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Abstract: Let M
(k)
n denote the kth largest maximum of a sample (X1, X2,

. . . ,Xn) from parent X with continuous distribution. Assume there exist
normalizing constants an > 0, bn ∈ R and a nondegenerate distribution

G such that a
−1
n (M

(1)
n − bn)

w
→ G. Then for fixed k ∈ N, the almost sure

convergence of

1

DN

N
∑

n=k

dnI{M
(1)
n ≤anx1 + bn,M

(2)
n ≤anx2 + bn, . . . ,M

(k)
n ≤ anxk + bn}

is derived if the positiveweight sequence (dn) with DN =
∑

N

n=1
dn satisfies

conditions provided by Hörmann. Some practical issues of this result are
also discussed.
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1. Introduction

The concept of almost sure central limit theorems (ASCLTs) is relatively new
compared to that of classical central limit theorems. The original papers on
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this concept are those by Brosamler [4], Schatte [20] and Lacey and Philipp
[17]. The concept has already started to receive applications in many areas. For
example, Brosamler [5, 6] has shown applications of ASCLTs for occupation
measures of Brownian-motion on a compact Riemannian manifold and for dif-
fusions and its application to path energy and eigenvalues of the Laplacian. His
work has been followed up in many other applied areas, including condensed
matter physics, statistical mechanics, ergodic theory and dynamical systems,
occupational health psychology, control and information sciences and rehabili-
tation counseling.

More recently, Thangavelu [23] has studied applications of ASCLTs for quani-
tle estimation, one-sample hypothesis testing, two-sample hypothesis testing,
random intervals, the Behrens-Fisher Problem, rank statistics, quality control
and decision making. One of the key findings is that in hypothesis testing meth-
ods using ASCLTs one does not need to estimate or use the variance of the
observations. For other advantages, see Chapters 2 and 3 in Thangavelu [23].

Most recently, Bercu et al. [3] have shown applications of ASCLTs for the es-
timation and prediction in linear autoregressive models and branching processes
with immigration.

The first ASCLTs were reported in the papers of Brosamler [4], Schatte [20]
and Lacey and Philipp [17]. For an independent and identically distributed
(i.i.d.) sequence {Xn, n ≥ 1} with mean 0, variance 1 and partial sum Sn =
∑n

k=1 Xk, the simplest version of the ASCLT says

1

log N

N
∑

n=1

1

n
I{Sn ≤

√
nx} → Φ(x), a.s.∀x ∈ R,

where a.s. means almost surely, IA denotes the indicator function and Φ(x) is
the standard normal distribution function. For unbounded functional ASCLTs,
Ibragimov and Lifshits [16] and Berkes et al. [2] obtained the following ASCLT
under different restrictions on the continuous function f :

1

log N

N
∑

n=1

1

n
f(Sn/

√
n) →

∫ ∞

−∞

f(x)dΦ(x), a.s.

The universal version of the ASCLT discussed by Berkes and Csáki [1] includes
the case of the ASCLT of extremes of i.i.d random sequences which was first
studied by Fahrner and Stadtmüller [11] and Cheng et al. [7]. Let {Xn, n ≥ 1}
be an i.i.d. sequence, and let Mn = max1≤k≤n Xk denote the partial maxi-
mum. If there exist normalizing constants an > 0, bn ∈ R and a nondegenerate
distribution G(x) such that nondegenerate distribution G(x) such that

P (Mn ≤ anx + bn) → G(x) =: Gγ(x) = exp
{

−(1 + γx)−1/γ
}

, (1.1)

where γ is the so-called extreme value index, then

1

log N

N
∑

n=1

1

n
I{Mn ≤ anx + bn} → G(x), a.s.∀x ∈ R. (1.2)
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Fahrner [10] extended (1.2) to unbounded continuous functions. The general
result is

1

logN

N
∑

n=1

1

n
f(a−1

n (Mn − bn)) →
∫ ∞

−∞

f(x)dG(x), a.s.

See Theorem 1 of Fahrner [10]. Stadtmüller [21] considered the ASCLT of the
kth maximum as k = kn satisfies log kn = O((log n)1−ε) for some ε > 0 or

(n − kn)/n = p + O(1/
√

n logε n) for some 0 < p < 1. Especially for fixed k he
showed

1

logN

N
∑

n=k

1

n
I{M (k)

n ≤ anx + bn} → G(x)

k−1
∑

j=0

(− log G(x))j

j!
, a.s.∀x ∈ R,

where M
(k)
n denotes the kth maximum of X1, X2, . . . , Xn and Mn := M

(1)
n . Peng

and Qi [19] proved the ASCLT of central order statistics, see also Hörmann [12].
In this note, we consider the following averages:

1

DN

N
∑

n=k

dnI{M (1)
n ≤ anx1 + bn, M (2)

n ≤ anx2 + bn, . . . , M (k)
n ≤anxk + bn} (1.3)

provided the positive weights dn, n ≥ 1 satisfy the following conditions:

lim inf
n→∞

ndn > 0, (1.4)

nαdn is eventually nonincreasing for some 0 < α < 1, (1.5)

and

lim sup
n→∞

ndn (log Dn)
ρ
/Dn < ∞ (1.6)

for some ρ > 0, where Dn =
∑n

k=1 dk. Under conditions (1.4)–(1.6) it follows
from the results in Hörmann [13, 14, 15] that

1

DN

N
∑

n=1

dnI{Sn ≤
√

nx} → Φ(x), a.s.,

and

1

DN

N
∑

n=1

dnI{Mn ≤ anx + bn} → G(x), a.s.

The main results on the convergence of (1.3) are provided in Section 2. The
proofs are deferred to Section 3. Some practical implications of the main results
are discussed in Section 4.
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As discussed by Berkes and Csáki [1] and Hömann [12, 13, 14, 15], the larger
the Dn, the stronger the ASCLT. If dn < 1/n such that Dn → ∞, then the
ASCLT holds. If dn = 1, there is no ASCLT on the partial sum and partial
maxima. Conditions (1.4), (1.5) and (1.6) tell us that there exists a large class
of sequences 1/n < dn < 1 such that the ASCLT holds. For example, we may
assume Dn → ∞ with Karamata representation

Dn = exp

(∫ n

a

θ(u)

u
du

)

, n > a,

where θ(x) is a slowly varying function such that

lim inf
n→∞

θ(n)Dn > 0, and lim sup
n→∞

θ(n) (logDn)ρ < ∞

for some ρ > 0, which guarantees that (1.4), (1.5) and (1.6) hold. By the mean
value theorem, we may choose dn ∼ θ(n)Dn/n. This implies that (dn) is a
regularly varying function with index −1. We mention the following examples:

(a) Dn = (log n)κ with dn ∼ κ(logn)κ−1/n for κ > 1, ρ > 0;
(b) Dn = exp((log n)κ) with dn ∼ κ exp((log n)κ)(log n)κ−1/n for 0 < κ < 1,

0 < ρ < (1 − κ)/κ;
(c) Dn = (log n)1−κ exp((logn)κ) with dn ∼ κ exp((log n)κ)/n for 0 ≤ κ <

1/2, 0 < ρ < 1/κ− 1.

Throughout this note we assume that F (x), the univariate marginal distri-
bution of Xn, n ≥ 1 is continuous. This assumption implies that the order
statistics are a.s. uniquely defined. Before providing the main results, recall the

joint limit distribution of (M
(1)
n , M

(2)
n , . . . , M

(k)
n ) for fixed k if (1.1) holds. Define

levels un(xj) = anxj + bn, j = 1, 2, . . . , k, x1 > x2 > · · · > xk and define the
point process χn of exceedances of levels un(xj), j = 1, 2, . . . , k by i.i.d random
variables X1, X2, . . . , Xn. Then χn converges in distribution to a Poisson pro-
cess on (0, 1]×R, for more details see Chapter 5 of Leadbetter et al. [18], which

states the joint limit distribution of (M
(1)
n , M

(2)
n , . . . , M

(k)
n ) and

P
(

M (j)
n ≤ anx + bn

)

→G(x)

j−1
∑

i=0

(− log G(x))i

i!
=: Hj(x), j = 1, 2, . . . , k (1.7)

as n → ∞. The joint limit distribution of (M
(1)
n , M

(2)
n , . . . , M

(k)
n ) is so com-

plicated that we express it as H(x1, x2, . . . , xk) with the marginal distribution
Hj(x) defined in (1.7), j = 1, 2, . . . , k, i.e.

lim
n→∞

P
(

M (1)
n ≤ anx1 + bn, M (2)

n ≤ anx2 + bn, . . . , M (k)
n ≤ anxk + bn

)

=

{

H (x1, x2, . . . , xk) , x1 > x2 > · · · > xk;
0, otherwise.

(1.8)
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2. Main results

In this section, we provide the main results. The proofs are deferred to the next
section.

Theorem 1. Suppose (1.1) holds for an i.i.d. random sequence (Xn, n ≥ 1).
Further assume (1.4)–(1.6) hold for positive weights dn, n ≥ 1. Then for fixed
k ∈ N and real numbers x1 > x2 > · · · > xk, we have

1

DN

N
∑

n=k

dnI{M (1)
n ≤ un(x1), M

(2)
n ≤ un(x2), . . . , M

(k)
n ≤ un(xk)}

→ H(x1, x2, . . . , xk), a.s., (2.1)

where un(xj), j = 1, 2, . . . , k and H(x1, x2, . . . , xk) are defined as before.

Corollary 1. Under the conditions of Theorem 1, for real numbers xk1
> xk2

>
· · · > xkl

with 1 ≤ k1 < k2 < · · · < kl ≤ k, we have

1

DN

N
∑

n=kl

dnI{M (k1)
n ≤ un(xk1

), M (k2)
n ≤ un(xk2

), . . . , M (kl)
n ≤ un(xkl

)}

→ H∗(xk1
, xk2

, . . . , xkl
), a.s.,

where H∗(xk1
, xk2

, . . . , xkl
) is the marginal distribution of H(x1, x2, . . . , xk). Es-

pecially, for fixed k ∈ N,

1

DN

N
∑

n=k

dnI{M (k)
n ≤ un(x)} → Hk(x) = G(x)

k−1
∑

j=0

(− log G(x))
j

j!
, a.s.

For bounded Lipschitz 1 functions, we have the following ASCLT of order
statistics.

Corollary 2. Under the conditions of Theorem 1, for fixed k ∈ N and bounded
Lipschitz 1 function f, we have

1

DN

N
∑

n=k

dnf
(

a−1
n

(

M (k)
n − bn

)

)

→
∫ ∞

−∞

f(x)dHk(x), a.s.

3. Proofs

As mentioned above, denote levels un(x) = anx + bn, x ∈ R, n ≥ 1 and real

numbers x1 > x2 > · · · > xk for fixed k. For convenience, let M
(j)
m,n denote the

jth maxima of Xm+1 , Xm+2, . . . , Xn, 0 ≤ m < n and M
(j)
n := M

(j)
0,n. Set

ηm,n = I
{

M (1)
m,n ≤ un(x1), M

(2)
m,n ≤ un(x2), . . . , M

(k)
m,n ≤ un(xk)

}

− P
(

M (1)
m,n ≤ un(x1), M

(2)
m,n ≤ un(x2), . . . , M

(k)
m,n ≤ un(xk)

)
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for 0 ≤ m < n and ηn = η0,n. Before proving the main results, we need some
lemmas. Our first lemma provides a bound on the expectation of the difference
of the indicator functions for the jth maxima of the whole sequence and the jth
maxima of the subsequence for j = 1, 2, . . . , k.

Lemma 1. Assume (1.1) holds and m ≥ k, n− m ≥ k. Then

E

∣

∣

∣I{M (j)
n ≤ un(x)} − I{M (j)

m,n ≤ un(x)}
∣

∣

∣ ≤ k
m

n

uniformly for j = 1, 2, . . . , k and x ∈ R.

Proof. First note I{M (j)
n ≤ un(x)} − I{M (j)

m,n ≤ un(x)} 6= 0 if and only if

M
(j)
n > M

(j)
m,n. The latter implies that M

(1)
m > M

(j)
m,n. It is known that the

distribution of the general order statistic M
(j)
n is

P
(

M (j)
n ≤ x

)

=

j−1
∑

i=0

(

n

i

)

(F (x))
n−i

(1 − F (x))
i
,

where
(

n
i

)

= n!/{i!(n− i)!}. Hence,

E

∣

∣

∣I{M (j)
n ≤ un(x)} − I{M (j)

m,n ≤ un(x)}
∣

∣

∣

≤ P
(

M (j)
n > M (j)

m,n

)

≤ P
(

M (1)
m > M (j)

m,n

)

=

j−1
∑

i=0

m

(

n

i

)∫ ∞

−∞

(F (x))n+m−i−1 (1 − F (x))i dF (x)

≤
j−1
∑

i=0

m

(

n

i

)∫ 1

0

xn+m−i−1(1 − x)idx

=

j−1
∑

i=0

m

(

n

i

)

(n + m − i − 1)!i!

(n + m)!

≤ j
m

n
≤ k

m

n

uniformly for 1 ≤ j ≤ k and x ∈ R.

Our next lemma provides a bound for the covariance of ηm and ηn, which
will be used later for estimating the moment of the weighted sum of ηn.

Lemma 2. Assume (1.1) holds. Then

|Cov (ηm, ηn)| ≤ 2k2 m

n
(3.1)

for m ≥ k, n − m ≥ k.
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Proof. The desired result follows by Lemma 1 and noting

|Cov(ηn, ηm)| ≤ 2
(

E

∣

∣

∣I{M (k)
n ≤ un(xk)} − I{M (k)

m,n ≤ un(xk)}
∣

∣

∣

+ E

∣

∣

∣I{M (k−1)
n ≤ un(xk−1)} − I{M (k−1)

m,n ≤ un(xk−1)}
∣

∣

∣

+ · · ·
+ E

∣

∣

∣I{M (1)
n ≤ un(x1)} − I{M (1)

m,n ≤ un(x1)}
∣

∣

∣

)

.

The following lemma is useful to estimate the moment of the weighted sum
of ηn − ηm,n.

Lemma 3. Assume (1.1) holds. For m ≥ k, n− m ≥ k, we have

E |ηn − ηm,n| ≤ 2k2 m

n
. (3.2)

Proof. Note

E |ηn − ηm,n|

= 2E

(

k
∏

j=1

I{M (j)
m,n ≤ un(xj)} −

k
∏

j=1

I{M (j)
n ≤ un(xj)}

)

≤ 2

k
∑

j=1

E

(

I{M (j)
m,n ≤ un(xj)} − I{M (j)

n ≤ un(xj)}
)

by the elementary inequality |
∏l

j=1 yj −
∏l

j=1 zj | ≤
∑l

j=1 |yj −zj | for all |yj| ≤
1, |zj| ≤ 1, j = 1, 2, . . . , l. By using Lemma 1, the proof is complete.

Lemma 4. Under the conditions of Theorem 1, for any ω with k ≤ m ≤ ω ≤ n
and p ∈ N,

E

∣

∣

∣

∣

∣

n
∑

l=ω

dl (ηl − ηm,l)

∣

∣

∣

∣

∣

p

≤ 22p−1k
(

2 + kp
p
2

)

(

n
∑

l=ω

ld2
l

)

p

2

.

Proof. Note |ηl − ηk,l| ≤ 4 and, for m ≥ k, l − m ≥ k, by using Lemma 3, we
have

E |ηl − ηm,l|p ≤ 2 · 4p−1
E |ηl − ηm,l| ≤ 4pk2

(m

l

)

.

Then by Hölder inequality and (1.5), similar to the arguments in Lemma 3 of
Hörmann [13], we have

E

∣

∣

∣

∣

∣

n
∑

l=ω+k

dl (ηl − ηm,l)

∣

∣

∣

∣

∣

p

≤ 4pk2p
p

2

(

n
∑

l=ω

ld2
l

)

p

2

.
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By using the Cr inequality,

E

∣

∣

∣

∣

∣

n
∑

l=ω

dl (ηl − ηm,l)

∣

∣

∣

∣

∣

p

≤ 2p−1

(

E

∣

∣

∣

∣

∣

ω+k−1
∑

l=ω

dl (ηl − ηm,l)

∣

∣

∣

∣

∣

p

+ E

∣

∣

∣

∣

∣

n
∑

l=ω+k

dl (ηl − ηm,l)

∣

∣

∣

∣

∣

p)

≤ 2p−1

(

2k · 4p max
ω≤l≤ω+k−1

dp
l + E

∣

∣

∣

∣

∣

n
∑

l=ω+k

dl (ηl − ηm,l)

∣

∣

∣

∣

∣

p)

≤ 22p−1k
(

2 + kp
p

2

)

(

n
∑

l=ω

ld2
l

)
p

2

.

The proof is complete.

The following is the result of Lemma 2, Lemma 4 and slight changes to the
proof of Lemma 4 of Hörmann [13] (or Lemma 2 of Hörmann [14]).

Lemma 5. Under the conditions of Theorem 1, for every p ∈ N, there exists a
constant Cp > 0 such that

E

∣

∣

∣

∣

∣

N
∑

n=k

dnηn

∣

∣

∣

∣

∣

p

≤ Cp





∑

k≤m≤n≤N

dmdn

(m

n

)α





p

2

.

The following is the result of Hörmann [13, 14].

Lemma 6. Assume (1.6) holds. For any α > 0 and η < ρ, we have

∑

k≤m≤n≤N

dmdn

(m

n

)α

= O

(

D2
N

(log DN )
η

)

.

Proof of Theorem 1. By Lemmas 4 and 5, using Markov inequality and the sub-
sequence procedure, we obtain the desired results, cf. Hörmann [13, 14, 15].

4. Discussion

The main result given by Theorem 1 can be of practical use in many different
ways. Here, we discuss four problems.

Firstly, we should note that (2.1) provides a “time-average” version of (1.8).
So, a statistical model based on (2.1) for a fixed N should be more accurate and
efficient than one based on (1.8) for fixed n (see Tawn [22] for an example of the
latter). This is because for a fixed N a model based on (2.1) will consider the

data values {M (1)
n , M

(2)
n , . . . , M

(k)
n } for n = k, k + 1, . . . , N while for a fixed n a

model based on (1.8) will only consider the data values {M (1)
n , M

(2)
n , . . . , M

(k)
n }.
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Secondly, Theorem 1 can be used to construct tests of hypotheses about the
extreme value index γ: for example,

H0 : γ = 0; H1 : γ 6= 0. (4.1)

There has been much research on developing procedures for tests of this kind.
One approach is to derive asymptotic distributions of known estimators of the
extreme value index (such as the moment-type estimator due to Dekkers et al.
[9]) and then deduce the corresponding asymptotic rejection regions. However,
this approach has challenging problems: the choice of optimal threshold, size
and power are open for debate.

We now show how Theorem 1 can be used to construct a test for (4.1). With
DN as defined in Section 1, set

Hn (x1, x2, . . . , xk)

=
1

DN

N
∑

n=k

dnI
{

M (1)
n ≤ un(x1), M

(2)
n ≤ un(x2), . . . , M

(k)
n ≤ un(xk)

}

.

By arguments similar to those of Lemma 3 and Theorem 4 in Thangavelu [23],
one can see that Hn(x1, x2, . . . , xk) is an empirical distribution and that the
following Glivenko-Cantelli Theorem

lim
N→∞

sup
xk≤xk−1≤···≤x1

|Hn (x1, x2, . . . , xk) − H (x1, x2, . . . , xk)| , a.s.

holds by (2.1). So, an almost sure rejection region can be established as in page
1807 of Dekkers and de Haan [8]. Note that the parameters, an and bn, should
be estimated. It is not clear, however, how one can test for γ < 0 or γ > 0 if the
hypothesis γ = 0 is rejected. These are interesting and challenging problems for
the future.

Thirdly, as pointed by Brosamler [4], one might consider using (2.1) to test a
random number generator. One would only have to check one (typical) sequence,
rather than many sequences as in tests based on (1.8).

Finally, the result in (2.1) is of interest for mathematical statistics as it shows
that assertions are possible for almost every realization of the random variables.
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