Almost sure convergence of extreme order statistics

Zuoxiang Peng and Jiaona Li
School of Mathematics and Statistics Southwest University
Chongqing, 400715, China
e-mail: pzx@swu.edu.cn
Saralees Nadarajah
School of Mathematics
University of Manchester
Manchester, United Kingdom
e-mail: mbbsssn2@manchester.ac.uk

Abstract

Let $M_{n}^{(k)}$ denote the k th largest maximum of a sample (X_{1}, X_{2}, \ldots, X_{n}) from parent X with continuous distribution. Assume there exist normalizing constants $a_{n}>0, b_{n} \in \mathbb{R}$ and a nondegenerate distribution G such that $a_{n}^{-1}\left(M_{n}^{(1)}-b_{n}\right) \xrightarrow{w} G$. Then for fixed $k \in \mathbb{N}$, the almost sure convergence of $$
\frac{1}{D_{N}} \sum_{n=k}^{N} d_{n} \mathbb{I}\left\{M_{n}^{(1)} \leq a_{n} x_{1}+b_{n}, M_{n}^{(2)} \leq a_{n} x_{2}+b_{n}, \ldots, M_{n}^{(k)} \leq a_{n} x_{k}+b_{n}\right\}
$$ is derived if the positive weight sequence $\left(d_{n}\right)$ with $D_{N}=\sum_{n=1}^{N} d_{n}$ satisfies conditions provided by Hörmann. Some practical issues of this result are also discussed.

> AMS 2000 subject classifications: Primary 62 F15; secondary 60 G 70 , 60 F 15 .
> Keywords and phrases: Almost sure convergence, order statistics.

Received October 2008.

Contents

1 Introduction 546
2 Main results 550
3 Proofs 550
4 Discussion 553
Acknowledgments 554
References 554

1. Introduction

The concept of almost sure central limit theorems (ASCLTs) is relatively new compared to that of classical central limit theorems. The original papers on
this concept are those by Brosamler [4], Schatte [20] and Lacey and Philipp [17]. The concept has already started to receive applications in many areas. For example, Brosamler [5, 6] has shown applications of ASCLTs for occupation measures of Brownian-motion on a compact Riemannian manifold and for diffusions and its application to path energy and eigenvalues of the Laplacian. His work has been followed up in many other applied areas, including condensed matter physics, statistical mechanics, ergodic theory and dynamical systems, occupational health psychology, control and information sciences and rehabilitation counseling.

More recently, Thangavelu [23] has studied applications of ASCLTs for quanitle estimation, one-sample hypothesis testing, two-sample hypothesis testing, random intervals, the Behrens-Fisher Problem, rank statistics, quality control and decision making. One of the key findings is that in hypothesis testing methods using ASCLTs one does not need to estimate or use the variance of the observations. For other advantages, see Chapters 2 and 3 in Thangavelu [23].

Most recently, Bercu et al. [3] have shown applications of ASCLTs for the estimation and prediction in linear autoregressive models and branching processes with immigration.

The first ASCLTs were reported in the papers of Brosamler [4], Schatte [20] and Lacey and Philipp [17]. For an independent and identically distributed (i.i.d.) sequence $\left\{X_{n}, n \geq 1\right\}$ with mean 0 , variance 1 and partial sum $S_{n}=$ $\sum_{k=1}^{n} X_{k}$, the simplest version of the ASCLT says

$$
\frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} \mathbb{I}\left\{S_{n} \leq \sqrt{n} x\right\} \rightarrow \Phi(x), \quad \text { a.s. } \forall x \in \mathbb{R}
$$

where a.s. means almost surely, \mathbb{I}_{A} denotes the indicator function and $\Phi(x)$ is the standard normal distribution function. For unbounded functional ASCLTs, Ibragimov and Lifshits [16] and Berkes et al. [2] obtained the following ASCLT under different restrictions on the continuous function f :

$$
\frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} f\left(S_{n} / \sqrt{n}\right) \rightarrow \int_{-\infty}^{\infty} f(x) d \Phi(x), \text { a.s. }
$$

The universal version of the ASCLT discussed by Berkes and Csáki [1] includes the case of the ASCLT of extremes of i.i.d random sequences which was first studied by Fahrner and Stadtmüller [11] and Cheng et al. [7]. Let $\left\{X_{n}, n \geq 1\right\}$ be an i.i.d. sequence, and let $M_{n}=\max _{1 \leq k \leq n} X_{k}$ denote the partial maximum. If there exist normalizing constants $a_{n}>0, b_{n} \in \mathbb{R}$ and a nondegenerate distribution $G(x)$ such that nondegenerate distribution $G(x)$ such that

$$
\begin{equation*}
P\left(M_{n} \leq a_{n} x+b_{n}\right) \rightarrow G(x)=: G_{\gamma}(x)=\exp \left\{-(1+\gamma x)^{-1 / \gamma}\right\} \tag{1.1}
\end{equation*}
$$

where γ is the so-called extreme value index, then

$$
\begin{equation*}
\frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} \mathbb{I}\left\{M_{n} \leq a_{n} x+b_{n}\right\} \rightarrow G(x), \text { a.s. } \forall x \in \mathbb{R} . \tag{1.2}
\end{equation*}
$$

Fahrner [10] extended (1.2) to unbounded continuous functions. The general result is

$$
\frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} f\left(a_{n}^{-1}\left(M_{n}-b_{n}\right)\right) \rightarrow \int_{-\infty}^{\infty} f(x) d G(x), \text { a.s. }
$$

See Theorem 1 of Fahrner [10]. Stadtmüller [21] considered the ASCLT of the k th maximum as $k=k_{n}$ satisfies $\log k_{n}=O\left((\log n)^{1-\varepsilon}\right)$ for some $\varepsilon>0$ or $\left(n-k_{n}\right) / n=p+O\left(1 / \sqrt{n \log ^{\varepsilon} n}\right)$ for some $0<p<1$. Especially for fixed k he showed

$$
\frac{1}{\log N} \sum_{n=k}^{N} \frac{1}{n} \mathbb{I}\left\{M_{n}^{(k)} \leq a_{n} x+b_{n}\right\} \rightarrow G(x) \sum_{j=0}^{k-1} \frac{(-\log G(x))^{j}}{j!}, \text { a.s. } \forall x \in \mathbb{R},
$$

where $M_{n}^{(k)}$ denotes the k th maximum of $X_{1}, X_{2}, \ldots, X_{n}$ and $M_{n}:=M_{n}^{(1)}$. Peng and Qi [19] proved the ASCLT of central order statistics, see also Hörmann [12].

In this note, we consider the following averages:

$$
\begin{equation*}
\frac{1}{D_{N}} \sum_{n=k}^{N} d_{n} \mathbb{I}\left\{M_{n}^{(1)} \leq a_{n} x_{1}+b_{n}, M_{n}^{(2)} \leq a_{n} x_{2}+b_{n}, \ldots, M_{n}^{(k)} \leq a_{n} x_{k}+b_{n}\right\} \tag{1.3}
\end{equation*}
$$

provided the positive weights $d_{n}, n \geq 1$ satisfy the following conditions:

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} n d_{n}>0 \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
n^{\alpha} d_{n} \text { is eventually nonincreasing for some } 0<\alpha<1 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n d_{n}\left(\log D_{n}\right)^{\rho} / D_{n}<\infty \tag{1.6}
\end{equation*}
$$

for some $\rho>0$, where $D_{n}=\sum_{k=1}^{n} d_{k}$. Under conditions (1.4)-(1.6) it follows from the results in Hörmann [13, 14, 15] that

$$
\frac{1}{D_{N}} \sum_{n=1}^{N} d_{n} \mathbb{I}\left\{S_{n} \leq \sqrt{n} x\right\} \rightarrow \Phi(x), \text { a.s. }
$$

and

$$
\frac{1}{D_{N}} \sum_{n=1}^{N} d_{n} \mathbb{I}\left\{M_{n} \leq a_{n} x+b_{n}\right\} \rightarrow G(x), \text { a.s. }
$$

The main results on the convergence of (1.3) are provided in Section 2. The proofs are deferred to Section 3. Some practical implications of the main results are discussed in Section 4.

As discussed by Berkes and Csáki [1] and Hömann [12, 13, 14, 15], the larger the D_{n}, the stronger the ASCLT. If $d_{n}<1 / n$ such that $D_{n} \rightarrow \infty$, then the ASCLT holds. If $d_{n}=1$, there is no ASCLT on the partial sum and partial maxima. Conditions (1.4), (1.5) and (1.6) tell us that there exists a large class of sequences $1 / n<d_{n}<1$ such that the ASCLT holds. For example, we may assume $D_{n} \rightarrow \infty$ with Karamata representation

$$
D_{n}=\exp \left(\int_{a}^{n} \frac{\theta(u)}{u} d u\right), \quad n>a
$$

where $\theta(x)$ is a slowly varying function such that

$$
\liminf _{n \rightarrow \infty} \theta(n) D_{n}>0, \quad \text { and } \quad \limsup _{n \rightarrow \infty} \theta(n)\left(\log D_{n}\right)^{\rho}<\infty
$$

for some $\rho>0$, which guarantees that (1.4), (1.5) and (1.6) hold. By the mean value theorem, we may choose $d_{n} \sim \theta(n) D_{n} / n$. This implies that $\left(d_{n}\right)$ is a regularly varying function with index -1 . We mention the following examples:
(a) $D_{n}=(\log n)^{\kappa}$ with $d_{n} \sim \kappa(\log n)^{\kappa-1} / n$ for $\kappa>1, \rho>0$;
(b) $D_{n}=\exp \left((\log n)^{\kappa}\right)$ with $d_{n} \sim \kappa \exp \left((\log n)^{\kappa}\right)(\log n)^{\kappa-1} / n$ for $0<\kappa<1$, $0<\rho<(1-\kappa) / \kappa ;$
(c) $D_{n}=(\log n)^{1-\kappa} \exp \left((\log n)^{\kappa}\right)$ with $d_{n} \sim \kappa \exp \left((\log n)^{\kappa}\right) / n$ for $0 \leq \kappa<$ $1 / 2,0<\rho<1 / \kappa-1$.

Throughout this note we assume that $F(x)$, the univariate marginal distribution of $X_{n}, n \geq 1$ is continuous. This assumption implies that the order statistics are a.s. uniquely defined. Before providing the main results, recall the joint limit distribution of $\left(M_{n}^{(1)}, M_{n}^{(2)}, \ldots, M_{n}^{(k)}\right)$ for fixed k if (1.1) holds. Define levels $u_{n}\left(x_{j}\right)=a_{n} x_{j}+b_{n}, j=1,2, \ldots, k, x_{1}>x_{2}>\cdots>x_{k}$ and define the point process χ_{n} of exceedances of levels $u_{n}\left(x_{j}\right), j=1,2, \ldots, k$ by i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$. Then χ_{n} converges in distribution to a Poisson process on $(0,1] \times \mathbb{R}$, for more details see Chapter 5 of Leadbetter et al. [18], which states the joint limit distribution of $\left(M_{n}^{(1)}, M_{n}^{(2)}, \ldots, M_{n}^{(k)}\right)$ and

$$
\begin{equation*}
P\left(M_{n}^{(j)} \leq a_{n} x+b_{n}\right) \rightarrow G(x) \sum_{i=0}^{j-1} \frac{(-\log G(x))^{i}}{i!}=: H_{j}(x), \quad j=1,2, \ldots, k \tag{1.7}
\end{equation*}
$$

as $n \rightarrow \infty$. The joint limit distribution of $\left(M_{n}^{(1)}, M_{n}^{(2)}, \ldots, M_{n}^{(k)}\right)$ is so complicated that we express it as $H\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ with the marginal distribution $H_{j}(x)$ defined in (1.7), $j=1,2, \ldots, k$, i.e.

$$
\begin{align*}
& \lim _{n \rightarrow \infty} P\left(M_{n}^{(1)} \leq a_{n} x_{1}+b_{n}, M_{n}^{(2)} \leq a_{n} x_{2}+b_{n}, \ldots, M_{n}^{(k)} \leq a_{n} x_{k}+b_{n}\right) \\
& =\quad\left\{\begin{array}{cc}
H\left(x_{1}, x_{2}, \ldots, x_{k}\right), & x_{1}>x_{2}>\cdots>x_{k} \\
0, & \text { otherwise }
\end{array}\right. \tag{1.8}
\end{align*}
$$

2. Main results

In this section, we provide the main results. The proofs are deferred to the next section.

Theorem 1. Suppose (1.1) holds for an i.i.d. random sequence $\left(X_{n}, n \geq 1\right)$. Further assume (1.4)-(1.6) hold for positive weights $d_{n}, n \geq 1$. Then for fixed $k \in \mathbb{N}$ and real numbers $x_{1}>x_{2}>\cdots>x_{k}$, we have

$$
\begin{align*}
& \frac{1}{D_{N}} \sum_{n=k}^{N} d_{n} \mathbb{I}\left\{M_{n}^{(1)} \leq u_{n}\left(x_{1}\right), M_{n}^{(2)} \leq u_{n}\left(x_{2}\right), \ldots, M_{n}^{(k)} \leq u_{n}\left(x_{k}\right)\right\} \\
\rightarrow \quad & H\left(x_{1}, x_{2}, \ldots, x_{k}\right), \text { a.s. } \tag{2.1}
\end{align*}
$$

where $u_{n}\left(x_{j}\right), j=1,2, \ldots, k$ and $H\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ are defined as before.
Corollary 1. Under the conditions of Theorem 1, for real numbers $x_{k_{1}}>x_{k_{2}}>$ $\cdots>x_{k_{l}}$ with $1 \leq k_{1}<k_{2}<\cdots<k_{l} \leq k$, we have

$$
\begin{aligned}
& \frac{1}{D_{N}} \sum_{n=k_{l}}^{N} d_{n} \mathbb{I}\left\{M_{n}^{\left(k_{1}\right)} \leq u_{n}\left(x_{k_{1}}\right), M_{n}^{\left(k_{2}\right)} \leq u_{n}\left(x_{k_{2}}\right), \ldots, M_{n}^{\left(k_{l}\right)} \leq u_{n}\left(x_{k_{l}}\right)\right\} \\
\rightarrow \quad & H^{*}\left(x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{l}}\right), \text { a.s., }
\end{aligned}
$$

where $H^{*}\left(x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{l}}\right)$ is the marginal distribution of $H\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. Especially, for fixed $k \in \mathbb{N}$,

$$
\frac{1}{D_{N}} \sum_{n=k}^{N} d_{n} \mathbb{I}\left\{M_{n}^{(k)} \leq u_{n}(x)\right\} \rightarrow H_{k}(x)=G(x) \sum_{j=0}^{k-1} \frac{(-\log G(x))^{j}}{j!}, \text { a.s. }
$$

For bounded Lipschitz 1 functions, we have the following ASCLT of order statistics.

Corollary 2. Under the conditions of Theorem 1, for fixed $k \in \mathbb{N}$ and bounded Lipschitz 1 function f, we have

$$
\frac{1}{D_{N}} \sum_{n=k}^{N} d_{n} f\left(a_{n}^{-1}\left(M_{n}^{(k)}-b_{n}\right)\right) \rightarrow \int_{-\infty}^{\infty} f(x) d H_{k}(x), \text { a.s. }
$$

3. Proofs

As mentioned above, denote levels $u_{n}(x)=a_{n} x+b_{n}, x \in \mathbb{R}, n \geq 1$ and real numbers $x_{1}>x_{2}>\cdots>x_{k}$ for fixed k. For convenience, let $M_{m, n}^{(j)}$ denote the j th maxima of $X_{m+1}, X_{m+2}, \ldots, X_{n}, 0 \leq m<n$ and $M_{n}^{(j)}:=M_{0, n}^{(j)}$. Set

$$
\begin{aligned}
\eta_{m, n}= & \mathbb{I}\left\{M_{m, n}^{(1)} \leq u_{n}\left(x_{1}\right), M_{m, n}^{(2)} \leq u_{n}\left(x_{2}\right), \ldots, M_{m, n}^{(k)} \leq u_{n}\left(x_{k}\right)\right\} \\
& -P\left(M_{m, n}^{(1)} \leq u_{n}\left(x_{1}\right), M_{m, n}^{(2)} \leq u_{n}\left(x_{2}\right), \ldots, M_{m, n}^{(k)} \leq u_{n}\left(x_{k}\right)\right)
\end{aligned}
$$

for $0 \leq m<n$ and $\eta_{n}=\eta_{0, n}$. Before proving the main results, we need some lemmas. Our first lemma provides a bound on the expectation of the difference of the indicator functions for the j th maxima of the whole sequence and the j th maxima of the subsequence for $j=1,2, \ldots, k$.

Lemma 1. Assume (1.1) holds and $m \geq k, n-m \geq k$. Then

$$
\mathbb{E}\left|\mathbb{I}\left\{M_{n}^{(j)} \leq u_{n}(x)\right\}-\mathbb{I}\left\{M_{m, n}^{(j)} \leq u_{n}(x)\right\}\right| \leq k \frac{m}{n}
$$

uniformly for $j=1,2, \ldots, k$ and $x \in \mathbb{R}$.
Proof. First note $\mathbb{I}\left\{M_{n}^{(j)} \leq u_{n}(x)\right\}-\mathbb{I}\left\{M_{m, n}^{(j)} \leq u_{n}(x)\right\} \neq 0$ if and only if $M_{n}^{(j)}>M_{m, n}^{(j)}$. The latter implies that $M_{m}^{(1)}>M_{m, n}^{(j)}$. It is known that the distribution of the general order statistic $M_{n}^{(j)}$ is

$$
P\left(M_{n}^{(j)} \leq x\right)=\sum_{i=0}^{j-1}\binom{n}{i}(F(x))^{n-i}(1-F(x))^{i}
$$

where $\binom{n}{i}=n!/\{i!(n-i)!\}$. Hence,

$$
\begin{aligned}
& \mathbb{E}\left|\mathbb{I}\left\{M_{n}^{(j)} \leq u_{n}(x)\right\}-\mathbb{I}\left\{M_{m, n}^{(j)} \leq u_{n}(x)\right\}\right| \\
\leq & P\left(M_{n}^{(j)}>M_{m, n}^{(j)}\right) \leq P\left(M_{m}^{(1)}>M_{m, n}^{(j)}\right) \\
= & \sum_{i=0}^{j-1} m\binom{n}{i} \int_{-\infty}^{\infty}(F(x))^{n+m-i-1}(1-F(x))^{i} d F(x) \\
\leq & \sum_{i=0}^{j-1} m\binom{n}{i} \int_{0}^{1} x^{n+m-i-1}(1-x)^{i} d x \\
= & \sum_{i=0}^{j-1} m\binom{n}{i} \frac{(n+m-i-1)!i!}{(n+m)!} \\
\leq & j \frac{m}{n} \leq k \frac{m}{n}
\end{aligned}
$$

uniformly for $1 \leq j \leq k$ and $x \in \mathbb{R}$.
Our next lemma provides a bound for the covariance of η_{m} and η_{n}, which will be used later for estimating the moment of the weighted sum of η_{n}.
Lemma 2. Assume (1.1) holds. Then

$$
\begin{equation*}
\left|\operatorname{Cov}\left(\eta_{m}, \eta_{n}\right)\right| \leq 2 k^{2} \frac{m}{n} \tag{3.1}
\end{equation*}
$$

for $m \geq k, n-m \geq k$.

Proof. The desired result follows by Lemma 1 and noting

$$
\begin{aligned}
\left|\operatorname{Cov}\left(\eta_{n}, \eta_{m}\right)\right| \leq & 2\left(\mathbb{E}\left|\mathbb{I}\left\{M_{n}^{(k)} \leq u_{n}\left(x_{k}\right)\right\}-\mathbb{I}\left\{M_{m, n}^{(k)} \leq u_{n}\left(x_{k}\right)\right\}\right|\right. \\
& +\mathbb{E}\left|\mathbb{I}\left\{M_{n}^{(k-1)} \leq u_{n}\left(x_{k-1}\right)\right\}-\mathbb{I}\left\{M_{m, n}^{(k-1)} \leq u_{n}\left(x_{k-1}\right)\right\}\right| \\
& +\cdots \\
& \left.+\mathbb{E}\left|\mathbb{I}\left\{M_{n}^{(1)} \leq u_{n}\left(x_{1}\right)\right\}-\mathbb{I}\left\{M_{m, n}^{(1)} \leq u_{n}\left(x_{1}\right)\right\}\right|\right) .
\end{aligned}
$$

The following lemma is useful to estimate the moment of the weighted sum of $\eta_{n}-\eta_{m, n}$.

Lemma 3. Assume (1.1) holds. For $m \geq k, n-m \geq k$, we have

$$
\begin{equation*}
\mathbb{E}\left|\eta_{n}-\eta_{m, n}\right| \leq 2 k^{2} \frac{m}{n} \tag{3.2}
\end{equation*}
$$

Proof. Note

$$
\begin{aligned}
& \mathbb{E}\left|\eta_{n}-\eta_{m, n}\right| \\
= & 2 \mathbb{E}\left(\prod_{j=1}^{k} \mathbb{I}\left\{M_{m, n}^{(j)} \leq u_{n}\left(x_{j}\right)\right\}-\prod_{j=1}^{k} \mathbb{I}\left\{M_{n}^{(j)} \leq u_{n}\left(x_{j}\right)\right\}\right) \\
\leq & 2 \sum_{j=1}^{k} \mathbb{E}\left(\mathbb{I}\left\{M_{m, n}^{(j)} \leq u_{n}\left(x_{j}\right)\right\}-\mathbb{I}\left\{M_{n}^{(j)} \leq u_{n}\left(x_{j}\right)\right\}\right)
\end{aligned}
$$

by the elementary inequality $\left|\prod_{j=1}^{l} y_{j}-\prod_{j=1}^{l} z_{j}\right| \leq \sum_{j=1}^{l}\left|y_{j}-z_{j}\right|$ for all $\left|y_{j}\right| \leq$ $1,\left|z_{j}\right| \leq 1, j=1,2, \ldots, l$. By using Lemma 1 , the proof is complete.

Lemma 4. Under the conditions of Theorem 1, for any ω with $k \leq m \leq \omega \leq n$ and $p \in \mathbb{N}$,

$$
\mathbb{E}\left|\sum_{l=\omega}^{n} d_{l}\left(\eta_{l}-\eta_{m, l}\right)\right|^{p} \leq 2^{2 p-1} k\left(2+k p^{\frac{p}{2}}\right)\left(\sum_{l=\omega}^{n} l d_{l}^{2}\right)^{\frac{p}{2}} .
$$

Proof. Note $\left|\eta_{l}-\eta_{k, l}\right| \leq 4$ and, for $m \geq k, l-m \geq k$, by using Lemma 3, we have

$$
\mathbb{E}\left|\eta_{l}-\eta_{m, l}\right|^{p} \leq 2 \cdot 4^{p-1} \mathbb{E}\left|\eta_{l}-\eta_{m, l}\right| \leq 4^{p} k^{2}\left(\frac{m}{l}\right)
$$

Then by Hölder inequality and (1.5), similar to the arguments in Lemma 3 of Hörmann [13], we have

$$
\mathbb{E}\left|\sum_{l=\omega+k}^{n} d_{l}\left(\eta_{l}-\eta_{m, l}\right)\right|^{p} \leq 4^{p} k^{2} p^{\frac{p}{2}}\left(\sum_{l=\omega}^{n} l d_{l}^{2}\right)^{\frac{p}{2}}
$$

By using the C_{r} inequality,

$$
\begin{aligned}
& \mathbb{E}\left|\sum_{l=\omega}^{n} d_{l}\left(\eta_{l}-\eta_{m, l}\right)\right|^{p} \\
\leq & 2^{p-1}\left(\mathbb{E}\left|\sum_{l=\omega}^{\omega+k-1} d_{l}\left(\eta_{l}-\eta_{m, l}\right)\right|^{p}+\mathbb{E}\left|\sum_{l=\omega+k}^{n} d_{l}\left(\eta_{l}-\eta_{m, l}\right)\right|^{p}\right) \\
\leq & 2^{p-1}\left(2 k \cdot 4^{p} \max _{\omega \leq l \leq \omega+k-1} d_{l}^{p}+\mathbb{E}\left|\sum_{l=\omega+k}^{n} d_{l}\left(\eta_{l}-\eta_{m, l}\right)\right|^{p}\right) \\
\leq & 2^{2 p-1} k\left(2+k p^{\frac{p}{2}}\right)\left(\sum_{l=\omega}^{n} l d_{l}^{2}\right)^{\frac{p}{2}}
\end{aligned}
$$

The proof is complete.
The following is the result of Lemma 2, Lemma 4 and slight changes to the proof of Lemma 4 of Hörmann [13] (or Lemma 2 of Hörmann [14]).
Lemma 5. Under the conditions of Theorem 1, for every $p \in \mathbb{N}$, there exists a constant $C_{p}>0$ such that

$$
\mathbb{E}\left|\sum_{n=k}^{N} d_{n} \eta_{n}\right|^{p} \leq C_{p}\left(\sum_{k \leq m \leq n \leq N} d_{m} d_{n}\left(\frac{m}{n}\right)^{\alpha}\right)^{\frac{p}{2}}
$$

The following is the result of Hörmann [13, 14].
Lemma 6. Assume (1.6) holds. For any $\alpha>0$ and $\eta<\rho$, we have

$$
\sum_{k \leq m \leq n \leq N} d_{m} d_{n}\left(\frac{m}{n}\right)^{\alpha}=O\left(\frac{D_{N}^{2}}{\left(\log D_{N}\right)^{\eta}}\right)
$$

Proof of Theorem 1. By Lemmas 4 and 5, using Markov inequality and the subsequence procedure, we obtain the desired results, cf. Hörmann [13, 14, 15].

4. Discussion

The main result given by Theorem 1 can be of practical use in many different ways. Here, we discuss four problems.

Firstly, we should note that (2.1) provides a "time-average" version of (1.8). So, a statistical model based on (2.1) for a fixed N should be more accurate and efficient than one based on (1.8) for fixed n (see Tawn [22] for an example of the latter). This is because for a fixed N a model based on (2.1) will consider the data values $\left\{M_{n}^{(1)}, M_{n}^{(2)}, \ldots, M_{n}^{(k)}\right\}$ for $n=k, k+1, \ldots, N$ while for a fixed n a model based on (1.8) will only consider the data values $\left\{M_{n}^{(1)}, M_{n}^{(2)}, \ldots, M_{n}^{(k)}\right\}$.

Secondly, Theorem 1 can be used to construct tests of hypotheses about the extreme value index γ : for example,

$$
\begin{equation*}
H_{0}: \gamma=0 ; \quad H_{1}: \gamma \neq 0 \tag{4.1}
\end{equation*}
$$

There has been much research on developing procedures for tests of this kind. One approach is to derive asymptotic distributions of known estimators of the extreme value index (such as the moment-type estimator due to Dekkers et al. [9]) and then deduce the corresponding asymptotic rejection regions. However, this approach has challenging problems: the choice of optimal threshold, size and power are open for debate.

We now show how Theorem 1 can be used to construct a test for (4.1). With D_{N} as defined in Section 1, set

$$
\begin{aligned}
& H_{n}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \\
= & \frac{1}{D_{N}} \sum_{n=k}^{N} d_{n} \mathbb{I}\left\{M_{n}^{(1)} \leq u_{n}\left(x_{1}\right), M_{n}^{(2)} \leq u_{n}\left(x_{2}\right), \ldots, M_{n}^{(k)} \leq u_{n}\left(x_{k}\right)\right\}
\end{aligned}
$$

By arguments similar to those of Lemma 3 and Theorem 4 in Thangavelu [23], one can see that $H_{n}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is an empirical distribution and that the following Glivenko-Cantelli Theorem

$$
\lim _{N \rightarrow \infty} \sup _{x_{k} \leq x_{k-1} \leq \cdots \leq x_{1}}\left|H_{n}\left(x_{1}, x_{2}, \ldots, x_{k}\right)-H\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right|, \quad \text { a.s. }
$$

holds by (2.1). So, an almost sure rejection region can be established as in page 1807 of Dekkers and de Haan [8]. Note that the parameters, a_{n} and b_{n}, should be estimated. It is not clear, however, how one can test for $\gamma<0$ or $\gamma>0$ if the hypothesis $\gamma=0$ is rejected. These are interesting and challenging problems for the future.

Thirdly, as pointed by Brosamler [4], one might consider using (2.1) to test a random number generator. One would only have to check one (typical) sequence, rather than many sequences as in tests based on (1.8).

Finally, the result in (2.1) is of interest for mathematical statistics as it shows that assertions are possible for almost every realization of the random variables.

Acknowledgments

The authors would like to thank the Editor and the Associate Editor for careful reading and for their comments which greatly improved this note.

References

[1] Berkes, I. and CsÁki, E. (2001). A universal result in almost sure central limit theory. Stochastic Processes and Their Applications 91 105-134. MR1835848
[2] Berkes, I., CsÁki, E. and Horváth, L. (1998). Almost sure limit theorems under minimal conditions. Statistics and Probability Letters 37 67-76. MR1622658
[3] Bercu, B., Cénac, P. and Fayolle, G. (2009). On the almost sure central limit theorem for vector martingales: convergence of moments and statistical applications. Journal of Applied Probability 46 151-169.
[4] Brosamler, G.A. (1988a). An almost everywhere central limit theorem. Mathematical Proceedings of the Cambridge Philosophical Society 104 564574. MR0957261
[5] Brosamler, G.A. (1988b). An almost everywhere central limit-theorem for the occupation measures of Brownian-motion on a compact Riemannian manifold. Comptes Rendus de l Academie des Sciences Serie IMathematique 307 919-922. MR0978470
[6] Brosamler, G.A. (1990). A simultaneous almost everywhere central-limit-theorem for diffusions and its application to path energy and eigenvalues of the Laplacian. Illinois Journal of Mathematics 34 526-556. MR1053561
[7] Cheng, S., Peng, L. and Qi, Y. (1998). Almost sure convergence in extreme value theory. Mathematische Nachrichten 190 43-50. MR1611675
[8] Dekkers, A.L.M. and de Haan, L. (1989). On the estimation of the extreme-value index and large quantile estimation. Annals of Statistics 4 1795-1832. MR1026314
[9] Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989). A moment estiamtor for the index of an extreme-value distribution. Annals of Statistics 4 1833-1855.
[10] Fahrner, I. (2000). An extension of the almost sure max-limit theorem. Statistics and Probability Letters 49 93-103. MR1789668
[11] Fahrner, I. and Stadtmüller, U. (1998). On almost sure max-limit theorems. Statistics and Probability Letters 37 229-236. MR1614934
[12] Hörmann, S. (2005). A note on the almost sure convergence of central order statistics. Probability and Mathematical Statistics 2 317-329. MR2282530
[13] Hörmann, S. (2006). An extension of almost sure central limit theory. Statistics and Probability Letters 76 191-202. MR2233391
[14] Hörmann, S. (2007a). On the universal a.s. central limit theorem. Acta Mathematica Hungarica 116 377-398. MR2335804
[15] Hörmann, S. (2007b). Critical behavior in almost sure central limit theory. Journal of Theoretical Probability 20 613-636. MR2337144
[16] Ibragimov, I. and Lifshits, M. (1998). On the convergence of generalized moments in almost sure central limit theorem. Statistics and Probability Letters 40 343-351. MR1664544
[17] Lacey, M. and Philipp, W. (1990). A note on the almost sure central limit theorem. Statistics and Probabilty Letters 9 201-205. MR1045184
[18] Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, Berlin. MR0691492
[19] Peng, L. and Qi, Y. (2003). Almost sure convergence of the distributional limit theorem for order statistics. Probability and Mathematical Statistics 2 217-228. MR2072770
[20] Schatte, P. (1988). On strong versions of the central limit theorem. Mathematische Nachrichten 137 249-256. MR0968997
[21] Stadtmüller, U. (2002). Almost sure versions of distributional limit theorems for certain order statistics. Statistics and Probability Letters 58 413426. MR1923464
[22] TAWN, J.A. (1988). An extreme-value theory model for dependent observations. Journal of Hydrology 101 227-250.
[23] Thangavelu, K. (2005). Quantile estimation based on the almost sure central limit theorem. PhD Dissertation, Georg-August University of Göttingen, Göttingen, Germany.

