζ−N) given the sufficient

statistic
∑N

i=1 ζ−i is the required permutation distribution.
Let P be a random variable with the required permutation distribution and

v0 the observed value of V. The required p-value is defined as the mid-p-value
which is pr(P > v0) + pr(P = v0)/2 = mid-p(v0) and is approximated from
the Skovgaard (1987) saddlepoint procedure as the conditional tail probability

Pr{T (ζ−) ≥ v0 |
∑N

i=1 ζ−i = (1, . . . , 1)T }
The mid-p-value is approximated from the double saddlepoint procedure

using the joint cumulant generating function for (T (ζ−1 , ζ−2 , . . . , ζ−N),
∑N

i=1 ζ−i )
given by K(t, s) = log M(t, s) where

M(t, s) =

N
∏

i=1







N−1
∑

j=1

θj exp(sj + rijt) + θN







with s = (s1 , . . . , sN−1) and rij = fN(i)(fN (j)− fN (N)). The approximation is

Pr(V ≥ v0) ≃ 1 − Φ(ŵ) − φ(ŵ)

(

1

ŵ
−

1

û

)

(5)
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where

ŵ = sgn(t̂)
√

2
[

−{K
(

t̂, ŝ
)

− ŝT 1− − v0 t̂}
]

(6)

û = t̂
√

|K′′

(

t̂, ŝ
)

|/|K′′

ss(0, 0)|.

and 1− is (N−1)×1 vector of ones. In these expressions, K′′ is the N×N Hessian
matrix and K′′

ss is the ∂2/∂s∂sT portion at (0, 0), see Skovgaard (1987) and
Butler (2005). The saddlepoint

(

t̂, ŝ
)

solves

K′

sj

(

t̂, ŝ
)

=
N

∑

i=1

exp(ŝj + rij t̂)
{
∑N−1

l=1 exp(ŝl + rilt̂) + 1
}

= 1, j = 1, . . . , N − 1

K′

t

(

t̂, ŝ
)

=

N
∑

i=1

∑N−1
j=1 rij exp

(

ŝj + rij t̂
)

{
∑N−1

l=1 exp(ŝl + rilt̂) + 1
}

+ Q = v0.

By using θi = 1/N, the denominator saddlepoint equations have an explicit
solution as ŝ0 = 0 and this simplifies the calculations.

The saddlepoint expression in (5) uses the saddlepoint approximation as if
T (ζ−), and consequently P, were continuous random variables. In the permuta-
tion setting however, P is discrete and not even a lattice distribution for which
a continuity correction would be available. The reason that this continuous for-
mula can and should be used is that it provides the most accurate approximation
for the mid-p-value. Pierce and Peters (1992), Davison and Wang (2002), and
Butler (2005, §6.1.4) discuss reasons for this accuracy.

These calculations can be summarized as follow; based on the test statistic
under consideration, we calculate rij and Q, then solving the saddlepoint equa-
tions yields the saddlepoint

(

t̂, ŝ
)

. Substituting the saddlepoint values at (6)
gives ŵ and û and finally we use (5) to get the saddlepoint p-value.

The saddlepoint method requires solving system of N nonlinear saddlepoint
equations. The Newton’s method has been used through this paper. The IMSL
routine DNEQBF is computationally faster. The DNEQBF routine uses Broy-
den’s (1965) update of Newton’s method with the finite-difference method to
approximate the initial Jacobian matrix. When the sample size increases, this
routine will be very useful to solve a large number of nonlinear equations. A com-
prehensive treatment of methods for solving nonlinear systems of equations can
be found in Dennis and Schnabel (1996), also see Burden and Faires (2003) for
methods and related softwares.

3. Example and simulation study

Nayak (1988) gives the failure times of both transmission (X) and transmission
pumps (Y ) on 15 caterpillar tractors as shown in Table 1.

To test the independence of failure times of X and Y , the test statistic (2)

is used with L = (1, . . . , N), and Q = LN

∑N
i=1 Ri = N2(N + 1)/2. The true
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Table 1

Failure times of transmissions by Nayak (1988)

X 1641 5556 5421 3168 1534 6367 9460 6679
6142 5995 3953 6922 4210 5161 4732

Y 850 1607 2225 3223 3379 3832 3871 4142
4300 4789 6310 6311 6378 6449 6949

Table 2

Performance under simulation for the independence test statistic (2)

Sad. Abs. Err. Abs. Err. Rel. Abs. Rel. Abs.
N λ Prop. Sad. Nor. Err. Sad. Err. Nor.
10 0.0 0.944 0.0010 0.0083 0.0048 0.1057

0.5 0.945 0.0010 0.0081 0.0050 0.0579
30 0.0 0.943 0.0003 0.0022 0.0012 0.0103

0.5 0.932 0.0003 0.0022 0.0013 0.0103
50 0.0 0.897 0.0003 0.0013 0.0011 0.0065

0.5 0.903 0.0003 0.0013 0.0013 0.0069
70 0.0 0.840 0.0003 0.0009 0.0012 0.0052

0.5 0.867 0.0003 0.0009 0.0013 0.0054

(simulated) mid-p-value was calculated by using 106 permutations of the com-
puted test statistic. The simulated mid-p-value is then the proportion of such
generations exceeding the observed statistic plus half the proportion of times
that attain v0. The p-value of the saddlepoint approach is compared to the nor-
mal p-value calculated using the test statistic (v′ −E(v′))/

√

V ar(v′). The true
mid-p-value and the saddlepoint approximated p-value were 0.2768 and 0.2763,
respectively, while the normal p-value was 0.2693.

A small simulation study has carried out to assess the performance of the
saddlepoint method. Consider the general linear model of dependence

Xi = X′

i + λei, Yi = Y ′

i + λei, i = 1, . . . , N

where all the variables X′

i, Y
′

i and ei are mutually independent and their distri-
butions do not depend on i, and λ is a real non-negative parameter. This general
dependence model was considered by Hajek, Sidak and Sen (1999) and Cuzick
(1982). In this model the null hypothesis H0 of independence is equivalent to
λ = 0, whereas for λ > 0 the variables Xi and Yi are dependent. Data sets are
generated from this model using logistic, extreme value and uniform distribu-
tions for X′

i, Y
′

i and ei respectively. For each value of λ = 0.0, 0.5 and sample
sizes (10, 30, 50, 70), 1000 data sets were generated and the true, saddlepoint and
normal p-values were calculated using the test statistic (2). Table 2 shows the
proportion of the 1000 data sets for which the saddlepoint p-value was closer, in
absolute error, to the true mid-p-value than the normal p-value “Sad. Prop.”,
“Abs. Err. Sad.” is the average absolute error of the saddlepoint p-value from
the true mid-p-value, and “Rel. Abs. Err. Sad.” is the average relative absolute
error of the saddlepoint p-value from the true mid-p-value, and the remaining
listings are the same assessments for the normal approximation.

The saddlepoint p-value was more accurate in 90.8% of the overall cases as
compared to the normal approximation. The average absolute saddlepoint error
was less than 10−3 with average relative error typically less than 0.1%.
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4. Extension

The problem of testing the independence between two variables under random
censoring has attracted the attention of many authors, see O’Brien (1978), Wei
(1980), Oakes (1982), and Gieser and Randles (1997). The saddlepoint approach
of section 2 is applicable to test statistics that deal with censored data. When
one of the two variables is subject to interval censoring, say the first, and the
second random variable is observed, Cuzick (1982) presents a linear log-rank

test statistic to test the independence of two vectors in the form
∑N

i=1 ξiR2i,
where {ξi} are given scores and {R2i} are the ranks of the observed values of the
second random variable. In the linear form (4), taking L = (ξ1, ξ2, . . . , ξN ) and
fN (Ri) = R2i, the saddlepoint method is applicable. For example, Cuzick gives a
survival times for 20 patients for the analysis of the relation between hemoglobin
at presentation and survival in some medical clinic. The normal p-value using
his asymptotic approach was 0.0505 while the true mid-p-value and the sad-
dlepoint p-value are 0.0516 and 0.0512, respectively. Generally the saddlepoint
approximation can be applied to any linear rank test that takes the form (3).
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