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Abstract: We present a systematic study of several recently proposed
methods of mean field inference for the Dirichlet process mixture (DPM)
model. These methods provide approximations to the posterior distribu-
tion and are derived using the truncated stick-breaking representation and
related approaches. We investigate their use in density estimation and clus-
ter allocation and compare to Monte-Carlo results. Further, more specific
topics include the general mathematical structure of the mean field ap-
proximation, the handling of the truncation level, the effect of including a
prior on the concentration parameter α of the DPM model, the relation-
ship between the proposed variants of the mean field approximation, and
the connection to maximum a-posteriori estimation of the DPM model.
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1. Introduction

Recently, variational approximation schemes have received growing interest as
alternatives to Monte Carlo integration in computational Bayesian inference
(Bishop 2006, Wainwright and Jordan 2008). In particular, mean field methods
are now frequently being used in a variety of contexts (Opper and Saad 2001).
In the mean field approach, an approximation to a complicated posterior dis-
tribution is found within a more tractable set of trial functions by means of
minimizing the Kullback-Leibler distance. Under appropriate conditions, mean
field methods can offer large computational gains combined with ease of appli-
cation and adequate quantitative accuracy.

However, the mean field approach also has a number of drawbacks. It can
only be used efficiently in certain classes of models, and it is often difficult to
assess accuracy without comparison to exact results since generally applicable
performance criteria are not known. Furthermore, in many cases it requires
substantial effort to find tractable sets of trial functions that improve upon the
commonly used fully factorized class.

Nevertheless, in many cases the advantages of the mean field method out-
weigh the associated problems, and it is one of the current topics of research
in this area to identify such opportunities. Such work typically focuses on
well-defined, specific classes of models since it appears to be rather difficult
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to derive generally valid results. Very recently, a number of papers presented
rather promising proposals regarding the application of mean field methods to
inference in Dirichlet process mixture (DPM) models (Blei and Jordan 2006,
Kurihara, Welling, and Teh 2007, Kurihara, Welling, and Vlassis 2007). In par-
ticular, using an image clustering problem as a practical example, Blei and
Jordan (2006) showed that these methods are able to efficiently handle large
high-dimensional data sets and may provide large computational gains com-
pared to standard Markov chain Monte Carlo (MCMC) integration.

The purpose of this paper is to present a systematic study of these mean
field approximation schemes. Several reasons motivate our interest in this prob-
lem. (i) The DPM model is very important as a generic building block for
nonparametric Bayesian inference (Ferguson 1973, Antoniak 1974). Computa-
tional inference for this model has been developed thoroughly over the past
15 years on the basis of MCMC integration (see, e.g., Escobar 1988; 1994,
MacEachern 1994, Escobar and West 1995, MacEachern and Müller 1998, Neal
2000, Ishwaran and James 2001, Walker 2007). Nevertheless, in some situations,
such as the image analysis problem mentioned above, it is still desirable to have
complementary computational approaches available, so that detailed investiga-
tions of the mean field approximation are well justified. (ii) The previous studies
of mean field inference for DPM models provide some assessment of the perfor-
mance, e.g., by studying some large-scale classification problems or monitoring
the dependence the Kullback-Leibler divergence on some parameters of the algo-
rithm. However, a more systematic study of the basic properties of the method
is still missing. It is also not clear how accurately mean field approximates the
various posterior quantities calculated in the DPM model. In this work, we aim
to address some of these issues. (iii) Mean field methods have already been
applied to extensions of the DPM model (Teh, Kurihara, and Welling 2008) as
well as to closely related mixture models such as latent Dirichlet allocation
(Blei, Ng, and Jordan 2003). Some of the present results are expected to be of
interest in these contexts as well. (iv) Since it constitutes a measure over prob-
ability measures, the Dirichlet process is quite different from the more standard
ingredients of Bayesian probability models. It is therefore of interest to see how
the mean field approximation behaves in this context.

The plan of the paper is as follows. In Sec. 2, we first summarize some ba-
sic facts about Dirichlet process mixtures. We then introduce the mean field
approximation and outline its application to the DPM model in the truncated
stick-breaking representation, as proposed by Blei and Jordan (2006). Section
3 discusses the general mathematical structure of the mean field solutions. The
conclusions are applied to the problem of choosing the truncation level in the
stick-breaking representation. We also discuss some instructive scenarios with
one and two observations in more detail. Section 4 illustrates and extends the
foregoing discussion by means of several representative numerical examples. We
also compare to results obtained from MCMC integration. The comparison fo-
cuses on density estimation and cluster allocation. Several variants of the mean
field approximation scheme that were proposed in Kurihara, Welling, and Teh
(2007) are compared in Sec. 5. In Sec. 6 we study the mean field approximation
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after inclusion of a prior for the DPM parameter α. The relationship between
the mean field approximation and maximum a-posteriori (MAP) estimation of
the posterior is discussed in Sec. 7. A summary and some concluding remarks
are given in Sec. 8.

As a main result of our study we find that while the mean field methods, by
themselves, provide a useful tool for mixture modelling, great care is necessary
when using them to calculate actual approximations to the DPM posterior.
In particular regarding the description of data clustering, they display great
differences to the exact results.

2. Variational inference and the Dirichlet process mixture model

2.1. Dirichlet process mixtures

In the Dirichlet process mixture model (Ferguson 1973, Antoniak 1974), one
assumes the observations to originate from a mixture distribution with an un-
known number of components, and one places a Dirichlet process prior on the
mixture distribution. More formally, the DPM model is defined by

(Yi|θi) ∼ p(Yi|θi), i = 1, . . . , n,

(θi|G) ∼ G,

G ∼ DP (α,G0).

Here, G denotes a random probability measure drawn from a Dirichlet process
with base distribution G0 and parameter α. The measure G is almost surely
discrete. The ith observation Yi is obtained from the distribution p(Yi|θi), con-
ditional on the parameter θi drawn from G. In this way, G can be thought of as
representing a mixture distribution with an infinite number of components.

One of the main approaches to computing inferences for the DPM model
makes use of the stick-breaking representation for the random measure G
(Sethuraman 1994), i.e.,

G(·)
D
= V1δη1

(·) +

∞
∑

k=2

Vk

k−1
∏

j=1

(1 − Vj)δηk
(·)

where the Vj ’s have a beta distribution B(1, α), δη denotes the Dirac measure
placing unit mass at η, and ηj ∼ G0. The measure G is thus described by the
collection of random variables Vj and ηj. Ishwaran and James (2001) made the
important observation that a truncation of the stick-breaking representation
at a sufficiently large K, i.e., setting vK = 1, already provides an excellent
approximation to the full DPM model. For the truncated stick-breaking model,
we can write down the explicit probability distribution function

p(y1:n, z1:n, η1:K, v1:K−1)

=

n
∏

i=1

K
∏

k=1

[p(yi|ηk)wk(v1:K)]I(zi=k)
K
∏

k=1

G0(ηk)

K−1
∏

k=1

B(vk; 1, α). (1)
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Here, y1:n, z1:n, η1:K are shorthand for the sets of variables y1, . . . , yn etc.,
v1:K−1 = v1:(K−1), whereas the wk(v1:K) := vk

∏k−1
j=1 (1−vj) denote the mixture

weights. The indicator variables zi describe the assignment of the ith observation
to a specific mixture component and take integer values between 1 and K.
Finally, I in (1) denotes the indicator function. In the form (1), the DPM is
easily amenable to mean field variational methods.

The DPM model can be extended in various ways by placing priors on α and
further parameters that may appear in the densities G0 and p(Yi|θi). However,
to work out the properties of the mean field approximation most clearly, we will
only consider the basic model (1) except for Sec. 6 where we discuss the effects
of a prior distribution placed on the parameter α.

For later reference, we note that the marginal p(y1:n) can be written as (Lo
1984, Lemma 2)

p(y1:n) =
Γ (α)

Γ (α+ n)

∑

c∈C

f(c(1)) × · · · × f(c(m)) (2)

where the sum is over all possible partitions c = (c(1), . . . , c(m)) of the observa-
tions y1:n, and c(j) denotes a particular subset (cluster) of observations. If c(j)

contains the observations y1, . . . , yk, say, the corresponding factor is given by

f(y1 , . . . , yk) = α(k − 1)!

∫

p(y1|η) × · · · × p(yk|η)G0(η)dη.

2.2. Mean field inference for the Dirichlet process mixture model

The basic idea of the mean field method is to approximate a complicated prob-
ability distribution p by a simpler one for which one can compute inferences
more easily. To this end, one starts from a set Q of tractable trial functions for
which both the mean field procedure as well as subsequent inference are feasi-
ble. The mean field approximation q is then found from the minimization of the
Kullback-Leibler (KL) divergence between the functions in Q and p, i.e.,

q = argmin
q′∈Q

∫

q′ log
q′

p
.

The quality of the result thus depends on the choice of the class Q. Detailed
discussions of the mean field method can be found, e.g., in Opper and Saad
(2001), Bishop (2006), Wainwright and Jordan (2008).

To simplify notation in the subsequent discussions, we will denote all mean
field trial functions and their constituent factors by the letter q. Any particular
function or factor is then identified and distinguished by its arguments and
through the context (and further subscripts, if necessary).

Mean field inference for the DPM model was first discussed by Blei and Jordan
(2006) within the context of the stick-breaking representation, and we follow
their approach with some slight modifications. In particular, while Blei and Jor-
dan (2006) use the full DPM model as target distribution, we start from the
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truncated posterior p(z1:n, η1:K, v1:K−1|y1:n) induced by (1) and then study how
the mean-field approximation behaves in the limit of K → ∞.

A tractable class Q is given by the set of all distributions factorizing as
q(z1:n)q(η1:K , v1:K−1). To determine the actual mean field approximation, i.e.,
the minimizer of the KL distance, one can employ an iteration scheme where one
alternatingly optimizes q(z1:n) for a previously found, fixed q(η1:K , v1:K−1) (in
the sense of minimizing the KL distance to p) and vice versa. More specifically,
the iteration scheme proceeds as follows.

0. Obtain an initial guess for q(η1:K , v1:K−1) (alternatively, one might also
start with a guess for q(z1:n) and begin the iteration at step 2 below).

1. Update q(z1:n) according to

q(z1:n) ∝ exp
[

Eq(η1:K ,v1:K−1) (logp(y1:n, z1:n, η1:K, v1:K−1))
]

. (3)

2. Update q(η1:K, v1:K−1) according to

q(η1:K , v1:K−1) ∝ exp
[

Eq(z1:n) (logp(y1:n, z1:n, η1:K, v1:K−1))
]

. (4)

3. Calculate the negative free energy

H =

∫

q(z1:n)q(η1:K , v1:K−1)

× log
p(y1:n, z1:n, η1:K, v1:K−1)

q(z1:n)q(η1:K , v1:K−1)
dz1:ndη1:Kdv1:K−1. (5)

This quantity provides a lower bound on the marginal logp(y1:n) and is
guaranteed to increase in each iteration step (the latter fact also provides
a useful check on numerics).

4. Repeat steps 1 to 3 until H no longer increases appreciably which signals
the convergence of the iteration scheme.

A well-known problem of such mean-field iteration schemes is the existence of
multiple fixed points corresponding to different stationary points of the KL di-
vergence (MacKay 2003, Wainwright and Jordan 2008). Commonly, one restarts
the iteration several times and selects the solution with the largest H as final
mean-field approximation, but it is sometimes difficult in practice to find the
global optimum (Weiss 2001).

From (1) and the above update relations it follows that the optimized dis-
tributions factorize in all variables. It is thus sufficient to perform the iteration
with fully factorized functions [see (7), (9), (10) below]. A further important
simplification arises if the base distribution G0(η) is chosen conjugate to the
observation model p(y|η) and both are in the exponential family. In this case,
the mean-field approximation q(ηk) will belong to the same class of distribu-
tions as G0, and the iterations can be carried out by updating a finite vector of
parameters. In the following, we will be using two related types of such mod-
els. For analytical study, we consider the example of a simple location model
(Escobar 1994) which describes a mixture of normals with fixed variance. The
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update equations adapted to this case are given below. In the numerical ex-
amples of the later sections, we will use a normal/inverse-gamma location-scale
model (Escobar and West 1995) where the normal mixture components have
variable variance. We expect that these models will also be very important in
actual practical applications.

More specifically, the normal location model of Escobar (1994) is defined as

(Yi|θi) ∼ N (θi, σ
2), i = 1, . . . , n,

(θi|G) ∼ G, (6)

G ∼ DP
(

α,N (0, λ2)
)

with N the normal distribution and the variances λ2 and σ2 considered as fixed
parameters. One can then derive the iteration relations

q(zi = k) ∝ exp

{

Eηk
[logp(yi|ηk)]

+ Evk
(log vk) +

k−1
∑

j=1

Evj
[log(1 − vj)]

}

, 1 ≤ k ≤ K, (7)

∝ exp

{

−
ρ2

k + (µk − yi)
2

2σ2
+ ψ(nk + 1) −

k−1
∑

j=1

1

α+ n>
j

}

, k < K,

(8)

q(vk) ∼ B(nk + 1, n>
k + α), (9)

q(ηk) ∝ exp

[

n
∑

i=1

Ezi
(I(zi = k)) log p(yi|ηk) + logG0(ηk)

]

, (10)

∼ N

(

µk :=

∑

i πikyi

σ2/λ2 +
∑

i πik
, ρ2

k :=
1

1/λ2 +
∑

i πik/σ2

)

. (11)

Here, we have introduced the abbreviation πik := q(zi = k) for the probability
of assigning the ith observation to the kth mixture component which will be a
key quantity in our subsequent discussion. We also define the mean occupation
nk :=

∑n
i=1 πik of the kth component, and set n>

k :=
∑K

l=k+1 nl. Finally, ψ(z) =
Γ ′(z)/Γ (z) denotes the digamma function.

Relations (7) and (9), (10), respectively, follow directly from (3) and (4) using
fully factorized trial functions

∏

i q(zi) and
∏

k q(vk)q(ηk). They hold for arbi-
trary p(y|η) and G0(η). As mentioned above, the fully factorized form does not
impose any limitations compared to the more general case q(z1:n)q(η1:K , v1:K−1).

Relations (8) and (11) have been specialized to the normal location model (6).
To simplify notation, we have omitted an explicit index for counting iteration
cycles. To derive (8), we have made use of the relation ψ(z + 1) − ψ(z) = 1/z.
Note that in relation (8), the right-hand side values of nk and n>

k are calculated
from the previous iteration step, i.e., (8) is not an implicit equation for the πik’s.
Furthermore, for k = K the final two terms in the argument of the exponential
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in (8) have to be replaced by ψ(nK + α) −
∑K−2

j=1 (α + n>
j )−1. Note that the

πik’s succinctly characterize the converged solution since the functions q(vk)
and q(ηk) are straightforwardly derived from them.

The analytical expression for the lower bound (5) simplifies if it is calculated
after the functions q(vk) have been updated using the current πik’s. In this case,
a number of terms cancel and one obtains

H =

n
∑

i=1

K
∑

k=1

πikEηk
(log p(yi|ηk)) +

K
∑

k=1

Eηk
(logG0(ηk)) −

n
∑

i=1

K
∑

k=1

πik logπik

−
K
∑

k=1

Eηk
(log q(ηk))+ (K − 1) logα+ log

Γ (α+ nK)

Γ (α+ n)
+

K−1
∑

k=1

log
Γ (nk + 1)

nk + n>
k + α

.

(12)

Equation (12) also holds at convergence.
From the final mean-field approximation, we obtain information about clus-

tering, i.e., the assignment of observations to different mixture components,
through the function q(z1:n). In addition, we can calculate the predictive distri-
bution p(yn+1|y1:n) as (Blei and Jordan 2006)

p(yn+1|y1:n) =

K
∑

k=1

Ev1:K
(wk(v1:K))Eηk

(p(yn+1|ηk)). (13)

Note that (13) is normalized because of
∑K

k=1wk(v1:K ) = 1. For the normal
location model

Eηk
(p(yn+1|ηk)) =

1
√

2π(σ2 + ρ2
k)

exp

[

−
(yn+1 − µk)2

2(σ2 + ρ2
k)

]

. (14)

2.3. Mixtures of mean field approximations

It is well known that one can sometimes find improved mean-field approxima-
tions that lie outside the originally chosen class Q by considering mixtures of
trial functions that have non-overlapping support (Mézard, Parisi, and Virasoro
1987). For our purposes, a precise formulation of this statement can be given as
follows.

Proposition. Let p(x) be the target distribution and q1(x), . . . , qm(x) a set
of functions from Q with respective KL distances K1, . . . , Km > 0 to p. It is
assumed that the functions qi have non-overlapping support, i.e., qi(x) > 0 for
a given x implies that qj(x) = 0 for all j 6= i. The best approximation of the
target distribution p(x) within the class of mixtures

∑m
i=1 wiqi(x) is given by

q(x) =

m
∑

i=1

exp(−Ki)
∑m

k=1 exp(−Kk)
qi(x). (15)

Its KL distance − log[
∑m

k=1 exp(−Kk)] is strictly smaller than all individual
distances Ki so that (15) always yields an improved approximation.
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Proof. Setting q′(x) :=
∑m

i=1 wiqi(x), it follows that
∫

dx q′(x) log q′(x) =
∑

i wi

∫

dx qi(x) log qi(x)+
∑

i wi logwi since the functions qi(x) have non-over-
lapping support. The KL distance between q′ and p is therefore given by K0 =
∑

i wiKi +
∑

i wi logwi. Minimization of K0 with respect to the wi under the
constraint

∑

i wi = 1 leads to (15) and the given expression for the minimum
KL distance. �

In the discussion of (15), the following points should be mentioned. (i) The
condition of non-overlapping support is crucial since it allows to explicitly eval-
uate the entropy term

∫

dx q′(x) log q′(x) as given above. Otherwise, the calcula-
tion of the entropy becomes intractable and one has to resort to approximation
schemes as described, e.g., in Jaakkola and Jordan (1998). (ii) The functions
q1, . . . , qm may be chosen arbitrarily within the class Q as long as they fulfill the
support condition, and need not be variational extrema. (iii) Since, in general,
the mixture will not be a member of the original class Q of trial functions one
can indeed obtain improved approximations that go beyond Q. (iv) The lower
bound defined in (5) is related to the KL distance by H = −K + log p(y1:n).
Equation (15) thus remains valid with the Ki(k) replaced by −Hi(k), and the im-
proved lower bound is given by log[

∑m
k=1 exp(Hk)]. (v) As an interesting aside,

the fact that the minimized KL distance has to be non-negative implies that
∑m

i=1 exp(−Ki) ≤ 1 for any choice of the non-overlapping distributions qi. In
the extreme case of one qi coinciding with p, all the other KL distances Kj ,
j 6= i, equal −∞.

In the context of the DPM model, we will see that the distributions corre-
sponding to the various fixed points of the mean field iteration scheme often
come very close to fulfilling the condition of non-overlapping support. This sug-
gests to construct improved mean-field approximations by using these distribu-
tions in a mixture. Thereby, one has to neglect the small error introduced by the
remaining overlap. Alternatively, one can choose functions q1, . . . , qm such that
they strictly fulfill the overlap condition and are still close to the fixed-point
distributions.

3. Mean field inference for the DPM model: General features

In this section, we give an overview and explanation of some of the main dis-
tinctive features that characterize the mean field approximation to the posterior
in the DPM model. For clarity, the discussion will be based on the normal loca-
tion model defined in (6). As demonstrated by the numerical studies of Sec. 4,
the essential conclusions also apply to the more general location scale model of
Escobar and West (1995). Throughout the following discussion, we will presup-
pose a vague prior distribution, i.e., λ≫ σ. This condition is not only reasonable
from a modelling point of view since it guarantees sufficient flexibility in describ-
ing the mixture distribution, but it also greatly simplifies the behavior of the
mean field approximation.

In the following, we will first discuss the MF approximation for a single ob-
servation. The detailed study of this simple case which can largely be performed
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analytically is very instructive since it already reveals several important features
that can also be found in more complex problems. We next turn to the case of
multiple observations and discuss several aspects of the general mathematical
structure of the mean field approximations. Our findings are then applied to
discuss the problem of choosing the truncation level K. Finally, we return to a
simple model problem with two data points in order to illustrate how the mean
field approximation switches between different clusterings of data points.

Let us start, however, by briefly reviewing some basic features of the DPM
mean-field approximation and the update relations (8)–(11). The mean-field
treatment is based on a truncation of the DPM model. The truncated model
describes the mixture in terms of a finite number K of components, in con-
trast to the infinite mixture of the full problem. If K is chosen sufficiently
large, the truncation provides an excellent approximation to the full model
(Ishwaran and James 2001).

After convergence of the iteration procedure, the functions q(ηk) and q(vk)
yield the mean-field approximations to the posterior marginal distributions of
the location and weight parameters ηk and vk, respectively, for the kth mix-
ture component. The functions q(zi) describe the assignment probability of the
ith observation to the different components. As we see from (9) and (11), the
more observations are attributed to a particular component, the more sharply
the posteriors q(ηk) and q(vk) will be localized. The assignment probabilities
πik = q(zi = k) are determined by two factors. First of all, we have the prior

contribution exp
[

ψ(nk + 1) −
∑k−1

j=1 (α + n>
j )−1

]

. This factor is closely related
to the last term of (12). As follows from the discussion in point (iii) of Sec. 3.2,
it ensures that the optimal mean field approximation (i.e., the iteration fixed
point with largest H) populates mixture components with small k.

The second and more interesting contribution is derived from the data model
p(y|η). It shows that an observation yi will tend to be assigned to components for
which the location posterior q(ηk) overlaps with yi (term exp[−(µk −yi)

2/2σ2])
and, crucially, which are well localized (term exp(−ρ2

k/2σ
2)). Since the local-

ization depends on the number of observations assigned to a component, the
latter aspect leads to a “positive feedback” or “self-reinforcement” process that
results in individual observations being assigned to a small number of compo-
nents, often even only a single one.

3.1. Single observation

As mentioned above, in the case of a single observation (n = 1), the mean field
approximation is amenable to a detailed analytical study. The results obtained
are useful since they already anticipate some important traits of the general
case. In the following discussion, we will set y1 = 0 for simplicity.

At first, let us briefly discuss how the self-reinforcement effect described above
manifests itself in this case. From (8)–(11), it follows that the relevant relations
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for the iteration scheme are given by

π1k ∝ exp







−
ρ2

k

2σ2
+ ψ(π1k) −

k−1
∑

j=1

1

α+ π1,>j







(16)

with ρ2
k = (1/λ2+π1k/σ

2)−1 (the relation for π1K is slightly modified). Suppose
that we start the iteration procedure from the initial condition π1k = 1/K. After

the first iteration cycle, all ρ2
k will be equal, but due to the terms −

∑k−1
j=1 (α+

π1,>j)
−1 in the exponent of (16), the assignment probabilities π1k will be ordered

as π11 > π12 > · · · > π1K, in general. In the next iteration cycle, the ρ2
k’s thus

will also become ordered in this way which causes π11 to grow even further at
the expense of the other components. Subsequent cycles will rapidly enhance
this process, until the observation is almost completely assigned to the first
component. The exponential function in relation (16) is crucial in bringing about
this behavior since it “magnifies” the effect of any differences of its arguments
for different k. To see that our description is consistent, we note that after
convergence, we will have ρ2

1 ≈ σ2, whereas ρ2
k ≈ λ2, k > 1. This implies that

the population of all components k > 1 will indeed be suppressed exponentially
by a factor of ξ = exp(−λ2/2σ2) since we have assumed λ≫ σ.

Further studies reveal that π1k ≈ I(z1 = 1) is not the only possible fixed
point of the iteration scheme, but there are also solutions of the form π1k ≈
I(z1 = l), l > 1, which arise if the initial conditions are chosen appropriately.
Approximate analytical expressions for these solutions can be derived in terms
of an expansion in ξ. From relations (8) and (11) it follows that the converged
assignment probabilities π1k obey the equations

π1k =
exp

{

− 1
2(σ2/λ2+π1k )

+ ψ(π1k + 1) −
∑k−1

j=1
1

α+π1,>j

}

∑K−1
l=1 exp

{

− 1
2(σ2/λ2+π1l)

+ ψ(π1l + 1) −
∑l−1

j=1
1

α+π1,>j

}

+ eK

, (17)

k < K, with eK = exp{−[2(σ2/λ2+π1K)]−1+ψ(π1K+α)−
∑K−2

j=1 (α+π1,>j)
−1}.

We can now seek solutions of the form π1l = 1−δl , π1k = δk, k 6= l, with δj ≪ 1
for all j. These are found to be given by

π1l ≈ 1 − exp

[

−
λ2

2σ2
+

1

2
(

1 + σ2

λ2

) − 1

]

×

[

exp
(

l−1
α+1

)

− 1

1 − exp
(

− 1
1+α

) + e−1/α 1 − exp
(

−K−l
α

)

1 − exp(−1/α)

]

− π1K, (18)

π1k ≈ exp

[

−
λ2

2σ2
+

1

2
(

1 + σ2

λ2

) − 1

]

exp

(

l− k

α+ 1

)

, k < l, (19)

π1k ≈ exp

[

−
λ2

2σ2
+

1

2
(

1 + σ2

λ2

) − 1

]

exp

(

−
k − l

α

)

, l < k < K, (20)
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π1K ≈ exp

[

−
λ2

2σ2
+

1

2
(

1 + σ2

λ2

) + ψ(α) − ψ(2)

]

exp

(

−
K − 2 − l

α

)

, (21)

where the neglected subsequent terms in the expansion are at least of order ξ2

including logarithmic corrections. Since we have assumed that ξ ≪ 1, we see that
the solutions (18)–(21) indeed have the desired structure, since all correction
terms δj remain small. For l = K the expressions are slightly modified. We will
return to some features of the solutions in Sec. 3.2.

The existence of multiple fixed points is a generic feature of the mean-field
method. They are all local maxima, or at least stationary points, of the lower
bound H . In the present case, (12) shows that the value of H decreases with
growing l so that one would choose the solution for l = 1 as final mean-field
result. We also note that the above expansion breaks down for growing l, as the
terms exp[(l− k)/(α+ 1)] will eventually become comparable to ξ−1. However,
since this typically only happens for large l, this complication is not of practi-
cal relevance. We also remark that the above derivation does not preclude the
existence of other types of mean-field solutions with a different mathematical
structure, but none could be found in numerical investigations.

An interesting and important aspect of relations (18)–(21) concerns the pa-
rameter α. One sees that the essential structure of the solution, i.e., the com-
pression of the observation into a single component, is not at all affected by α.
The choice of α thus is hardly of relevance for the posterior distribution. It is
instructive to compare this behavior to the exact solution for the DPM model.
From (1), one obtains the posterior marginal

p(z1 = k|y1) =
1

α

(

α

α+ 1

)k

, (22)

forK → ∞ (and any value of y1), which is of completely different character than
the mean-field result. The distribution only depends on α, but not on λ or σ,
and the observation is typically spread over several components. The mean-field
solution thus does not yield a good description of this posterior marginal.

On the other hand, from (13) and the mean field solution for l = 1, we obtain
the predictive density

p(y2|y1 = 0) ≈
κ

κ+ α

√

1 + σ2/λ2

2πσ2(2 + σ2/λ2)
exp

(

−
y2
2(1 + σ2/λ2)

2σ2(2 + σ2/λ2)

)

+
α

κ+ α

1
√

2π(σ2 + λ2)
exp

(

−
y2
2

2(σ2 + λ2)

)

(23)

with κ = 2. This result is obtained after slightly simplifying the mean field
solution by setting π1k = I(k = 1) and using the expressions for q(vk) and q(ηk)
ensuing from a single iteration of the update equations. The exact relation for the
predictive density can be derived from (2) and is given by expression (23) with
κ = 1. Apart from this small difference in the weight factors of the Gaussians,
the mean field and exact predictive densities are identical.
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The foregoing discussion already indicates a general trend that is observed
in numerical studies of more complex problems. The mean field results often
provide a reasonable approximation to the predictive density, whereas there are
strong deviations for cluster allocation, which is determined by the posterior
marginals for z1:n.

Interestingly, for a single observation it is possible to construct a closer re-
lationship between the mean field approximation and the exact description. To
this end, we consider a mixture of trial functions from Q as discussed in Sec.
2.3. We choose the distributions qm, m = 1, 2, . . ., such that qm(zi) = I(zi = m)
whereas qm(vk) and qm(ηk) are obtained from a single iteration of (9) and
(11), i.e., qm(vk) = B(vk; 1, α + 1) for k < m etc. The functions qm are non-
overlapping, and they provide very good approximations of the actual mean-field
solutions described above as long as m does not become too large. If we now
calculate the bounds Hm and construct the mixture qmix, we find that qmix(z1)
coincides with the exact marginal (22) of the full model.

The above discussion has shown that for a single observation one can sys-
tematically improve the mean-field approximation by considering mixtures of
different fixed-point solutions. However, further investigations indicate that for
multiple observations, one cannot expect to approach the exact distribution in
this way, in general. Moreover, the rapidly growing number of necessary distri-
butions would make this method impractical. Nevertheless, one should keep in
mind that the combination of non-overlapping mean-field solutions will always
provide some improvement to the individual distributions and might therefore
be taken into consideration under appropriate conditions.

3.2. Multiple observations

For multiple observations, the mean field approximation can only be studied
numerically, in general. Nevertheless, typical solutions share several important
structural properties that are already apparent in the special cases of relations
(18)–(21). A more formal explanation of this behavior is given in the Appendix.

(i) In the converged mean-field solutions, there is a clear distinction between
occupied and unoccupied mixture components. The population of unoccupied
components is exponentially small, i.e., of order O(exp(−λ2/2σ2)), and thus
goes to zero as λ/σ → ∞. The population of occupied components remains
finite in this limit. This allows to unambiguously identify occupied and unoc-
cupied components. Note, however, that typically there will be a large number
of distinct mean field solutions that differ in the assignment probabilities of
the occupied components (as exemplified, e.g., in (18)–(21) by the choice of
different l’s).

(ii) For fixed λ/σ, the assignment probabilities πik do not change appreciably
if the truncation level K is varied. For example, for a single observation we see
explicitly from relations (18)–(21) that K provides only an exponentially small
correction to the occupied component, whereas the empty ones do not depend
on K in leading order. Furthermore, as indicated by (20), the populations of the
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empty components following the last occupied one scale with k as exp(−k/α)
at fixed λ/σ.

(iii) As long as the influence of the terms
∑k−1

j=1 (α + n>
j )−1 in the iteration

equations remains small, permutation of indices in a mean field solution leads
to another (approximately) valid solution. The last term of (12) then shows
that the lower bound H is maximized if the occupied components are assigned
the lowest indices, in the order n1 ≥ n2 ≥ . . . . This property can usefully be
exploited in cluster relabelling algorithms that accelerate the determination of
the optimal mean field approximation (Kurihara, Welling, and Teh 2007).

An interpretation of the separation into occupied and empty components can
be given as follows. The exact predictive distribution can be decomposed into
a part where the new observation yn+1 is assigned to one of the pre-existing
clusters and a further contribution for which yn+1 is placed into a new cluster
of its own (see (2)). The functional form of this further contribution is given by
pnew(yn+1) =

∫

p(yn+1|θ)p(θ)dθ and it has an overall relative weight of α/(α+
n). As λ ≫ σ, the width of pnew(yn+1) is of the order of λ. In plots of the
predictive density for sufficiently small n, the contribution thus shows up as a
broad unstructured “background” onto which the more structured and localized
parts derived from the observations y1:n are superimposed.

If we assume a mean field solution for which the first k0 components are
occupied, it follows from (13) and (14) that the unoccupied components provide
a total contribution of

pempty(yn+1|y1:n) =
α

α+ n+ 1

k0−1
∏

k=1

α+N>k

1 + α+N>k
pnew(yn+1) (24)

to the predictive density. In this way, we can associate the empty components
with the contribution α/(α + n)pnew(yn+1) in the exact model in which yn+1

is placed in its own cluster. Furthermore, we see that the mean field term is
always reduced in weight in comparison to the full DPM model, but in practice,
the two contributions are often found to be quite similar in magnitude.

3.3. The role of the truncation level K

The structural properties of the mean field solutions summarized in Sec. 3.2 are
already very helpful in the discussion of the choice of the truncation level K.
This issue is an important question in numerical calculations. In previous work
(Blei and Jordan 2006, Kurihara, Welling, and Vlassis 2007), K was considered
as an additional variational parameter, and various schemes for optimally choos-
ing K were proposed on the basis of maximizing a variational lower bound.
However, since the truncated DPM model tends towards the full DPM model
as K → ∞ (Ishwaran and Zarepour 2002), one may wonder if the mean field
approximation introduced in Sec. 2.2 also approaches some well-defined limiting
behavior.

That this is indeed the case is already implied by the discussion of Sec. 3.2.
First of all, the assignment probabilities πik of occupied components that deter-
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mine all interesting properties of a particular mean field solution are insensitive
to the choice of K. Second, the lower bound H for any specific solution rapidly
approaches a well-defined limit for K → ∞. To see this we note that a compo-
nent which is completely empty (i.e., πik = 0 for all i) does not contribute at
all to H . The combined contribution of all unoccupied components is thus of
order exp(−λ2/σ2) and remains bounded as K → ∞ because of the exp(−k/α)
scaling. As a consequence, we conclude that it is not necessary to find an opti-
mized value for K. Rather, one can eliminate this additional degree of freedom
in a systematic way by considering the limit of K → ∞.

In fact, for practical purposes it is even unnecessary to calculate the asymp-
totic lower bounds precisely, since the differences in H between the various
extrema typically are sufficiently large so that the solutions can be ranked un-
ambiguously even with some remaining uncertainty in H . In practice, it often
suffices to choose K just somewhat larger than the maximum number of occu-
pied modes. We also note that the predictive density is insensitive to the choice
of K as well.

3.4. Two observations

The case of two observations, n = 2, provides a simple way of obtaining some
insight into how the mean field method switches between different clusterings of
observations. Two observations can be assigned to either a single or two different
clusters. In view of the results of Secs. 3.1, we expect that the first situation
corresponds to a mean-field solution where q(zi) ≈ I(zi = 1), i = 1, 2, whereas
for the second one we have q(z1) ≈ I(z1 = 1), q(z2) ≈ I(z2 = 2) or vice versa.
Numerical studies indeed show that a converged solution close to the first type
always exists, while the second type exists as long as the two observations are
sufficiently far away (on the scale set by σ). In the spirit of the mean field
approach, the type of clustering is determined by the solution with the larger
lower bound H . To obtain some quantitative understanding of the behavior of
the mean field approximation, we assume the data to be given by y1 = y and
y2 = −y. Using (12), we then calculate the lower bounds after approximating
the two mean-field solutions by q(zi) = I(zi = 1) and q(z1) = I(z1 = 1),
q(z2) = I(z2 = 2), respectively. The functions q(vk) and q(ηk) are obtained
from a single iteration of (9) and (11). The lower bounds that are calculated
analytically in this way are very close to the ones obtained numerically from
the actual mean field distributions. In particular, one finds that the two bounds
become equal for

y2

σ2
=

(

1 +
σ2

λ2

)



log





λ

σ

1 + σ2

λ2

√

2 + σ2

λ2



− log
α

2(α+ 1)



 . (25)

This means that the mean-field approximation switches abruptly between as-
signing the observations to a single or to two clusters, respectively, when y
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crosses a threshold that is of the order of σ log(λ/σ). We also note that unless
α is very small, the dependence on α is very weak.

In the full DPM model, one can infer from (2) that the probabilities for
having one or two clusters change continuously upon varying y, i.e., there is a
gradual transition in the cluster assignment. In particular, the two probabilities
become equal for

y2

σ2
=

(

1 +
σ2

λ2

)



log





λ

σ

1 + σ2

λ2

√

2 + σ2

λ2



− logα



 . (26)

We note that those parts of (25) and (26) that only depend on the data likeli-
hood parameters σ and λ are identical, whereas there are strong discrepancies
in the dependence on the prior as expressed through α. We can interpret this
result in the following way. Overall, (25) indicates that the mean field method
displays a plausible behavior regarding clustering. One would expect that there
should be two clusters as soon as y becomes comparable to σ. A similar result
is also given by the full DPM model. However, the detailed comparison between
the mean field and the exact treatment shows clear quantitiatve and qualitative
differences, so that it is hard to consider the mean field calculation as an “ap-
proximation” to the full model. These overall conclusions are confirmed by the
numerical study of more complicated situations.

In the present case, one can improve the mean-field result by considering mix-
tures of the individual mean field solutions as in Sec. 3.1. However, as mentioned
above, solutions assigning the observations to different clusters do not exist if y
is small compared to σ so that this approach is not always applicable. We also
note that numerically we have not been able to find mean field solutions that
make partial assignments of the observation to the mixture components (i.e.,
both π11 and π12 being large simultaneously, for example). In Sec. 4, we will
discuss a numerical example of two partially overlapping clusters of observations
that shows a very similar behavior to the simple case discussed here (see Fig. 2).

4. Numerical examples

In this section we will discuss a number of representative numerical examples
that further illustrate the behavior of the mean field approximation beyond
the general discussion of Sec. 3. The purpose of this discussion is, on the one
hand, to show that the mean field method, when viewed on its own, provides
“reasonable” results regarding clustering and density estimation. On the other
hand, we want to point out the profound differences to the exact treatment of
the DPM model, in particular regarding data clustering.

All calculations use the normal/inverse-gamma location-scale model of Es-
cobar and West (1995) that was briefly introduced in Sec. 2.2. Formally, the
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model is defined as

(Yi|µi, νi) ∼ N (µi, νi), i = 1, . . . , n,

(µi, νi|G) ∼ G, (27)

G ∼ DP (α,G0) ,

where the base distribution G0 has density

g(µ, ν) = gµ|ν(µ|ν)gν(ν) (28)

= N (µ; 0, τν)IG(ν ; s/2, (T/2)−1).

Here, IG denotes the inverse gamma distribution with density p(x;α, β) =
βαx−α−1 exp(−β/x)/Γ (α) and shape and scale parameters α and β. The pa-
rameters s, T , and τ (as well as α) are considered fixed. Note that in the limit
of s, T → ∞, this model reduces to the location model (6) with σ2 = T/s and
λ2 = τT/s. It is therefore convenient to reparametrize the above model in terms
of σ2

eff = T/s and λ2
eff = τT/s, so that s provides a measure of the deviation

from the location model with the corresponding parameters. In the truncated
stick-breaking approximation to the full model (27), one obtains the probability
distribution

p(y1:n, z1:n, η1:K, V1:K , v1:K−1)

=

n
∏

i=1

K
∏

k=1

[p(yi|ηk, Vk)wk(v1:K−1)]
I(zi=k)

K
∏

k=1

p(ηk|Vk)p(Vk)

K−1
∏

k=1

B(vk; 1, α),

where p(y|η, V ) is a normal distribution with mean η and variance V , p(η|V ) is
normal with mean 0 and variance τV , and p(V ) is given by the inverse gamma
distribution defined in (28). The mean-field update equations are calculated
using relations (3) and (4), but we do not reproduce them here as the explicit
expressions will not be needed in the following.

In the first example we consider three well separated clusters of observations.
Each cluster consists of 30 data points drawn from the normal distributions
N (−0.5, 0.12), N (0, 0.012), and N (0.5, 0.042), respectively. The prior param-
eters are chosen as σeff = 0.04, λeff = 1, and shape parameter s = 1. The
parameters have been selected such that the cluster widths are well within the
support of the prior distribution for the variance of the mixture components.

In the mean field posterior, all data points within a cluster are assigned to
the same mixture component, i.e., the approximation predicts exactly three
components. This behavior is independent of α within the investigated range of
α = 1 to α = 50. The predictive distribution for α = 1 is shown in Fig. 1 (black
curve) together with the result of an MCMC calculation based on algorithm 8
of Neal (2000). Both results are in very good agreement. This indicates that the
posterior distributions of the mixture parameters are well localized. As shown in
the inset of Fig. 1, however, there are significant differences between MCMC and
mean field regarding the distribution for the number of mixture components. As
mentioned, mean field predicts three components for all values of α. The MCMC
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Fig 1. Predictive density p(yn+1|y1:n) calculated for n = 90 observations indicated on the
horizontal axis. The DPM parameters are σeff = 0.04, λeff = 1, s = 1, α = 1. Black curve:
mean field result, red: MCMC integration. Inset shows posterior P (nc) for number of mixture
components, obtained from MCMC integration, for α = 1 (dark bars) and α = 5 (light). MF
would yield a single bar at nc = 3.

result, which we can expect to be quite close to the exact distribution in the
DPM model, extends over several numbers of components and depends strongly
on α. We also note that although the mean field iteration scheme has a number of
different fixed point solutions, none of the ones found numerically has more than
4 components. It would thus not be possible to recover the exact component
distribution by mixing different mean field solutions. The compression into a
very small number of components can be regarded as a consequence of the
“positive feedback” mechanism described at the beginning of Sec. 3.

Besides making the differences to exact results for the DPM model obvious,
this example also illustrates that the mean field scheme is indeed able to distin-
guish between clearly separated clusters of observations. This behavior, which
could be regarded as a minimum requirement for any clustering method, has
been confirmed in further numerical studies, and it can also be explained di-
rectly from the mean field iteration scheme. For the further discussion, it is thus
of interest to see how the mean field methods handles more intricate situations
in which one would expect partial assignment of observations to more than one
component.

In our second example, we therefore consider a case where the data points
originate from a mixture consisting of two partially overlapping normal distri-
butions. To study this problem more systematically, we generate two sets of

observations {y(l)
i }, l = 1, 2, that each contain 40 data points drawn from a
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N (0, 0.12) distribution. We then apply shifts of ∆y and −∆y, respectively, to
the points in the two sets. From our previous discussion, it is clear that for the
two cases ∆y ≪ ρ and ∆y ≫ ρ, the mean field approximation will firmly assign
the data to a single and to two different mixture components, respectively. For
the numerical study of the intermediate case, the parameters of the DPM model
are set to α = 5, σeff = 0.1, λeff = 1, and s = 5. With this relatively large value
of s, the variance of the mixture components in the DPM model is fixed quite
strongly.

The mean field approximation shows a behavior that displays some parallels
to the case of two observations discussed in Sec. 3.4. For all investigated val-
ues of ∆y, there is a mean-field fixed-point solution where all observations are
assigned to the same mixture component. For large ∆y, however, the optimal
mean field solution, that has the largest lower bound H , populates two differ-
ent components. As shown in Fig. 2(a), the lower bounds strongly depend on
∆y, and upon decreasing ∆y, the one-component solution eventually becomes
dominant. Interestingly, the point at which the two bounds become equal is
very well estimated by the simple relation (25). Soon after this crossover, the
two-component solution becomes unstable and ceases to exist.

Figures 2(b) and (c) display some features of the mean field solution for∆y =
0.15 where the two-component solution is still slightly dominant. Figure 2(b)
shows the assignment probabilities πik, k = 1, 2, for the two occupied mixture
components. They are essentially determined by relation (8) if we disregard the
prior variability of σ2. The figure demonstrates that the mean field solution
indeed makes partial assignments of the central data points to the two mixture
components. The predictive distribution is shown in Fig. 2(c) (black curve)
together with the result from the subdominant one-component solution (blue)
and the MCMC calculation (red). The two insets show the predictive density
for ∆y = 0.1 and ∆y = 0.18 where there is strong dominance of the one- or
the two-component mean field solution, respectively. In each case, the difference
between MCMC and mean-field result is somewhat larger than in the example
of Fig. 1. We also note that a simple mixing of the two mean-field solutions
at ∆y = 0.15 makes the two-peak structure disappear and therefore does not
produce an obvious improvement.

In order to illustrate the mean field method with a “realistic” data set, we
have studied the well-known galaxy red shift data discussed in Roeder (1990).
Figure 3 displays the results of corresponding calculations for parameters α = 1,
σeff = 0.707, λeff = 7.07, and s = 4. These values were chosen based on the
discussion by Escobar and West (1995) who, however, also include hyperpriors
for some of the parameters. The optimal mean field approximation (in terms
of the lower bound H) that could be found numerically contains three mixture
components (black curve in Fig. 3) whereas the second-best has four components
(blue). In contrast, in the MCMC calculation for the DPM model (red), the
posterior distribution for the number of components is spread out between 6
and 9. One can see from Fig. 3 that mean field and MCMC virtually agree in
the description of the predictive density for the two well-separated outer clusters
at low and high velocities. However, some discrepancies arise for the central part
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Fig 2. Mean field approximation for data drawn from a two-component mixture. (a) Lower
bounds H of one- and two-component mean field solutions (black and blue curve, respectively)
as a function of the shift ∆y applied to the mixture components. (b) Assignment probabilities
πik for two-component mean field solution at ∆y = 0.15. (c) Predictive densities at ∆y =
0.15, ∆y = 0.10 (left inset), ∆y = 0.18 (right inset). Black curves: dominant mean field
solutions, red: MCMC calculation, blue: one-component mean field solution at ∆y = 0.15.

of the distribution. There, the MCMC calculation finds a structured behavior
with three clearly distinguishable modes whereas mean field predicts a simpler
pattern.
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Fig 3. Predictive density calculated from galaxy red shift data set (Roeder 1990). Parameters
for the DPM were chosen as α = 1, σeff = 0.707, λeff = 7.07, and s = 4. Black and blue curves
show the two optimal mean field solutions which have three or four mixture components,
respectively; red: MCMC calculation of DPM posterior.

Another comparison between mean field and MCMC results is provided in
Fig. 5 of Sec. 5.1. We have also studied multivariate examples using a straight-
forward generalization of normal/inverse-gamma DPM model described above
with a diagonal covariance matrix. We have found the mean field results to show
the same qualitative behavior as in the univariate case, e.g., there is still a clear
distinction between occupied and unoccupied mixture components, individual
observations remain firmly attached to a small number of mixture components,
and the influence of the scaling parameter α is very small.

Large-n behavior of mean-field predictive density. Figure 4 provides an illus-
tration of the behavior of the mean-field predictive density in the limit of large
sample sizes. 200 random samples each containing 300 [Fig. 4(a)] and 3000 (b)
observations, respectively, were drawn from the three-components normal mix-
ture 0.3 ∗ N (0, 0.152) + 0.4 ∗ N (0.05, 0.042) + 0.3 ∗ N (−0.035, 0.022). For each
sample, the predictive density was calculated based on the mean-field posterior
for a location-scale DPM model with parameters σeff = 0.06, λeff = 1, s = 0.5,
and α = 5. To summarize the results of these calculations, Fig. 4 shows the av-
erage over the predictive densities (red curve), together with the first and third
quartiles of the distribution of predicted densities at each point (green and blue
curves).

The results of this simulation indicate that for growing sample size the mean-
field predictive density indeed approaches the true underlying density (as long
as the latter can appropriately be expressed as a normal mixture). Note that
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Fig 4. Large-n behavior of mean-field predictive density. 200 random samples each of size
n = 300 (a) and 3000 (b), respectively, were drawn from a three-component normal mixture
with density shown by the black curve, and for each sample the mean-field predictive density
was calculated. Red curves depict averaged predictive densities, whereas green and blue curves
show first and third quartiles of the distribution of predicted densities at each point.

the sample sizes necessary for obtaining a good approximation strongly depend
on the details of the generating mixture, e.g., strongly overlapping normals with
similar variance require many more observations than well separated mixture
components.

How can the convergence behavior of the mean-field predictive density be
understood? From (13), (14), and (24) follows that in the limit of n → ∞, the
predictive distribution in the normal location model is determined by the Bayes
estimates µk and E(wk) for the means and the weights of the occupied mixture
components, only. If these quantities are estimated correctly, the predictive and
the underlying true distribution will coincide since the contribution (24) of the
empty components as well as the parameters ρk go to zero. For the normal
location-scale model, the Bayes estimates for the precisions (i.e., the inverse
variances) have to be taken into account as well.

An argument supporting the convergence of the predictive towards the true
distribution can be given as follows. First of all, the mean field approximation
appears to be able to determine the number of mixture components correctly (in
the example of Fig. 4, the optimal mean field approximation had two components
for about 15% of the samples with size 300, whereas for the larger sample size,
mean field found three components for all samples). Furthermore, a mean field
approximation with K occupied components obtained in the DPM model is
very similar to the mean field result for a normal mixture with a fixed number
K of components. For such a model, however, Wang and Titterington (2006)
have shown that the Bayes estimates converge against the maximum likelihood
estimates and hence against the true mixture parameters. This explains the good
convergence behavior of the mean-field predictive density in the DPM model.
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5. Alternative mean-field approximation schemes

The mean-field approximation scheme discussed in Sec. 2.2 which is based
on the stick-breaking representation of the DPM model was introduced by
Blei and Jordan (2006). Several variants of this method were subsequently pro-
posed by Kurihara, Welling, and Teh (2007). In this section, we will examine
one of these schemes in more detail, i.e., the substitution of the truncated stick-
breaking prior by a finite-dimensional Dirichlet prior. We also briefly discuss
marginalization over the weight variables vk in the stick-breaking prior and the
data likelihood parameters.

5.1. Finite-dimensional Dirichlet prior

As discussed, e.g., in Ishwaran and James (2001), replacing the truncated stick-
breaking prior by a finite-dimensional Dirichlet distribution also provides an
excellent approximation to the full DPM model. More specifically, in this ap-
proach one uses the probability model

p(y1:n, z1:n, w1:K, η1:K) =

n
∏

i=1

K
∏

k=1

[p(yi|ηk)wk]I(zi=k)p(w1:K)

K
∏

k=1

G0(ηk), (29)

where the variables w1:K have a Dirichlet distribution Dir(α/K, . . . , α/K). The
cutoff K has again to be chosen large enough to make the approximation accu-
rate.

In the mean field treatment of this model, we seek the best approximation
within the class of distributions q(z1:n)q(η1:K , w1:K). The update equations for
the iteration scheme imply that the optimal functions factorize further and are
of the form q(z1:n)q(η1:K , w1:K) =

∏n
i=1 q(zi)

∏K
k=1 q(ηk)q(w1:K). Explicitly, the

iteration steps are carried out as follows:

q(zi = k) = πik ∝ exp {Eηk
[logp(yi|ηk)] + Ew1:K

(logwk)} , (30)

q(w1:K) = Dir(a1, . . . , aK) with ak =
α

K
+ nk, (31)

q(ηk) ∝ exp

[

n
∑

i=1

πik log p(yi|ηk) + logG0(ηk)

]

. (32)

The expression for the lower bound is given by

H =

n
∑

i=1

K
∑

k=1

πikEηk
(log p(yi|ηk)) +

K
∑

k=1

Eηk
(logG0(ηk)) −

n
∑

i=1

K
∑

k=1

πik logπik

−
K
∑

k=1

Eηk
(log q(ηk)) + log

Γ (α)

Γ (α+ n)
+

K
∑

k=1

log
Γ (α/K + nk)

Γ (α/K)
. (33)

This relation holds at convergence or at any stage of the iteration process if
q(w1:K) has been updated following an update of q(z1:n). The calculation of the
predictive density is outlined below.
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Table 1

Mean field parameters of populated mixture components for the example of Fig. 5.

Truncated stick-breaking
Mean µk Standard deviation ρk Number of observations nk Weight wk

1 −0.0282297 0.0128866 42.9635 0.348917
2 0.0251737 0.0118795 40.2126 0.323145
3 −0.00454731 0.118282 36.8239 0.289649
Lower bound H = 138.633
Finite-dimensional Dirichlet
1 −0.0281957 0.0128127 42.5747 0.342598
2 0.0251655 0.0118781 39.9802 0.321842
3 −0.00463867 0.117388 37.4451 0.301561
Lower bound H = 134.616 (K = 20)
Truncated stick-breaking after marginalization over vk (see Sec. 5.2)
1 −0.0282303 0.0129080 42.8283 0.347844
2 0.0251750 0.0118822 40.0631 0.321977
3 −0.00451457 0.117859 37.1086 0.291889
Lower bound H = 138.895

In order to compare this approach to the method using the truncated stick-
breaking prior, we now discuss a representative numerical example that illus-
trates the main aspects. We consider a situation where data are drawn from
two adjacent normal distributions and a superimposed broader distribution. In
this case, some observations are found to be partially assigned to three different
mixture components. This somewhat involved setup has been chosen since one
would expect that potential differences between the methods should show up
more readily than, e.g., in a situation where all cluster assignments are clear-cut.

The data for the example were generated by drawing 40 observations each
from the three distributions N (±0.03, 0.012) and N (0.0, 0.122), and the param-
eters of the DPM model were selected as α = 5, σeff = 0.06, λeff = 1, and
s = 0.5. Figure 5 shows the resulting predictive density distributions together
with the MCMC result, as well the assignment probabilities πik for the three
mixture components that are found to be populated in the optimal mean field
solutions. We note that mean field recovers the three mixture components of the
original distribution and, overall, agrees well with the Monte Carlo calculation.
More importantly, however, the two mean field results are found to be almost
indistinguishable on the scale of Fig. 5. To further illustrate the similarity, Ta-
ble 1 compares the parameters of the three occupied mixture components. In
all cases, the mixture components Eηk

(p(yn+1|ηk)) in the predictive distribu-
tions (13) and (37) are found to be practically of Gaussian shape. Table 1 shows
the corresponding normal means µk and standard deviations ρk, the numbers
nk =

∑

i πik of observations assigned to a component, the weights wk of the
mixture components, and the lower bound H .

The close correspondence between the solutions is not a particular feature of
this example, but has been observed in a similar way in many other cases that
were studied numerically, using univariate as well as multivariate data. In the
discussion of this observation, the following points should be emphasized.
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Fig 5. Mean field approximations for three-component mixture. (a) Predictive density cal-
culated from truncated stick-breaking priors without and with marginalization over vk (see
Sec. 5.2) (black and blue curves) and finite-dimensional Dirichlet prior (green). Red curve:
MCMC calculation. Mean field results are almost indistinguishable. Parameters are α = 5,
σeff = 0.06, λeff = 1, and s = 0.5. (b) Assignment probabilities πik for occupied mixture
components. Mean field results from the different schemes are indistinguishable on this scale.
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(i) The correspondence between solutions is not restricted to the global opti-
mum, but also applies to other local maxima in H that appear as fixed points of
the mean field iteration scheme. The numerical deviations between parameters
in corresponding solutions, as displayed, e.g., in Table 1, are typically very small
compared to the differences to other, non-corresponding solutions. In this way,
correspondence can easily be established.

(ii) The reason for the close similarities between the methods can be found in
the fact that they only differ in the way the prior of the DPM model is handled.
The discussion of Secs. 3 and 4 has shown that the mean field solutions are
mostly determined by the data-likelihood part of the DPM model whereas the
influence of the prior is rather weak. The resulting similarities are thus not
surprising (see also remarks in Sec. 5.2).

In spite of the overall similarity, it is nevertheless instructive to compare in
more detail the use of Dirichlet and stick-breaking priors, respectively, in the
mean field calculations. In order to motivate some of the general observations
discussed below, we first give the result of a calculation along the lines of Sec.
3.1 for the assignment probabilities in the case of a single data point. Setting
y1 = 0 for convenience, one again finds mean field solutions that assign the data
point to a single mixture component, i.e., one obtains assignment probabilities

π
(l)
1k ≈ I(k = l), k, l = 1, . . . , K, or, more precisely,

π
(l)
1l ≈ 1 − (K − 1) exp

[

−
λ2

2σ2
+

1

2(1 + σ2

λ2 )
−
K

α

]

, (34)

π
(l)
1k ≈ exp

[

−
λ2

2σ2
+

1

2(1 + σ2

λ2 )
−
K

α

]

, k 6= l, (35)

where the neglected terms are at least of order ξ2 with ξ = exp(−λ2/2σ2).
The complete mean field solutions are obtained from these expressions using
relations (31)–(32).

We now summarize some general features of mean field approximations with
a finite dimensional Dirichlet prior.

(i) We again find a clear distinction between occupied and empty mixture
components. In contrast to the stick-breaking case, however, the population of
empty components does not remain finite (i.e., of order ξ) as K → ∞, but
vanishes exponentially with K (see (35)). On the other hand, if there is more
than one occupied component, the corresponding assignment probabilities ap-
pear to converge much more slowly towards their asymptotic limits (with 1/K).
However, their overall variation with K is still rather small.

(ii) Permuting the component indices in a mean field solution leads to another
valid solution (i.e., fixed point) of the iteration scheme (see (34)–(35)). This is
a consequence of the symmetry of the Dirichlet prior. All these solutions have
the same lower bound H . With the stick-breaking prior, the largest bound is
obtained if the populations of components are size-ordered, i.e., n1 ≥ n2 ≥ . . .
(see (12)).
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(iii) With a finite-dimensional Dirichlet prior, further types of mean field
solutions can arise that have no equivalents in the stick-breaking approach. For
example, the single observation considered above can be assigned to more than
one component. If k0 components become occupied, then one has π1k ≈ 1/k0

for these components. In the extreme case of k0 = K, π1k = 1/K is an exact
solution. Nevertheless, in the numerical calculations for more complex problems
we have only rarely encountered solutions that were significant in terms of their
lower bound and did not seem to have a correspondence in the stick-breaking
approach.

(iv) The predictive density is given by

p(yn+1|y1:n) =

K
∑

k=1

Ew1:K
(wk)Eηk

(p(yn+1|ηk)). (36)

Since Ew1:K
(wk) = (nk +α/K)/(α+n), the evaluation of the predictive density

can show an appreciable dependence on K, in particular for smaller values of
K (and large α). To eliminate this dependence, it is convenient to take the
asymptotic limit

p(yn+1|y1:n)
K→∞
−→

K
∑

k=1

nk

α+ n
Eηk

(p(yn+1|ηk)) +
α

α+ n
pnew(yn+1) (37)

Similar to the discussion of Sec. 3.2, the term α(α + n)−1pnew(yn+1) is due to
the empty components and describes the assignment of yn+1 to a cluster of its
own. It agrees precisely with the corresponding term in the exact treatment. For
the practical evaluation of (37), we can make use of the fact that even for rather
moderate values of K, the population of empty components is exponentially
small, whereas the population of occupied components depends only weakly on
K. It is therefore possible to accurately calculate (37) with a small value of K
already. As an example, the predictive density in Fig. 5(a) was obtained in this
way and is almost indistinguishable from the stick-breaking result.

(v) A rather interesting observation concerns the behavior of the lower bound
H , which does not become asymptotically constant as in the stick-breaking case.
To study this aspect in more detail, let us consider a mean field solution for
which the first k0 components are occupied and all others empty. In this case,
all terms in (33) will become constant as K → ∞, besides the first k0 members
of the last sum for which we find that

k0
∑

k=1

[

logΓ
( α

K
+ nk

)

− logΓ
( α

K

)]

K→∞
−→

k0
∑

k=1

logΓ (nk) − k0 logΓ
( α

K

)

≈
k0
∑

k=1

logΓ (nk) + k0(logα− logK)

after using that Γ (z) ≈ 1/z for z → 0. The lower bound thus diverges as
−k0 lnK. The reason for this behavior is the permutation symmetry of the
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Dirichlet prior. As mentioned in (ii), this symmetry gives rise to the existence
of multiple equivalent mean field solutions that differ from each other only in
the permutation of component indices, and the proper mean field description
should take all of them into account.

For a special case, we can explicitly show how the combination of all these
solutions re-establishes the constancy of the asymptotic bound. Assume again
that there are k0 occupied mixture components. For large K, the population of
the empty components will be vanishingly small as mentioned in (ii). There are
thus K!/(K − k0)! index permutations leading to distinct mean field solutions.
Now assume in addition that for each occupied mixture k there is at least one
observation i assigned (almost) exclusively to this component, i.e., πik ≈ 1.
Such types of mean field solutions are not uncommon, examples are shown in
Figs. 1 and 2. Any two index permutations of such solutions fulfill, to a very good
degree of approximation, the non-overlap condition of Sec. 2.3. We can therefore
calculate the lower bound Hmix of an equi-weighted mixture of all permutations.
Since it surpasses the bound of an individual solution by lnK!(K − k0)!, Hmix

will be asymptotically constant. We note that the approach to the limit is of
order 1/K and thus much slower than in the stick-breaking case. A very similar
behavior is observed for the exact calculation of the lower bound in the truncated
DPM model with Dirichlet prior.

In the general case, however, the mean field solution will not fulfill the non-
overlap condition (see, e.g., Fig. 5). It is then no longer possible to calculate
the entropy term of the lower bound analytically. It is thus an interesting and
challenging problem to determine the asymptotic behavior of the lower bound
under these circumstances.

The divergent behavior of the lower bound can be of relevance for practical
calculations. The scaling with −k0 lnK implies that for growing K mean field
solutions with small k0 will appear more and more favorable. In fact, in many
cases there exists a solution that assigns all observation to the same mixture
component (i.e., k0 = 1). Such a solution will always dominate in the limit
K → ∞. It is thus essential to be aware of this divergent behavior when rank-
ing mean field solution based on their lower bound. On the other hand, one
should also keep in mind that apart from the problem with the lower bound,
finite-dimensional Dirichlet and truncated stick-breaking priors essentially yield
the same approximations to the DPM posterior (Ishwaran and Zarepour 2002).
Since the latter approach does not suffer from problems regarding the lower
bound and the ranking of solutions, it might be a more convenient choice in
practical calculations.

Finally, we briefly mention recent work on the latent Dirichlet allocation
(LDA) model (Blei, Ng, and Jordan 2003). On a formal level, LDA is a gener-
alization of a mixture model where the data likelihood is given by a discrete
multinomial distribution and thus shares some similarity with the models de-
scribed in this section. Since mean field methods are also often applied to the
LDA, we expect that some of the results discussed here, e.g., regarding the
structure of the solutions and the effects of the permutation symmetry of the
Dirichlet prior, might be of relevance in this context as well.
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5.2. Other approximation schemes

Marginalization over weight variables. As discussed by Kurihara, Welling, and
Teh (2007), one might hope to improve the mean-field approximation by inte-
grating out the vk’s of the stick-breaking representation so that the contribution
of the prior weights is treated exactly. As a representative illustration of the re-
sults that are obtained from this method, we again consider the example of
Sec. 5.1. Figure 5 and Table 1 show the predictive density and the numerical
values for the parameters of the mixture components, respectively. Again, we
find a close similarity to the results from the other approaches. This correspon-
dence between solutions has also been observed in all other numerical studies
and not only applies to the globally optimal mean field result, but also to other
local maxima with large H . As explained above, we attribute this behavior to
the very weak influence of the prior distribution in the mean field calculations.

For corresponding solutions, the lower bound H is larger in the marginalized
model, as one would expect since the prior weight variables vk have been treated
exactly (a detailed study of the improvement in H due to marginalization has
been presented by Mukherjee and Blei (2009) in the context of latent Dirichlet
allocation). However, given the close similarity between the actual mean field
distributions, as exemplified in Table 1, the increase in H does not seem to make
the marginalized method preferable, in particular since the numerical computa-
tion of the update rules becomes more expensive. This can be avoided by using
approximation schemes (Kurihara, Welling, and Teh 2007), but then the lower
bound is no longer guaranteed to increase in each iteration step.

Marginalization over data likelihood parameters. A further variant of the
mean field method that is mentioned, although not elaborated on, in Kurihara,
Welling, and Teh (2007) consists in marginalizing over the mixture component
parameters ηk. However, in this case the computational cost of exactly evaluat-
ing the mean-field update relations is increased dramatically and it is not clear
if efficient approximations can be derived. Nevertheless, it is still of interest to
investigate the general behavior of this approach in the case of small samples
and compare it to the other versions. The main result of our studies is that
the mean field solutions obtained in this scheme do not have equivalents in the
other approaches, but are clearly distinct. This confirms our conclusion that the
similarity of the previous methods is due to the fact that they only differ in how
the prior is handled, and that the prior only has a small effect on the resulting
approximation. In particular, it is found that after marginalizing over ηk the
observations tend to be spread out over more mixture components; however,
the inherent limitations of the factorized form for q(z1:n), as outlined in Sec. 8,
prevent this approach from yielding a significantly improved approximation to
the distribution of mixture components.

6. Mean field inference for the parameter α

The DPM model can be extended to include a prior distribution p(α) for the pa-
rameter α. In order to preserve conjugacy, we will in the following choose p(α) as
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a gamma distribution with shape and inverse scale parameters s1 and s2, respec-
tively. To derive the mean field iteration scheme for this model, we again apply
a truncation as in (1). Analytical update rules are obtained if we seek the mean
field approximation within the class of distributions q(z1:n)q(η1:K , v1:K−1)q(α).
As in Sec. 2.2, the optimized distributions factorize in all variables. More specif-
ically, the mean field posterior for α remains a gamma distribution with update
equations given by (Blei and Jordan 2006)

s∗1 = s1 +K − 1, (38)

s∗2 = s2 −
K−1
∑

k=1

Evk
(ln(1 − vk)) , (39)

whereas the update for the vk’s is modified to

vk ∼ Beta
(

αk = nk + 1, βk = n>
k + Eα(α)

)

. (40)

Similarly, in the update rule (8), α has to be replaced by Eα(α), whereas the
relation for q(ηk) remain unchanged. The lower bound at convergence is now
given by

H =

n
∑

i=1

K
∑

k=1

πikEηk
(log p(yi|ηk)) +

K
∑

k=1

Eηk
(logG0(ηk)) −

n
∑

i=1

K
∑

k=1

πik logπik

−
K
∑

k=1

Eηk
(log q(ηk)) + log

Γ (E(α) + nK)

Γ (E(α) + n)
+

K−1
∑

k=1

log
Γ (nk + 1)

nk + n>
k + E(α)

− s∗1 log s∗2 + s∗1 + logΓ (s∗1) − s2E(α) − logΓ (s1) + s1 log s2. (41)

Some numerical experiments indicate that the convergence through standard
iteration for q(α) is quite slow and takes longer than for the other parameters.

When a prior distribution for α is included in the model, one finds that
the role of the truncation level K becomes more complex than before. First of
all, (38) shows that the mean field posterior for α more and more approaches a
normal distribution asK and hence the shape parameter s∗1 increase, irrespective
of any other aspects of the system under study. The mean of the posterior

distribution is given by µ =
s∗

1

s∗

2

and its standard devation by ρ =
√

µ/s∗2.

Under the assumption of unoccupied higher-order mixture components, one
can show that E(α) is independent of K. Using the relations from the update
equations, one has at convergence

E(α) =
s∗1
s∗2

=
s1 +K − 1

s2 +
∑k0

k=1[ψ(αk + βk) − ψ(βk)] + (K − 1 − k0)/E(α)
. (42)

Here, we have assumed that the first k0 components are populated, and used
the relation ψ(x + 1) − ψ(x) = 1/x. The parameters αk and βk are defined in
(40). Solving for E(α) yields

E(α) =
s1 + k0

s2 +
∑k0

k=1[ψ(αk + βk) − ψ(βk)]
, (43)
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Fig 6. Exact prior (blue curve) and posterior (red) distributions for the parameter α together
with mean field approximation (black) at K = 20 for a sample with n = 12. Due to the
smallness of the sample the exact posterior can be calculated without using Monte-Carlo
integration. In this example, the variational posterior mean E(α) is smaller than the prior
one (Eprior(α) = 1), whereas the exact one is larger. For K → ∞, q(α) approaches a Dirac
delta function at E(α).

i.e., E(α) is independent of K. Note that βk depends explicitly on E(α), and
that both αk and βk depend implicitly on it through nk and n>

k . The latter
dependence is quite weak, however. Altogether, (43) is thus an implicit equation
for E(α). It is also easy to see from (43) that the result for E(α) is independent of
the precise choice of k0 as long as all occupied mixture components are included
in the summation (i.e., one might change k0 → k0 + ∆k, ∆k > 0). Since the
iteration relations for the other factors in the mean field approximation depend
on q(α) only through E(α), it is ensured the assignment probabilities πik will
also remain independent of K.

In the limit of K → ∞, it follows from the above discussions that s∗1 and s∗2
both go to infinity, since their ratio E(α) has to remain fixed. The approximately
Gaussian posterior q(α) will thus be more and more localized around E(α), i.e.,
it tends towards a Dirac delta function δ(α− E(α)).

We also find that the lower bound no longer attains a constant limit for
K → ∞. More specifically, it follows from (41) that H diverges as −1

2
lnK in

the limit of K → ∞. To derive this result, one uses the constancy of E(α) with
K which allows to replace s∗2 by s∗1E(α), together with Stirling’s approximation,
and the fact that components are occupied only up to a fixed index k0 < K.
The divergence is caused by the entropy term −

∫

q(α) ln q(α). Qualitatively,
the contracting q(α) more and more deviates from the exact posterior marginal
and thus leads to a larger Kullback-Leibler divergence. We note that this ex-
ample shows how a seemingly minor modification of the model can lead to a
rather strong change in the properties of the mean field approximation, here in
the form of the behavior of the lower bound. The contraction of q(α) and the
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divergence of the lower bound can probably be avoided if one seeks the mean
field approximation within the class of distributions q(z1:n)q(η1:K)q(v1:K−1, α).
However, in this case the update rules are no longer of simple closed form but
require numerical integrations.

In the numerical examples studied, the variational mean E(α) was always
smaller than the exact one. In Fig. 6 we display a case where the mean-field
result not only predicts a wrong shape of the posterior, but even gives a wrong
direction for the shift from prior to posterior mean (i.e., smaller instead of larger
value for expectation value). One thus has to be very careful when drawing
conclusions about the exact behavior based on variational results.

7. Mean field approximation and MAP estimation

An interesting perspective on the mean-field approximation is obtained from
studying its connection to maximum a-posteriori (MAP) estimation of the pos-
terior mixture distribution. We define the MAP estimation problem as find-
ing those values of η1:K and v1:K−1 (and hence the specific mixture distri-
bution defined by them) that maximize the truncated posterior distribution
p(η1:K , v1:K−1|y1:n) for given observations y1:n. An algorithm for determining
the MAP estimate can be constructed in close analogy to the expectation-
maximization (EM) method, with the assignment variables zi playing the role
of the hidden variables in the EM algorithm. More specifically, a cycle in the
EM-type iteration scheme for the normal location model is carried out by alter-
natingly calculating

πik ∝ p(yi|ηk)vk

k−1
∏

l=1

(1−vl) = exp

[

logp(yi|ηk) + log vk +

k−1
∑

l=1

log(1 − vl)

]

(44)

for given η1:K and v1:K−1, and updating η1:K and v1:K−1 according to

vk =

∑n
i=1 πik

∑K
l=k

∑n
i=1 πil + α− 1

=
nk

nk + n>
k + α− 1

, k < K, (45)

ηk =

∑n
i=1 πikyi

σ2/λ2 + nk
. (46)

To simplify the following discussion, we now assume α > 1. At a fixed point
of the iteration scheme, we have vk = nk/(nk + n>

k + α− 1) and

πik =
p(yi|ηk)[nk + I(k = K)(α − 1)]

∑K
l=1 p(yi|ηl)[nl + I(l = K)(α − 1)]

. (47)

From this, we obtain an implicit condition for the component occupation num-
bers nk from the summation

nk =

n
∑

i=1

πik = [nk + I(k = K)(α− 1)]

n
∑

i=1

p(yi|ηk)
∑K

l=1 p(yi|ηl)[nl + I(l = K)(α − 1)]
.

(48)
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The solutions of the MAP iteration scheme have the following general prop-
erties:

1. Given a solution, we can construct (K − 1)! − 1 further solutions by per-
muting the indices of the components with k 6= K. To see this, consider such a
permutation P that keeps K invariant, i.e., P(K) = K. From the given fixed-

point solution, we can construct the new solution starting from π
(new)
ik = π

(old)
iP−1(k)

so that n
(new)
k = n

(old)
P−1(k)

. This implies that η
(new)
k = η

(old)
P−1(k)

from (46). We now

choose v
(new)
k = n

(new)
k /(n

(new)
k +n

>, (new)
k +α−1). Re-evaluating πik using (44)

proves the consistency of the new solution. However, if the indexK were included
in the permutation as well, the consistency would no longer hold. Note that all
possible (K − 1)! permutations describe the same mixture distribution defined

by the (unordered) set of ηk’s and their associated weights wk = vk

∏k−1
j=1 (1−vj).

2. All (K − 1)! solutions obtained above have the same posterior probability,
which is immediately seen from the relation

∑

z1:n

p(y1:n, z1:n, v1:K−1, η1:K) =

n
∏

i=1

(

K
∑

k=1

p(yi|ηk)wk

)

K−1
∏

k=1

αK−1wα−1
K

K
∏

k=1

G0(ηk).

(49)
Expression (49) also explains the special role of the component K mentioned
above. The mixture component with the largest weight has to be assigned to
label K in order to maximize the posterior probability (note that we have as-
sumed α > 1). The assignment of the other components is arbitrary. For all the
other K!− (K − 1)! ways in which the mixture distribution can be represented
with wK not being the maximum weight, the posterior probability is smaller.
Numerical calculations indicate that these representations are not even local
maxima of the posterior.

3. The MAP equations may have multiple fixed-point solutions correspond-
ing to different mixture distributions. However, for any set of observations y1:n,
πik = I(k = K) (together with the ensuing relations for v1:K−1 and η1:K) is
always a fixed point of the MAP iteration scheme. In this case, all observations
are assigned to the mixture component K. In agreement with the above discus-
sion, πik = I(k = l), l < K, can never be a fixed point as one easily sees from
the iteration equations or from the fact that the posterior probability vanishes
in this case.

4. As in mean field, the MAP iteration scheme supports solutions for which
only a subset of the mixture components are occupied. The populations of the
empty modes vanish exactly (i.e., πik = 0), whereas in mean field they are only
exponentially suppressed. The exact vanishing of component populations can
be understood from two perspectives. On the one hand, given a MAP solution,
we can immediately construct an equivalent solution with a larger number of
components simply by inserting components with zero weight. Second, the im-
plicit relation (48) for nk has the trivial solution nk = 0, k < K, and in many
cases this solution is indeed assumed.
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There are several strong indications for a close connection between the mean
field method and MAP estimation. First of all, the latter can also be derived from
a mean-field-type approximation to the posterior DPM distribution. To this end,
one simply restricts the trial functions to the set (MacKay 2003, Ch. 33)

q(z1:n, ṽ1:K−1, η̃1:K) = q(z1:n)

K−1
∏

k=1

δ(ṽk − vk)

K
∏

k=1

δ(η̃k − ηk). (50)

The mean field update equations for q(z1:n) and the location parameters vk, ηk

of the Dirac delta functions are identical to the EM equations derived above. A
lower bound can be calculated in the usual way after setting the entropy asso-
ciated with the delta-distributions equal to zero. In this sense, MAP estimation
can be considered equivalent to a restricted mean field approximation problem.
In (50), the distributions of ṽ1:K−1 and η̃1:K are completely localized. In the full
mean field scheme, populated components similarly tend to become localized
(see expressions (9) and (11)). We also note the correspondence between the
actual update equations: expression (11) for µk is identical to (46), the value of
vk in (45) matches the mode of the beta distribution (9), and the iterations for
q(z1:n) given by (7) and (44) are also very similar to each other.

Second, numerical studies often show strong similarities between MAP and
mean field solutions. For example, the assignment probabilities πik calculated
in the respective iteration schemes are typically found to be very close to each
other. Third, in a closely connected problem, Wang and Titterington (2006)
have shown that for a normal mixture model with a fixed number of components,
the variational Bayesian point estimates asymptotically converge against the
maximum likelihood estimates.

The above arguments show that the mean field approximation to the DPM
model is closely related to the MAP estimation of the mixture distribution. For
a qualitative picture, we can envisage the space of all mixture distributions de-
fined by the (unordered) set of mixture weights wk and parameters ηk. MAP
estimation singles out a specific mixture, whereas mean field implies a density
distribution in this space that is smeared out around this selected mixture. This
connection also gives a qualitative explanation of why the mean field approxi-
mation is compressed into a small number of mixture components, as it inherits
this property from the MAP solution.

Often, however, MAP estimates provide a poor representation of the behavior
of the full DPM probability distribution, in particular with regard to clustering.
For example, for a set of localized observations |yi|<∼σ, the MAP estimate is often
given by the single-component solution πik = I(k = K). It thus fails completely
to describe the posterior distribution of the number of mixture components. It
is therefore not surprising that the mean field approximation suffers from the
same problem.

To get some insight into the reason for this failure, it is instructive to con-
sider how the component number distribution in the DPM model comes about.
It can be obtained, at least in principle, from (2) which decomposes the marginal
p(y1:n) into a sum of the contributions from all possible partitionings of the data
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into clusters. In the case of localized observations |yi|<∼σ and moderate α, it is
often found that the term that assigns all observations to a single cluster has the
largest probability whereas the individual probabilities for all other clusterings
are significantly smaller. However, since there is a large number of possibilities
for putting the observations into two or more clusters, the resulting distribu-
tion for the number of components can still become quite broad. Although not
strictly in one-to-one correspondence, the fact that the single-cluster assignment
has the largest individual probability indicates that the MAP estimate should
also put all observations into a single mixture component.

Finally, we address the fact that the MAP and mean field solutions differ
distinctively in how indices are assigned to the populated mixture components.
As discussed above, in MAP the component with largest weight has index K. In
the mean field approximation the lower bound is maximized if the populations
of components are ordered by size, i.e., n1 > n2 > . . . (see (12)).

We explain this difference in behavior as follows. In the stick-breaking ap-
proach, a mixture distribution can be represented in K! different ways by ap-
propriately choosing vk’s and ηk’s. With MAP, we select a representation that
maximizes posterior probability density. The mean field solution can be inter-
preted as providing a probability distribution in mixture space which is localized
around the same actual mixture as chosen by MAP. However, it puts its weight
on a different representation of the mixture, namely one with a large associated
probability mass (with respect to a volume element in mixture space). Such
a representation typically assigns small indices k to all components with large
mixture weights.

8. Summary and conclusions

Recently, variational algorithms, and in particular mean field methods, have
received increasing attention as possible alternatives to MCMC integration in
computational Bayesian inference. In this paper, we have presented a system-
atic investigation of several mean field inference schemes for Dirichlet process
mixture models that were proposed in Blei and Jordan (2006) and Kurihara,
Welling, and Teh (2007). Our discussion focussed on the normal location and
normal/inverse-gamma location-scale models which we believe to be among the
most important for practical applications of mean field techniques in this con-
text. The main results of our studies can then be summarized as follows.

(i) In typical fixed point solutions to the mean field iteration scheme, there is a
clear distinction between occupied and essentially empty mixture components.
The population of empty components is exponentially suppressed. Individual
observations tend to be firmly attached to a relatively small number of com-
ponents, often even only a single one. This behavior was explained in terms of
a “self-reinforcement” effect in the iteration equations. We have discussed sev-
eral structural properties of the solutions. To illustrate this discussion, explicit
approximations for the case of a single observation were presented. It was also
studied how the mean field approximation chooses between different clusterings
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of observations. As another important feature of the mean field solutions, their
very weak dependence on the DPM parameter α was pointed out.

(ii) We compared different variants of the mean field scheme that are de-
rived from the unmarginalized and marginalized truncated stick-breaking priors
and the finite-dimensional Dirichlet priors, respectively. It was found that these
methods lead to essentially equivalent results regarding density estimation and
cluster allocation. This virtual equivalence was attributed to the very weak in-
fluence of the prior distribution in the mean field iteration scheme. From a
practical point of view, the unmarginalized stick-breaking variant appears to be
most convenient for numerical work. In the marginalized version, one either is
faced with increased computational cost in the mean field iteration scheme or
has to make use of approximation methods. For the finite-dimensional Dirichlet
prior, we have pointed out the divergent asymptotic behavior of the lower bound
and related this effect to the permutation symmetry of the Dirichlet prior. The
divergence may cause problems when ranking mean field solutions based on their
lower bound.

(iii) We have clarified the role of the truncation level K. The mean field
solutions display a well-defined behavior in the limit of K → ∞. Together with
the fact that only a fixed number of mixture components becomes occupied,
this allows to characterize the asymptotic behavior of important quantities such
as the lower bound and the predictive density. For practical calculations, it is
sufficient to choose K slightly larger than the number of occupied components
to calculate the asymptotic quantities. It thus seems natural to work with the
asymptotic limit of the mean field approximation, rather than treating K as
an additional variational parameter. This approach also keeps in line with the
fact that the full DPM model arises as the asymptotic limit of the truncated
model.

(iv) When a prior distribution for α is included in the model, the role of
the truncation level becomes more complex. Whereas E(α) becomes constant
in the limit of K → ∞, the mean field posterior for α approaches a Dirac
delta function, and the lower bound H decreases without bound. This behavior
appears to be an artifact of the factorization assumptions in the mean field
trial functions and, on a qualitative level, is not easily reconciled with the fact
that the mean field solutions without the α prior only depend very weakly this
parameter.

(v) It was shown that the mean field approximation is closely related to MAP
estimation of the DPM model. The MAP estimation problem can be shown to
be equivalent to mean field inference under a restricted set of trial functions.
The unrestricted mean field approximation can be thought of as providing a
distribution over mixture space that is smeared out around the mixture singled
out by the MAP estimate.

(vi) Compared with MCMC calculations, mean field results for the predictive
density distribution were often found to be quite accurate. An explanation of
this behavior in the limit of large sample sizes was given at the end of Sec. 4.
However, there can be strong discrepancies regarding clustering and the number
of posterior mixture components.
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A well-known shortcoming of the mean-field method concerns the fact that
it typically underestimates the variance of the target distribution (see, e.g.,
Bishop (2006), Sec. 10.1; MacKay (2003), Ch. 33). This limitation is due to the
fact that the factorized form of the approximation cannot properly capture the
correlation structure present in the full model. This problem is also present in
the context of the DPM model and accounts for some of the behavior discussed
in the previous sections.

As a simple illustration, consider the marginal prior distribution p(z1, z2) in
the finite-dimensional Dirichlet model of Sec. 5.1 with n = 2 observations. The
distribution takes only two values, depending on whether z1 = z2 or not, but this
behavior cannot be modeled by a factorization q(z1)q(z2). For a larger number of
observations, the correlations become even more complicated. A further example
is provided by the case of two well-separated clusters of observations. In this case,
there is strong anticorrelation in the cluster assignment, in that observations
from both clusters can be assigned to the mixture component with label k, but
not at the same time (i.e., the posterior marginals p(zi = k) and p(zj = k) can
both be large, but p(zi = zj = k) vanishes if i and j belong to different clusters).
In factorized mean field, the observations from the two clusters always have to
be assigned to different mixture components, q(zi = k) and q(zj = k) cannot be
large simultaneously.

In this context, it is interesting to note that for the stick-breaking approach of
Sec. 2.2, the factorized form is optimal even within the large class of trial func-
tions q(z1:n)q(v1:K−1, η1:K) (and similarly for the finite-dimensional Dirichlet
prior). An important task of future work thus consists in finding more gen-
eral, tractable classes of trial functions that permit improvements to the mean
field scheme. In the present study, we have already considered mixtures consist-
ing of different fixed point solutions to the mean field iteration scheme. These
mixtures were mathematically tractable because of the particular structure of
the fixed point solutions. However, this approach did not lead to a substantial
improvement in the quality of the approximation.

As an overall conclusion, we can state that the mean field method, when
viewed on its own, produces reasonable results regarding density estimation
and clustering. This can be explained by its connection to MAP estimation of
mixture distributions. In view of point (vi) above, however, care is needed when
it is used as an actual approximation to the exact DPM posterior. Nevertheless,
since mean field appears to be a very useful and efficient way of calculating
inferences for large-scale DPM problems it is very important to have a solid
understanding of its properties. It is hoped that the present paper makes some
contributions in this direction. We expect that some of the results may be also
of interest in related contexts, such as latent Dirichlet allocation which is often
treated with mean field techniques as well Blei, Ng, and Jordan (2003).
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Appendix: Characteristic features of mean field solutions

In this Appendix, we give some brief arguments in order to explain the charac-
teristic features of the mean field solutions outlined in Sec. 3.2. In the limit of
λ → ∞ at fixed σ, i.e., σ/λ → 0, the fixed points of the mean field iteration
scheme are determined by

πik ∝ exp



−
1

2nk
−

(yi − µk)2

2σ2
+ ψ(nk + 1) −

k−1
∑

j=1

1

n>
j + α



 (51)

with µk =
∑

i πikyi/nk. The appearance of the term −1/2nk in the exponent
of (51) shows that the iteration scheme can entertain solutions with exactly
vanishing population in some components, i.e., nk = 0. However, such solutions
will be nonanalytic in σ/λ when we consider their variation with this parameter.
Given any solution of the iteration scheme (51), consider its “pruned” version
where all empty components have been discarded. The pruned version will be
the solution of an iteration scheme in which only the occupied components are
retained. Solutions of the pruned scheme in fact exist; e.g., for K = 1 solutions
are given by πi1 = 1, and for n = 2, K = 2 they can be found graphically.
By construction, all pruned πik will be non-vanishing. If we re-establish the λ
dependence of the pruned scheme, we can expect the assignment probabilities
to smoothly depend on σ2/λ2 by the theorem of implicit functions.

The effect of adding the empty components back into the iteration scheme
at finite σ/λ can be seen from a perturbative argument. Calculating the assign-
ment probabilities for the unoccupied components from the pruned πik in a first
iteration step shows that the former will be of order exp(−λ2/2σ2), i.e., expo-
nentially small compared to the pruned πik for sufficiently small σ2/λ2. Further
iteration steps will only provide negligible corrections to the result of the first
iteration. The scaling with exp(−λ2/2σ2) reflects the nonanalytic behavior of

the unoccupied assignment probabilities. From the term −
∑k−1

j=1 (α+ n>
j )−1 in

the exponent of (8) follows that the πik’s for the unoccupied components scale
with exp(−k/α) as soon as their index k is larger than the largest index for
occupied components. The geometric scaling with k implies that the combined
weight of the unoccupied components remains bounded as K → ∞ which leads
to the insensitivity of all assignment probabilities with the truncation level.
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