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Abstract: Model selection is often performed by empirical risk minimiza-
tion. The quality of selection in a given situation can be assessed by risk
bounds, which require assumptions both on the margin and the tails of the
losses used. Starting with examples from the 3 basic estimation problems,
regression, classification and density estimation, we formulate risk bounds
for empirical risk minimization and prove them at a very general level, for
general margin and power tail behavior of the excess losses. These bounds
we then apply to typical examples.
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1. Introduction

Consider a sample Z1, . . . , ZN of independent random variables in some space Z,
whose distribution depends on an unknown parameter f . To estimate f , we split
the sample into two parts: a test set Z1, . . . , Zn and a training set Zn+1, . . . , ZN .
Based on the training set various estimators of f are constructed, say f̂1, . . . , f̂p.
To decide among these estimators, we use the test set. Suppose that γf : Z → R

is a loss function. The final estimate f̂ is now chosen to minimize the empirical
risk:

f̂ := arg min
f̂j:1≤j≤p

1

n

n
∑

i=1

γf̂j
(Zi) .

In this paper, we examine whether this empirical risk minimization leads to
taking, among the p estimators, the “nearly best” one. Here, “nearly best” will
be defined in terms of the excess risk of the estimators.

The behavior of the excess risk near f will be called the margin behavior.
We not only consider the classical case, which is quadratic margin behavior, but
also more general margin behavior. For the tails of our excess loss functions,
we consider both an exponential moment condition and a more general power
tail condition. We prove a risk inequality under the most general combination
of these conditions, and in doing so automatically obtain risk inequalities for
more restricted situations. These latter situations represent examples we give
from regression, classification and density estimation.
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A common and succinct way of expressing the quality of an aggregated esti-
mator is by way of an oracle inequality of the form

ER(γ̂) ≤ A · inf
γ∈Γ

R(γ) + C(Γ, n) .

Here R(γ) := EZγ(Z) is the risk of the procedure that has loss γ, and C(Γ, n)
is a quantity that depends on the cardinality (when finite) or complexity (such
as the metric entropy) of the class Γ of models or aggregates up for selection,
as well as on the sample size n.

When the number of procedures being aggregated is a finite number p := |Γ|,
most of the results in the literature set O(log(p)/n) to be the benchmark for
the rate of the term C(Γ, n) above. For instance, Bunea et al. [8] give this
rate for Gaussian regression and a linear aggregate that minimizes a penalized
sum of squares. For a more general risk problem, Györfi and Wegkamp [11]
obtain a similar result, and Lecué [15] achieves the same rate for the Cumulative
Aggregation with Exponential Weights (CAEW) procedure in a classification
setup with bounded loss. Other types of results in this vein include Bartlett and
Mendelson’s [5] high probability bounds for the estimator risk of empirical risk
minimization, done for the estimation of functions from a class with a uniform
bound.

The analysis of empirical risk minimization stands on two major pillars. The
first of these is empirical process theory. In Vapnik and Chervonenkis’ seminal
work on pattern recognition [25], the importance of the empirical process

((Pn − P )(f))f∈F

of the class F of candidate procedures for the study of empirical risk minimizers
was already recognized. More recently, van de Geer [22] also describes the use of
empirical processes in understanding such estimators. The second foundation we
need is the study of concentration inequalities, which describe the concentration
of random variables and their empirical means around their true means. The
value of such inequalities in the analysis of model selection via empirical risk
minimization is recognised, and put to use, in the papers of Barron et. al. [4]
and Birgé and Massart [6].

In much of the literature, the quantities to be estimated are assumed to be
uniformly bounded. Another very important condition for ensuring good rates
in oracle inequalities is the margin condition, which controls the “noise” between
procedures that differ only very slightly in risk, and thus makes assumptions on
the small-scale behaviour of the family of losses. For some regression setups,
a uniform bound on the target and the estimates already dispenses with the
need for a margin condition, as in the results of Bunea et al. [8]. (We shall
see in Example 3.1 that such a uniform bound implies the margin condition
when using L2-loss.) In classification, though, which is the original area for
margin conditions, the situation is somewhat more complex. Here the margin
conditions that hold are generally weaker than the ones known in regression or
density estimation setups. Tsybakov [21] provides a good treatment of this case.
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Koltchinskii [14] looks at a wider range of situations, generalizing Tsybakov’s
results, among others; besides a margin condition, his approach also requires
direct conditions on the empirical process or on the complexity of the candidate
class Γ in lieu of boundedness conditions. In this paper, we shall define the
margin condition in Section 3 and there examine it more closely.

Generally, most of the literature deals with only one particular problem, such
as regression; furthermore, the strong boundedness conditions usually imposed
are not always necessary. It is well-known that some conditions must be imposed
in order to obtain risk rates that are better than O(1/

√
n). For example, Lee et

al. [17] give an overview of risk rates in an agnostic learning setup and show that
convexity properties on the class of candidate functions lead to risk rates around
O(1/n) rather than O(1/

√
n). Mendelson [19] uses a least-squares regression

example to also show that O(1/
√

n) cannot be improved upon without assuming
something like a Bernstein-type inequality. (While convexity assumptions can
suffice for obtaining fast risk rates, they are not always necessary, as also shown
by Mendelson [18]). Our interest lies in inequalities for a general loss function
setup, with boundedness conditions replaced by suitably loose requirements on
the tails, at least when conditioning on the training set. Such conditioning on
the training set is common practice; to average the results over the training data
then requires margin and power tail conditions to hold uniformly over all trained
versions of the estimators used, if possible – or if not, then other, possibly more
stringent conditions.

Another fairly general approach is taken by Audibert [1], who looks at the
general prediction problem, i.e. regression and classification, and uses a progres-
sive mixture rule for aggregation, but with only a brief reference to averaging
over the training stage, which would be part of the full sample splitting prob-
lem. On the other hand, Rigollet [20] examines sample splitting schemes with
multiple splits and thus comes close to cross validation, but does so only for the
problem of density estimation. A direct treatment of a cross validation scheme
is to be found in van der Vaart et al. [24]. And in the context of classifica-
tion, recent inequalities are given for recursive aggregation by mirror descent by
Juditsky et al. [13] and for aggregation with exponential weights by Lecué [15].

1.1. Notation

The results will be conditional on the training set. We use P to denote the dis-
tribution of the test sample, and E denotes the expectation of random variables
depending on the test sample.

For γ : Z → R, we write

Pγ :=
1

n

n
∑

i=1

Eγ(Z̃i) ,



C. Mitchell and S. van de Geer/General oracle inequalities for model selection 179

where (Z̃1 , . . . , Z̃n) is an i.i.d. copy of (Z1, . . . , Zn), and

Pnγ :=
1

n

n
∑

i=1

γ(Zi) .

Let γj : Z → R, j = 1, . . . , p, be given loss functions in a class Γ. Given the
training set, γj may be taken as short-hand (and slight abuse of) notation for
γf̂j

, j = 1, . . . , p. We consider the empirical risk minimization estimator

γ̂ := arg min
1≤j≤p

Pnγj .

The target is
γ0 := arg min

γ∈Γ

Pγ ,

whose best approximation is

γ∗ := arg min
1≤j≤p

Pγj .

We will write f∗ for the corresponding parameter value (or an arbitrary choice
thereof, if it is not unique) at which this minimum is attained, i.e. for which
γ∗ = γf∗

. We define the excess risks

Ê := P (γ̂ − γ0)

(which is a random variable, as it depends on the test sample),

Ej := P (γj − γ0)

and
E∗ := P (γ∗ − γ0) .

Without loss of generality, we assume that Γ is of the form Γ := {γf : f ∈ F},
where F is a subset of a semi-metric space with semi-metric d, and write (with
some abuse of notation) γfj

as γj , {fj}p
j=1 ⊂ F.

1.2. Goal

Our goal is now to show that Ê is close to E∗ (with large probability or in
expectation). The results are modifications of inequalities of the form

(1 − δ)EÊ ≤ (1 + δ)E∗ +
∆

δ
,

where δ > 0 is an arbitrary small constant, and with ∆ of order log(p)/n and not
depending on E∗ – see for example Chapter 7 in Györfi et al. [10]. In the standard
setup of Section 4 and under a quadratic “margin condition”, for instance, we
show that for 1 ≤ m ≤ 1 + log p

EÊ m
2 ≤

(

√

E∗ +
√

∆
)m

,



C. Mitchell and S. van de Geer/General oracle inequalities for model selection 180

with ∆ of order log(2p)/n and not depending on E∗. In particular, with m = 2,
this reads

EÊ ≤
(

√

E∗ +
√

∆
)2

.

This gives rise to a non-sharp oracle inequality

EÊ ≤ (1 + δ)E∗ + ∆ , δ > 0 .

A sharp (δ = 0) and rate-optimal (correction term O(∆)) oracle inequality
cannot be established in a general setup by empirical risk minimization (cf.
Lecué [15]). Instead, methods such as mirror averaging could be used, as by Ju-
ditsky et al. [12]. See also Audibert ([2] and [3]) for some limitations of empirical
risk minimization, and alternative approaches to overcome the limitations. We
however believe empirical risk minimization remains an important topic of study
because it is widely applied in practice, and is closely related to various cross
validation schemes.

1.3. Convex loss

In our proofs, we only use the property

Pnγ̂ ≤ Pnγ∗ .

In the convex case, this sometimes means that conditions can be weakened. Let F

be a convex subset of a linear vector space, and suppose that Γ := {γf : f ∈ F},
with f 7→ γf convex, P-almost everywhere. Then for 0 ≤ α ≤ 1, we have the
inequality

Pnγαf̂+(1−α)f∗

≤ αPnγ̂ + (1 − α)Pnγ∗ ≤ Pnγ∗ .

This means that we can replace γ̂ by γαf̂+(1−α)f∗

throughout, leading to in-
equalities for the excess risk

Êα = Pγαf̂+(1−α)f∗

− Pγ0 .

From these, one may then often deduce inequalities for the original d(f̂ , f0). As
we shall see, this extension (with α < 1) allows us to work with weaker conditions
(than with α = 1). In particular, the example on maximum likelihood will take
a similar approach with α set to 1/2.

1.4. Organization of the paper

The paper is organized as follows. Section 2 presents Bernstein’s inequality. It is
stated in the form of a probability inequality and a moment inequality. Section 3
presents the margin condition and some examples where it holds. Section 4 gives
the main results, both one for exponential moments and a very general margin
condition, and one for power tails and a particular form of margin condition.
Subsequently, Section 5 applies the main results to the examples already given.
Finally, the proofs are in Section 6.
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2. Bernstein’s inequality

Bernstein’s inequality for a single average is well known, and the extension of
Bernstein’s probability inequality to a uniform probability inequality over p av-
erages is completely straightforward. The result can be seen as the simplest ver-
sion of a concentration inequality in the spirit e.g. of Bousquet [7] (emphasizing
how tight these general concentration inequalities are). The moment inequality
for the maximum of p averages is perhaps less known.

For all j, we let
γc

j (·) := γj(·) − Pγj

denote the centered loss functions. To obtain our results, we make assumptions
on the tails of the centered excess losses γc

j − γc
∗ or of their envelope Γ :=

max1≤j≤p

∣

∣γc
j − γc

∗

∣

∣ as follows:

Definition 2.1. We say that the excess losses γj − γ∗ satisfy the exponential
moment condition for some K > 0 if

P
∣

∣γc
j − γc

∗

∣

∣

m ≤ m!

2
(2K)m−2d2(fj , f∗) (1)

for all m = 2, 3, . . . and for all j = 1, . . . , p.
We say that the envelope function Γ has power tails of order s > 1 if there

exists an M ∈ (0,∞) such that

P (Γ > K) ≤
(

M

K

)s

∀K > 0 . (2)

Here d(·, ·) is a semi-metric on the underlying parameter space that allows
for different weighting of the procedures under consideration. As an important
example of this define, for all γ, the variance

σ2(γ) := P |γc|2 .

Then clearly (1) implies that

d2(fj , f∗) ≥ σ2(γj − γ∗) ∀ j . (3)

Moreover, if the bound |γj − γ∗| ≤ 3K holds for all j, then (1) holds with

d2(fj , f∗) = σ2(γj − γ∗) ∀ j.

In the following sections, we will indeed often assume (1) with this value for
d(fj , f∗), but we will also consider an extension. The choice of the semi-metric d
is intertwined with the margin behavior, which we consider in the next section.
Furthermore, when applying the margin condition, we shall implicitly use the
inequality (3). As we will make repeated use of Bernstein’s inequality, and the
term 2 log(2p)/n will appear frequently, we will henceforth denote this term by

∆ :=
2 log(2p)

n
.

Using this notation, the version of Bernstein’s inequality that we will need in
this paper is:
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Lemma 2.1. (Bernstein’s inequality for the maximum of p averages: weighted
version) Assume that for some constant K, the exponential moment condi-
tion (1) holds. Then for all t > 0 and τ > 0

P

(

max
1≤j≤p

|Pn(γc
j − γc

∗)|
d(fj , f∗) ∨ τ

≥
√

∆ + 2t/n +
K(∆ + 2t/n)

τ

)

≤ exp[−t] .

Moreover, for all 1 ≤ m ≤ 1 + logp,

(

E max
1≤j≤p

( |Pn(γc
j − γc

∗)|
d(fj, f∗) ∨ τ

)m
)1/m

≤
√

∆ +
K∆

τ
.

Remark: The moment inequality is for moments of order m ≤ 1+log p. It can
be extended to hold for general m, provided a slight adjustment, depending on
m, is made on the constants. Because we have the situation in mind where p is
large, we have formulated the result for m ≤ 1+logp to facilitate the exposition.

3. Margin behavior

Definition 3.1. We say that the margin condition holds with strictly convex
margin function G(·) if

P (γj − γ0) ≥ G (d(fj, f0)) , ∀ j . (4)

Furthermore, we say that the margin condition holds with constants κ > 1/2
and C > 0, if (4) holds with

G(u) = u2κ/C2κ, u > 0 .

The specific case of G(u) = u2κ/C2κ is the one most typically used in the
literature, with the semi-metric d taken to be the variance of the excess loss
γj − γ0. Such a margin condition can be found e.g. in Chesneau and Lecué [9]
for regression and density estimation setups, with a comparable result as here for
regression, and a result for a different example (squared loss) given for density
estimation. Tsybakov [21] gives a similar margin condition for classification. In
that paper, the use of 0-1-loss means that d(fj, f0) = PX(Gfj

△Gf0
), where Gf

denotes the set {x : f(x) = 1}. The concept of a Bernstein class – as used by
Bartlett and Mendelson [5] – is the same thing after a suitable reparametrization.
As we shall see, κ = 1 in typical cases – but other, in particular larger, values
can also occur.

Let us now consider some examples. In a regression or classification situation,
we have i.i.d. random pairs Zi = (Xi, Yi), with Yi ∈ Y ⊂ R a response variable,
and Xi ∈ X a covariable, i = 1, . . . , n. The quality of an estimator f of E[Yi|Xi]
can be measured by applying a loss function γ : Y ×Y → R to the true and the
estimated response.
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Example 3.1. (Regression) Suppose that {Zi}n
i=1 := {(Xi, Yi)}n

i=1. Let F be
a class of real-valued functions on X , and for all x ∈ X and y ∈ Y, let

γf (x, y) := γ(f(x), y), f ∈ F .

Set
l(a, ·) = E(γ(a, Yi)|Xi = ·), a ∈ R .

We moreover write lf (x) := l(f(x), x). As our target we take the overall mini-
mizer

f0(·) := arg min
a∈R

l(a, ·) .

We now check whether the margin condition holds with κ = 1 and

d2(f, f0) := K2
2P |f − f0|2 ,

where K2 is an appropriate constant.

Lemma 3.1. Assume that for some K1 > 0, and all |f − f0| ≤ K1,

lf − lf0
≥ (f − f0)

2/C2
0 . (5)

Then
P (γf − γf0

) ≥ d2(f, f0)/C2 ,

where C2 := C2
0K2

2 . If we moreover assume (for i = 1, . . . , n) that

var(γf (Zi) − γf0
(Zi)) ≤ K2

2E(f(Xi) − f0(Xi))
2 , (6)

then for all ‖f − f0‖∞ ≤ K1, we have

σ2(γf − γf0
) ≤ d2(f, f0) .

If l(a, ·) has two derivatives near a = f0(·), and the second derivatives are
positive and bounded away from zero, then l(a, ·) behaves quadratically near its
minimum, i.e., then (5) holds for some K1 > 0.

It also also clear that (6) holds as soon as γ(·, y) is Lipschitz for all y, with
Lipschitz constant L. Then we may take K2 = L. When γ(·, y) is not Lipschitz
(e.g., quadratic loss), it may be useful to define

ef (Zi) := γ(f(Xi), Yi) − lf (Xi) .

Then obviously

var(γf (Zi) − γf0
(Zi)) = var(ef (Zi) − ef0

(Zi)) + var(lf (Xi) − lf0
(Xi)) . (7)

Note that with fixed design, the second term in (7) vanishes.
Quadratic loss:

In the case of least squares, the loss function is

γ(f, y) := (y − f)2 ,
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Then
lf − lf0

= |f − f0|2 ,

and
ef (Zi) − ef0

(Zi) = 2ǫi(f(Xi) − f0(Xi)) ,

with ǫi := Yi − f0(Xi). Assuming that the conditional variance is bounded by
some constant σǫ, i.e.,

max
1≤i≤n

var(Yi|Xi) ≤ σ2
ǫ , (8)

we may conclude the following.
Least squares with fixed design:

The margin condition holds with κ = 1 and C2 = 4σ2
ǫ .

Least squares with random design:
If ‖fj − f0‖∞ ≤ K1 for all j, the margin condition holds with κ = 1 and
C2 = 4σ2

ǫ + K2
1 .

Example 3.2. (Classification) Suppose that Zi = (Xi, Yi), with Yi ∈ Y :=
{0, 1} a label, i = 1, . . . , n. Let F be a class of functions f : X → {0, 1}. We
consider 0/1-loss

γf (x, y) = γ(f(x), y) := (1 − y)f(x) + y(1 − f(x)), f ∈ F, (x, y) ∈ X × {0, 1} .

For a ∈ [0, 1], write
l(a, ·) := E(γ(a, Yi)|Xi = ·)

= (1 − η)a + η(1 − a) = a(1 − 2η) + η ,

where η = E(Yi|Xi = ·). The target is again the overall minimizer

f0 := arg min
a∈{0,1}

l(a, ·) .

It is clear that f0 is the Bayes rule

f0 = l{1− 2η < 0} .

We moreover have

P (γf − γf0
) = P |(f − f0)(1 − 2η)| .

Consider the function

H1(v) ≤ vP l{|1− 2η| < v}, v ∈ [0, 1]

and its convex conjugate

G1(u) = max
v

{uv − H1(v)}, u ∈ [0, 1]

(assuming the maximum exists).
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Lemma 3.2. The inequality

P (γf − γf0
) ≥ G

(

σ(γf − γf0
)
)

holds with G(u) = G1(u
2), u ∈ [0, 1].

If H1(v) = 0 for v ≤ C1, we take G1(u) = C1u. More generally, the Tsybakov
margin condition (see [21]) assumes that one may take, for some C1 ≥ 1 and
λ ≥ 0 (Tsybakov himself writes γ for this parameter),

H1(v) = v(C1v)1/λ ,

Then one has
G1(u) = u1+λ/C1+λ ,

where

C = C
1

1+λ

1 λ− λ
1+λ (1 + λ) .

Thus, then the margin condition holds with this value of C and with κ = 1 + λ
(for d(fj , f0) = σ(λj − λ0), ∀ j).

Example 3.3. (Maximum likelihood) Suppose that {Zi}n
i=1 are iid. with density

f0 := dP/dµ, where µ is a σ-finite dominating measure. Let F be a convex class
of densities w.r.t. µ, containing f0. Consider the transformed log-likelihood loss

γf (·) := γ(f(·)),
where γ(a) = − log(a)/2. Define

f̄ = (f + f∗)/2, f ∈ F .

The squared Hellinger distance of densities f and f̃ is

h2(f, f̃) =
1

2

∫ (

√

f −
√

f̃

)2

dµ, f, f̃ ∈ F .

We now check the margin and power tail conditions for a distance measure
d(f, f0) which is a multiple of h(f, f0).

Lemma 3.3. For all densities f, we have

P (γf − γf0
) ≥ h2(f, f0) .

Moreover, under the assumption
√

f0

f∗
≤ L

4
,

we have

P |γf̄ − γf∗
|m ≤ m!

2
L2h2(f̄ , f∗) .

This lemma contains the exponential moment condition (1) for K = 1, and
also allows us to deduce the margin condition

σ(γf̄ − γf∗
) ≤

[

P (γf̄ − γf∗
)2
]1/2 ≤ Lh(f̄ , f∗) .

for margin constants κ = 1 and C = 1.
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4. Main results

If we assume exponential tails on the loss functions, we are able to obtain a
result for a wide range of margin conditions:

Lemma 4.1. Let G be a strictly convex and increasing function with G(0)=0.
Suppose that the margin condition holds for G. Let H be the convex conjugate
of G, i.e.

H(v) = sup
u≥0

[uv − G(u)] ∀v ≥ 0 .

Assume that for some m ≤ 1 + logp, the function H(v
1
m ), v > 0, is concave.

Assume moreover that the exponential moment condition (1) holds for some
K > 0 and for d(fj, f∗) := G−1(Ej) + G−1(E∗). Then for all 0 < δ < 1, and
ε > 0, we have

(1 − δ)EÊ ≤ 2δH

(√
∆

δ
+

K∆

2δG−1(E∗ ∨ ε)

)

+ (1 + δ)(E∗ ∨ ε) .

The next theorem focuses on the common family of margin functions G(u) =
u2κ/C2κ, u > 0, κ ≥ 1, but also relaxes the exponential tail condition to a power
tail condition. Note that for this family of margin functions, the corresponding

convex conjugates are H(v) of order O(v
2κ

2κ−1 ), and thus Lemma 4.1 gives an
oracle inequality with correction term rate O(∆

κ
2κ−1 ), which agrees with the

rates found in the literature and in the next theorem:

Theorem 4.1. (i) Suppose that the margin condition holds for the loss func-
tions γj with constants κ ≥ 1 and C > 0 and some d satisfying d(fj, f0) ≥
σ(γj − γ0), ∀ j. Also assume that the envelope Γ has power tails in the
form of (2), of order s > 1 and for some M > 0. Then for all m in the
interval [2κ, min(2sκ, 1 + log(p))[ and for all τ > 0, we have the following
inequality:

∥

∥

∥

(

Ê
) 1

2κ

∥

∥

∥

m
≤ (E∗ ∨ τ )

1
2κ + A(κ) ·Cα · ∆α/2

+ ξ(κ, s, m) · M s
m

· α
α+β ·∆

αβ
α+β · (E∗ ∨ τ )

− 1
2κ

· αβ

α+β ,

where

α :=
1

2κ − 1
, β :=

s

m
− 1

2κ
,

A(κ) :=
1 + (2κ − 1)

1

2κ−1

κ
1

2κ−1

and

ξ(κ, s, m) := A(κ)
β

α+β ·2 1
2κ

· α
α+β ·

(

2sκ

2sκ − m

)
α

α+β
· 1

m

·
((

β

α

)
α

α+β

+

(

α

β

)
β

α+β
)

.
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(ii) Furthermore, if the excess losses satisfy the exponential moment condition
(1) for some constant K > 0, then

∥

∥

∥

(

Ê
) 1

2κ

∥

∥

∥

m
≤ (E∗ ∨ τ )

1
2κ + A(κ) ·

(

C ·
√

∆ +
K∆

(E∗ ∨ τ )
1
2κ

)α

for all m in the interval [2κ, 1 + log(p)[ . In this case we also have tail
bounds

P

(

Ê 1
2κ ≥ (E∗ ∨ τ )

1
2κ + A(κ)

(

C
√

∆ + 2t/n +
K(∆ + 2t/n)

(E∗ ∨ τ )
1
2κ

)α)

≤ e−t

for all t > 0.

These statements lead to simpler ones if we use that τ ≤ E∗ ∨ τ ≤ E∗ + τ and
then optimize over τ , trading off the summand with positive exponent 1/(2κ)
and the one with negative exponent −1/(2κ) ·αβ/(α +β). This yields the main
result of this paper:

Corollary 4.1. Under the conditions of Theorem 4.1, we have the inequalities

(i)
∥

∥

∥

(

Ê
) 1

2κ

∥

∥

∥

m
≤ E

1

2κ
∗ + A(κ) · Cα ·∆α/2 + ξ̃(κ, s, m) · M s

m
· α

α+β+αβ · ∆
αβ

α+β+αβ

when the loss envelope Γ has power tails (2) ( ξ̃(κ, s, m) is a constant depending
only on κ, s and m), and

(ii)
∥

∥

∥

(

Ê
) 1

2κ

∥

∥

∥

m
≤ E

1
2κ
∗ + A(κ) · Cα · ∆α/2 +

(

A(κ)2κ−1 ·K∆
)

1
2κ

when the excess losses satisfy the exponential moment condition (1). In the latter
case we also have the tail bound

P
(

Ê 1
2κ ≥ E

1
2κ
∗ +A(κ) ·Cα · (∆ +2t/n)α/2 +

(

A(κ)2κ−1 ·K(∆ +2t/n)
)

1
2κ

)

≤ e−t

for all t > 0.

Note: These risk inequalities yield oracle inequalities in quite a natural
manner: In general, if we have an inequality

∥

∥

∥

(

Ê
) 1

2κ

∥

∥

∥

m
≤ E

1
2κ
∗ + ξ

that holds for a range of values of m including m = 2κ, then this latter choice
of m gives a further inequality

(

EÊ
)

1

2κ ≤ E
1
2κ
∗ + ξ ,

and for any δ > 0 the general inequality (a + b)2κ ≤ (1 + δ) · a2κ +(1 +1/δ) · b2κ

(for a, b ≥ 0 and δ > 0) then yields the oracle inequality

EÊ ≤ (1 + δ) · E∗ +

(

1 +
1

δ

)

· ξ2κ .
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Corollary 4.1 naturally also leads to statements about risk ratios. Under the
exponential moment condition, for example, we can see that when

E∗ ≫ max{A(κ)2κ · C 2κ
2κ−1 ·∆ κ

2κ−1 , A(κ)2κ−1 · K∆} ,

we have have the ratio inequality

E

∣

∣

∣

∣

∣

Ê
E∗

∣

∣

∣

∣

∣

m
2κ

→ 1

for all m ∈ [1, 1 + log(p)] .
The results of Corollary 4.1 constitute a generalization of other, similar, re-

sults to be found in the literature. For instance, the rate O(∆
κ

2κ−1 ) we obtain
for exponential tails and a margin condition of order κ ≥ 1 is similar to that
described by Lecué [16] for classification using Tsybakov’s margin condition; the
only difference is that there the rate also depends on that of the oracle, i.e. the
rate at which E∗ tends to zero as ∆ does. For bounded losses, Chesneau and
Lecué [9] give a general oracle inequality that they subsequently apply to ex-
amples of density estimation and bounded regression. Their most general oracle
inequality also has the rate O(∆

κ
2κ−1 ) when the oracle rate is not too large.

5. Application to examples

We can apply Corollary 4.1 to the (more restricted) cases described in the
previous sections:

5.1. Quadratic margin, exponential tails

The quadratic margin condition corresponds to taking κ = 1. Taking the second
part of Corollary 4.1 for this value of κ yields the oracle inquality

P Ê ≤ (1 + δ)E∗ +

(

1 +
1

δ

)

· 2
(

C +
√

K
)2

·∆ (9)

for all δ > 0, when the losses satisfy the exponential moment condition.

Example 5.1. (Maximum Likelihood)
Take the setup of Example 3.3 and assume that

√

f0

f∗
≤ L

4
. (10)

Define new parameters f̄j = (fj +f∗)/2 and Kullback-Leibler information num-
bers

K̂ := P (γ(f̂+f∗)/2 − γf0
) = Ê1/2
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and
K∗ := P (γf∗

− γf0
) = E∗ .

In Lemma 3.3, we have already shown the margin and exponential moment
conditions for the transformed parameters f̄j and the scaled Hellinger distance
d(f, f ′) := Lh(f, f ′). The parameters there are C = K = κ = 1, and thus we
obtain the oracle inequality

EK̂ ≤ (1 + δ)K∗ + 8

(

1 +
1

δ

)

· ∆ . (11)

This involves the density (f̂ + f∗)/2, which is not an estimator. We can
however use this oracle inequality to deduce a risk inequality for the estimator
f̂ using the following lemma about the Hellinger distance:

Lemma 5.1. Let f,f ′ and f0 be densities with respect to the measure µ. Then
we have the following inequality:

h(f, f0) ≤ (2 +
√

2)h

(

f + f ′

2
, f0

)

+ (1 +
√

2)h(f ′, f0) .

By the first part of Lemma 3.3, we have K̂ ≥ h2(f̄ , f0) and K∗ ≥ h2(f∗, f0).
Combining this with the oracle inequality (11) and with Lemma 5.1, we obtain
the risk inequality

Eh2(f, f0) ≤ 2(2 +
√

2)2Eh2(f̄ , f0) + 2(1 +
√

2)2h2(f∗, f0)

≤ 2(2 +
√

2)2EK̂ + 2(1 +
√

2)2K∗

≤
[

2(2 +
√

2)2(1 + δ) + 2(1 +
√

2)2
]

· K∗

+16(2 +
√

2)2
(

1 +
1

δ

)

· ∆ .

We cannot expect to obtain an oracle inequality involving E∗, however, as there is
no general bound of the Kullback-Leibler distance of densities by their Hellinger
distance.

5.2. Quadratic margin, power tails

Here κ = 1 and thence α = 1, β = s/m − 1/2 and A(κ) = 2. Corollary 4.1 thus
implies

∥

∥

∥

√

Ê
∥

∥

∥

m
≤
√

E∗ + 2C ·
√

∆ + ξ̃(1, s, m) ·
√

M ·∆ 1
2
− m

4s ,

and for m = 2 and any δ > 0, the oracle inequality

EÊ ≤ (1 + δ)E∗ +

(

1 +
1

δ

)

· 4
(

C2 ·∆ + ξ̃(1, s, 2)2 · M ·∆1−1
s

)

(12)

holds.

Example 5.2. (Regression)
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Upper bounds:

In Example 3.1, we saw that least-squares regression satisfies a quadratic margin
condition, i.e. one with κ = 1. For instance, we have the margin parameter
C := 2σǫ in the fixed-design case. If furthermore we assume that the errors ǫi

possess some finite moment of order 2s > 2 – a less restrictive assumption than
the Gaussianity often required – then the loss has power tails of order s > 1:

γf (x, y) = γ (f(x), y) = (y − f(x))
2

= (ǫ + f0(x) − f(x))
2

⇒ E [Γs] ≤ 2sE
[

sup
f∈F

∣

∣γc
f (X, Y )

∣

∣

s
]

≤ 24s−1 · E
[

|ǫ|2s + sup
f∈F

|f0(X) − f(X)|2s
]

= 24s−1 ·
(

E|ǫ|2s + E sup
f∈F

|f0(X) − f(X)|2s
)

=: M ,

and so by Chebyshev,

P ({Γ > K}) ≤ E [Γs]

Ks
≤
(

M

K

)s

∀K > 0 .

Thus the oracle inequality (12) holds here.

Lower bounds:

Consider the fixed-design case with double Pareto tails of order s > 2, i.e. the
distribution of the ǫi is symmetric around 0, and

P (|ǫi| ≤ u) = 1 − 1

(1 + u)s
, u > 0 .

Fix some p ∈ N, p ≥ 2, and define fp := f0 ≡ 0,

fj(x) = l{x = Xj}n
1
2s , x ∈ X , j = 1, . . . , p − 1 .

Thus f∗ ≡ 0 and E∗ = 0, too.

Lemma 5.2. The margin condition holds with κ = 1 and C2 = 8/((s−2)(s−1)),
and when p ≥ √

n+1, the power tail condition (2) holds with M = 2. For n ≥ 22s

and all p ≤ n, moreover, we have

Ê ≥ n− s−1

s

with probability at least 1 − exp[−2−1 · (p − 1)/
√

n].

Remark: We can easily extend the lower bound result to p > n, because we
can add, as candidates, any number of bounded functions fj , say with ‖fj‖∞ ≤
1, without neccessitating an increase in the scale parameter M of the power
tail condition. These additional functions may be selected by the least squares
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estimator, but if they all have norm Pf2
j ≥ n− s−1

s , selecting one of these still
gives the same lower bound.

Combining this lower bound with the oracle inequality (12), we find that for
n ≥ p ≥ √

n + 1, we have

n− s−1

s ≤ EÊ ≤ C ′(s) ·
(

log(n)

n

)− s−1

s

for some constant C ′(s) that depends only on s, which shows the rate-optimality
– up to a logarithmic factor – of the upper bound. If p is small compared to

√
n,

however, things look very different:

Lemma 5.3. We have
∥

∥

∥

√

Ê
∥

∥

∥

s
≤
√

E∗ + Ccsp
1/sM/

√
n ,

where

cs := 2

√

2

π
Γ1/s

(

s + 1

2

)

.

This leads to a (non-sharp) oracle inequality whose correction term has the

order p2/s/n. If p ≪ √
n, then p2/s/n ≪ n− s−1

s , i.e. a lower bound of order

n− s−1

s for EÊ will not hold.

5.3. General margin, exponential tails

The risk bound in this case was given in Part (ii) of Corollary 4.1, whose cor-
rection term is of order O(∆1/(4κ−2)). Taking m = 2κ, this leads to an oracle
inequality of the form

EÊ ≤ (1 + δ)E∗ +

(

1 +
1

δ

)

O
(

∆
κ

2κ−1

)

for all δ > 0.

Example 5.3. (Classification)
In Example 3.2, we saw the margin condition for κ = 1 + λ and

C = C
1

1+λ

1 λ− λ
1+λ (1 + λ) ,

where λ ≥ 0, as a consequence of Tsybakov’s margin condition. Furthermore,

P
∣

∣γc
f − γc

f0

∣

∣

m
= P |(f(X) − f0(X)) · (1 − 2Y ) − P |(f − f0)(1 − 2η)||m

≤ 2m−2 · P
∣

∣γc
f − γc

f0

∣

∣

2
= 2m−2 · σ2 (γf − γf0

)
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for all f in this example, which means that the excess losses have exponential
moments (1) with K = 1. Thus we have an oracle inequality

EÊ ≤ (1 + δ)E∗ +

(

1 +
1

δ

)

(

Ã1(C1, λ) · ∆ 1+λ
1+2λ + Ã2 ·∆

)

= (1 + δ)E∗ +

(

1 +
1

δ

)

O(∆
1+λ
1+2λ )

for all δ > 0, and for constants Ã1(C, λ) and Ã2.

6. Proofs

6.1. Proofs for Section 2

Proof of Lemma 2.1. Without loss of generality, suppose that Eγj(Zi) = 0
for all i and j. Furthermore we can reduce to the case where γ∗ ≡ 0 and all
d(fj , f∗) = 1 by looking at a new set of loss functions (γj − γ∗)/(d(fj , f∗) ∨ τ ),
where τ > 0 is arbitrary. Thus it suffices to show that under the condition that

P |γj|m ≤ m!

2
(2K)m−2, m = 2, 3, , . . .

for centered loss functions γj , the inequality

P

(

max
1≤j≤p

|Pnγj | ≥
√

2(log(2p) + t)

n
+

2K(log(2p) + t)

n

)

≤ exp[−t] (13)

holds for all t > 0, and that for all 1 ≤ m ≤ 1 + logp,

(

E

(

max
1≤j≤p

|Pnγj |
)m)1/m

≤
√

2 log(2p)

n
+

2K log(2p)

n
. (14)

Bernstein’s probability inequality says that for all t > 0,

P

(

1

n

n
∑

i=1

γj(Zi) ≥ 2Kt +
√

2t

)

≤ exp [−nt] , ∀ j . (15)

This inequality follows from the intermediate result

E exp

[

n
∑

i=1

γj(Zi)/L

]

≤ exp

[

n

2(L2 − 2LK)

]

, ∀ j , (16)

which holds for all L > 2K. Inequality (13) follows immediately from (15).
To prove (14), we apply Lemma 6.1 to the function g : x 7→ (L · log(x + 1))

m
,

which is increasing on [0,∞) and concave on [em−1 − 1,∞). We then obtain for
all L > 0 and all m that

E

(

max
j

∣

∣

∣

∣

∣

n
∑

i=1

γj(Zi)

∣

∣

∣

∣

∣

m)

≤ Lm logm

[

E exp

[

max
j

∣

∣

∣

∣

∣

n
∑

i=1

γj(Zi)

∣

∣

∣

∣

∣

/L − 1

]

+em−1 − 1

]

.
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From (16), and invoking e|x| ≤ ex + e−x, we obtain for L > 2K,

Lm logm

[

E exp

[

max
j

∣

∣

∣

∣

∣

n
∑

i=1

γj(Zi)

∣

∣

∣

∣

∣

/L − 1

]

+ em−1 − 1

]

≤ Lm logm

[

p

{

2 exp

[

n

2(L2 − 2LK)

]

− 1

}

+ em−1

]

≤ Lm logm

[

(2p + em−1 − p) exp

[

n

2(L2 − 2LK)

]]

=

(

L log(2p + em−1 − p) +

[

n

2(L − 2K)

])m

.

Now take

L = 2K +

√

n

2 log(2p + em−1 − p)

and use the extra restriction m ≤ 1 + logp to get the desired result.

Lemma 6.1. (Jensen’s inequality for partly concave functions) Let X be a real-
valued random variable, and let g be an increasing function on [0,∞), which is
concave on [c,∞) for some c ≥ 0. Then

Eg(|X|) ≤ g
[

E|X| + cP(|X| < c)
]

.

Proof. We have

Eg(|X|) = Eg(|X|)l{|X| ≥ c} + Eg(|X|)l{|X| < c}

≤ Eg(|X|)l{|X| ≥ c} + g(c)P(|X| < c)

= E
[

g(|X|)
∣

∣

∣|X| ≥ c
]

P(|X| ≥ c) + g(c)P(|X| < c) .

We now apply Jensen’s inequality to the term on the left, and then use the
concavity on [c,∞) to incorporate the term on the right:

Eg(|X|) ≤ g
[

E

(

|X|
∣

∣

∣|X| ≥ c
)]

P(|X| ≥ c) + g(c)P(|X| < c)

≤ g
[

E|X| + cP(|X| < c)
]

.

6.2. Proofs for Section 3

Proof of Lemma 3.1. This follows from

P (γf − γf0
) = P (lf − lf0

) .
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Proof of Lemma 3.2. We have

P |(f − f0)(1 − 2η)| ≥ vP |f − f0|l{|1− 2η| ≥ v}
≥ v (P |f − f0| − P l{|1− 2η| < v}) := uv − H1(v) ,

with u = P |f−f0|. Since this is true for all v, we may maximize over v to obtain

P |(f − f0)(1 − 2η)| ≥ G1

(

P |f − f0|
)

≥ G1

(

P (f − f0)
2
)

,

as
P |f − f0| ≥ P (f − f0)

2 .

Moreover,
|γf (y) − γf0

(y)| = |(f − f0)(1 − 2y)| ≤ |f − f0| ,

so that
σ2(γf − γf0

) ≤ P (γf − γf0
)2 ≤ P (f − f0)

2 .

Proof of Lemma 3.3. As the excess risk is a Kullback-Leibler distance to the
true distribution, the first statement of the Lemma is just the classical lower
bound by the Hellinger distance:

P (γf − γf0
) = −

∫

f0>0

log

√

f

f0
f0dµ

≥ −
∫

f0>0

(
√

f

f0
− 1

)

f0dµ

= 1 −
∫

√

ff0dµ = h2(f, f0) .

For the second part, we can use Lemma 7.2 in van de Geer [22], which says that

exp |γf̄ − γf∗
| − |γf̄ − γf∗

| − 1 ≤ 4

(

√

f̄

f∗
− 1

)2

. (17)

We moreover have

|γf̄ − γf∗
|m ≤ m!

2
{exp |γf̄ − γf∗

| − |γf̄ − γf∗
| − 1} .

Thus

P |γf̄ − γf∗
|m ≤ 2m!

∫

(

√

f̄ −
√

f∗)
2 f0

f∗
dµ ≤ m!

2
L2h2(f̄ , f∗) .
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6.3. Proofs for Section 4

6.3.1. Preparatory lemmas

We begin with two simple results (without proofs) for ease of reference.

Lemma 6.2. If the loss envelope Γ has power tails (2), then for all m < 2s and
K > 0,

PΓm/2l{Γ > K} ≤ 2s

2s − m
M sK−(2s−m)/2 .

Lemma 6.3. For positive constants a, b, α and β, the function

g(x) := axα + bx−β, x > 0

is minimized at

x0 :=

(

bβ

aα

) 1
α+β

,

and there attains a minimum of

g(x0) = C̃(α, β) · a
β

α+β b
α

α+β ,

where

C̃(α, β) :=

(

β

α

) α
α+β

+

(

α

β

)
β

α+β

.

Next we need a couple of auxiliary lemmas:

Lemma 6.4. For all 0 ≤ z ≤ 1, we have the inequality

(1 − z)2κ ≤ 1 − 2κz2κ−1 + (2κ − 1)z2κ ,

and for all z ≥ 0,
(1 + z)2κ ≥ 1 + 2κz2κ−1 + z2κ .

Proof. The second part is clear, as it involves the omission only of positive
summands from the LHS to the RHS. For the first part, we write

f(z) := 1 − 2κz2κ−1 + (2κ − 1) z2κ − (1 − z)
2κ

and note that

f(z) = 1 − z2κ − (1 − z) · 2κz2κ−1 − (1 − z)
2κ

= (1 − z) ·
(

2κ−1
∑

i=0

zj − 2κz2κ−1 − (1 − z)
2κ−1

)

= (1 − z)
2 ·





2κ−2
∑

j=0

(j + 1) zj − (1 − z)
2κ−2





=: (1 − z)2 · f̃(z) .
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Now as f̃(0) = 0 and for 0 ≤ z ≤ 1,

(

f̃
)′

(z) =

2κ−2
∑

j=1

j(j + 1)zj−1 + (2κ − 2) · (1 − z)
2κ−3 ≥ 0 ,

we know that f̃(z), and thus f(z), is non-negative on [0, 1].

Lemma 6.5. Let a, b and c be positive, let κ ≥ 1, and assume that

a ≤ b + c ·
(

a
1
2κ + b

1
2κ

)

.

Then

a
1

2κ ≤
(

1 + (2κ − 1)
1

2κ−1

)

·
( c

2κ

)
1

2κ−1

+ b
1

2κ .

Proof. First note that if a1/2κ ≤ (c/2κ)
1/(2κ−1)

, then the desired inequality
automatically holds. Thus we can restrict ourselves to the case where a1/2κ >

(c/2κ)
1/(2κ−1)

. Applying the first part of Lemma 6.4 for z = (c/2κ)
1/(2κ−1)

/a1/2κ

– which now is less than 1 – gives us the inequality

(

a
1
2κ −

( c

2κ

)
1

2κ−1

)2κ

−
(

1

2κ − 1

)

( c

2κ

)
2κ

2κ−1 ≤ a − c · a 1
2κ ≤ b + c · b 1

2κ ,

and thus

(

a
1
2κ −

( c

2κ

)
1

2κ−1

)2κ

≤ b + c · b 1
2κ + (2κ − 1)

( c

2κ

)
2κ

2κ−1

≤ b + (2κ − 1) c · b 1
2κ +

(

2κ − 1

2κ
· c
)

2κ
2κ−1

,

where in the second step we used that κ ≥ 1. Now part 2 of Lemma 6.4, applied

to z =
(

2κ−1
2κ · c

)1/2κ−1
/b1/2κ, yields

(

b
1

2κ +

(

2κ − 1

2κ
· c
) 1

2κ−1

)2κ

≥ b + (2κ − 1) c · b 1

2κ +

(

2κ − 1

2κ
· c
) 2κ

2κ−1

≥
(

a
1
2κ −

( c

2κ

)
1

2κ−1

)2κ

,

from which the stated inequality follows.

6.3.2. Main proofs

Proof of Lemma 4.1. Define

Z :=
|(Pn − P )(γ̂ − γ∗)|

G−1(Ê) + G−1(E∗ ∨ ε)
.
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By the definition of the convex conjugate H , we have

H

(

Z

δ

)

≥ Z ·G−1(Ê) − δ · Ê

and

H

(

Z

δ

)

≥ Z · G−1(E∗ ∨ ε) − δ · (E∗ ∨ ε) .

Then
Ê ≤ ZG−1(Ê) + ZG−1(E∗ ∨ ε) + E∗

≤ δÊ + 2δH

(

Z

δ

)

+ (1 + δ)(E∗ ∨ ε) .

It follows that

(1 − δ)EÊ ≤ 2δEH

(

Z

δ

)

+ (1 + δ)(E∗ ∨ ε)

≤ 2δH

(

E

(

Z

δ

)m)1/m

+ (1 + δ)(E∗ ∨ ε) .

Now as d(fj, f∗) = G−1(Ej) + G−1(E∗), we have the upper bound

P

∣

∣

∣

∣

(γj − γ∗)

G−1(Ej) + G−1(E∗ ∨ ε)

∣

∣

∣

∣

m̃

≤ m̃!

2

(

2
K

G−1(Ej) + G−1(E∗ ∨ ε)

)m̃−2

for all j and for all m̃ ≥ 2. Thus we can apply Lemma 2.1 to obtain the moment
bound

‖Z‖m ≤
∥

∥

∥

∥

sup
j

|(Pn − P )(γj − γ∗)|
G−1(Ej) + G−1(E∗ ∨ ε)

∥

∥

∥

∥

m

≤
√

∆ +
K∆

G−1(E∗ ∨ ε)
.

Altogether then

(1 − δ)EÊ ≤ 2δH

(
√

∆

δ2
+

K∆

δG−1(E∗ ∨ ε)

)

+ (1 + δ)(E∗ ∨ ε) .

Proof of Theorem 4.1. (i) In the power tail case, we define

Eτ
∗ := E∗ ∨ τ ,

where τ is a strictly positive number, and

Z :=
|Pn ((γ̂c − γc

∗) 1 {Γ ≤ K})c|
C
(

Ê 1
2κ + (Eτ

∗ )
1
2κ

) .
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Then we have

Ê ≤ |(Pn − P )(γ̂ − γ∗)| + E∗
= |Pn (γ̂c − γc

∗)| + E∗
≤ |Pn ((γ̂c − γc

∗) 1 {Γ ≤ K})c| + |P ((γ̂
c − γc

∗)1 {Γ ≤ K})|
+ |Pn ((γ̂c − γc

∗) 1 {Γ > K})| + E∗
≤ CZ

(

Ê 1

2κ + (Eτ
∗ )

1

2κ

)

+ E∗ + (Pn + P ) (Γ1 {Γ > K})

≤ CZ
(

Ê 1
2κ + (Eτ

∗ + (Pn + P ) (Γ1 {Γ > K}))
1
2κ

)

+Eτ
∗ + (Pn + P ) (Γ1 {Γ > K}) .

Using Lemma 6.5, we obtain the inequality

Ê 1
2κ ≤

(

1 + (2κ − 1)
1

2κ−1

)

(

CZ

2κ

)
1

2κ−1

+(Eτ
∗ + (Pn + P ) (Γ1 {Γ > K}))

1
2κ

≤
(

1 + (2κ − 1)
1

2κ−1

)

(

CZ

2κ

)
1

2κ−1

+(Eτ
∗ )

1
2κ + ((Pn + P ) (Γ1 {Γ > K}))

1
2κ ,

where for the second step we used the elementary observation a2κ + b2κ ≤
(a + b)2κ for a, b ≥ 0, κ > 1/2. Now we will first compute the moments of
Z by an application of Bernstein’s inequality. We know that

P
∣

∣

(

γc
j − γc

∗

)

1 {Γ ≤ K}
∣

∣

m ≤ Km−2P
[

((

γc
j − γc

∗

)

1 {Γ ≤ K}
)2
]

and

P
[

((

γc
j − γc

∗

)

1 {Γ ≤ K}
)2
]

= P
[

(

γc
j − γc

∗

)2
1 {Γ ≤ K}

]

≤ P
[

(

γc
j − γc

∗

)2
]

= σ2 (γj − γ∗)

= σ2 ((γj − γ0) − (γ∗ − γ0))

≤ (σ (γj − γ0) + σ (γ∗ − γ0))
2

,

which by the margin condition

≤
(

C · (P (γj − γ0))
1/2κ

+ C · (P (γ∗ − γ0))
1/2κ

)2

= C2 ·
(

E1/2κ
j + E1/2κ

∗

)2

.
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Thus for all j,

P

∣

∣

∣

∣

∣

∣

(

γc
j − γc

∗

)

1 {Γ ≤ K}
C
(

E1/2κ
j + (Eτ

∗ )
1/2κ

)

∣

∣

∣

∣

∣

∣

m

≤





K

C
(

E1/2κ
j + (Eτ

∗ )
1/2κ

)





m−2

≤
(

K

C (Eτ
∗ )

1/2κ

)m−2

⇒ P

∣

∣

∣

∣

∣

∣

((

γc
j − γc

∗

)

1 {Γ ≤ K}
)c

C
(

E1/2κ
j + (Eτ

∗ )
1/2κ

)

∣

∣

∣

∣

∣

∣

m

≤ 2 ·
(

2K

C (Eτ
∗ )

1/2κ

)m−2

,

and we can apply Lemma 2.1 for loss functions
((

γc
j − γc

∗

)

1 {Γ ≤ K}
)c

and parameter distances

d(fj , f∗) := C
(

E1/2κ
j + (Eτ

∗ )
1/2κ

)

≤ C · (Eτ
∗ )

1/2κ

to obtain

‖Z‖m =

∥

∥

∥

∥

∥

∥

Pn ((γ̂c − γc
∗) 1 {Γ ≤ K})c

C
(

Ê1/2κ + (Eτ
∗ )

1/2κ
)

∥

∥

∥

∥

∥

∥

m

≤ 2

(

√
∆ +

K∆

C (Eτ
∗ )

1/2κ

)

.

Now to compute the moments of

(Pn + P ) (Γ1 {Γ > K})
1
2κ ,

we proceed as follows for m ≥ 2κ (using that κ ≥ 1/2):
∥

∥

∥((Pn + P ) (Γ1 {Γ > K}))1/2κ
∥

∥

∥

m

=
(

E
[

((Pn + P ) (Γ1 {Γ > K}))m/2κ
])1/m

≤
(

2m/2κ−1E
[

(Pn + P )
(

Γm/2κ1 {Γ > K}
)])1/m

= 21/2κ
(

P
(

Γm/2κ1 {Γ > K}
))1/m

.

By Lemma 6.2, for m < 2sκ, this has an upper bound in

21/2κ

(

2sκ

2sκ − m

)1/m

M s/mK1/2κ−s/m .

Thus we find that for m ∈ [2κ, min{1 + log(p), 2sκ}),
∥

∥

∥

(

Ê
)

1
2κ

∥

∥

∥

m
≤ (Eτ

∗ )
1

2κ + A(κ) ·C 1
2κ−1 ·

(√
∆ +

K∆

C(Eτ
∗ )

1
2κ

)
1

2κ−1
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+B(κ, s, m) · M s/mK1/2κ−s/m ,

where

A(κ) :=
1 + (2κ − 1)

1
2κ−1

κ
1

2κ−1

,

B(κ, s, m) := 21/2κ

(

2sκ

2sκ − m

) 1
m

.

If we now apply the straightforward bound

(√
∆ +

K∆

C(Eτ
∗ )

1
2κ

)
1

2κ−1

≤
(√

∆
) 1

2κ−1

+

(

K∆

C(Eτ
∗ )

1
2κ

)
1

2κ−1

and minimize the upper bound over K ≥ 0 (using Lemma 6.3), we obtain
the desired oracle inequality for the power tail case.

(ii) If we assume the exponential moment condition instead of power tails, we
can take

Z :=
|Pn ((γ̂c − γc

∗))|
C
(

Ê 1
2κ + (Eτ

∗ )
1
2κ

)

and we obtain the same bound for ‖Z‖m as before, but no term stemming
from Γ1 {Γ > K}. This yields the desired risk moment inequality. The cor-
responding risk tail bound also comes straight from applying Bernstein’s
inequality (13) to Z.

6.4. Proofs for Section 5

Proof of Lemma 5.1. Regard the term

√
a +

√
b

√

a+b
2

+
√

b

for a, b ≥ 0. Some simple calculus shows that for fixed a, this ratio attains its
maximum for b = 0; thus √

a +
√

b
√

a+b
2

+
√

b
≤

√
2
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for all a, b ≥ 0. Using this inequality, and the definition of the Hellinger distance,
we can now compute

h2(f̄ , f) =
1

2

∫

(
√

f + f∗
2

−
√

f

)2

dµ

=
1

8

∫

(

√

f∗ −
√

f
)2

·
(√

f +
√

f∗
)2

(

√

f+f∗

2 +
√

f

)2
dµ

≤ 1

4

∫

(

√

f∗ −
√

f
)2

dµ

=
1

2
h2(f, f∗) .

The triangle inequality now gives us

h(f, f0) ≤ h(f, f̄) + h(f̄ , f0)

≤ 1√
2
h(f, f∗) + h(f̄ , f0)

≤ 1√
2
h(f, f0) +

1√
2
h(f∗, f0) + h(f̄ , f0)

⇒
(

1 − 1√
2

)

h(f, f0) ≤ 1√
2
h(f∗, f0) + h(f̄ , f0) ,

from which the statement of the lemma follows.

Proof of Lemma 5.2. Clearly, we have f∗ = fp = f0, and E∗ = 0.
The margin condition holds with κ = 1, C2 = 4σ2

ǫ , σ2
ǫ := Eǫ2 = 2/((s−2)(s−

1)), and d(f, f0) ≥ σ2(γf − γf0
). When p ≥ √

n, moreover, the tail condition
holds with M = 2, since

Γ(Zi) = max
1≤j≤p

|γc
j (Zi) − γc

∗(Zi)| = max
1≤j≤p

2|ǫifj(Xi)| = 2|ǫi|n
1
2s {1 ≤ i ≤ p − 1}

and thus

P ({Γ > K}) =
1

p − 1
P (2|ǫ|n 1

2s > K) =
1

p − 1

(

1

1 + K/(2n
1
2s )

)s

≤ 2sK−s .

We also have for all u > 0, and n ≥ 22s,

P( max
1≤j≤p−1

2ǫj ≤ (1 + u)n
1
2s ) =

(

1 − 1

2

(

1

1 + (1 + u)n
1
2s /2

)s)p−1

=

(

1 − 1

2

(

1

n
1
2s (n− 1

2s + (1 + u)/2)

)s)p−1
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≤
(

1 − 1

2

(

1

n
1
2s (1 + u/2)

)s)p−1

≤ exp[−2−1(1 + u/2)−s · (p − 1)/
√

n].

It follows that with probability at least 1− exp[−2−1(1 + u/2)−s · (p − 1)/
√

n],

min
1≤j≤p

Pn(γj) < Pn(γ0) − un
1
2s .

Thus with probability at least 1− exp[−2−1 · (p− 1)/
√

n], we have that γ̂ 6= γ0.
But for γj 6= γ0 ,

P (γj − γ0) = P |fj|2 =
1

n

n
∑

i=1

f2
j (Xi) =

1

n
f2

j (Xj) = n− s−1

s .

Proof of Lemma 5.3. Like in the proof of Theorem 4.1, define

Z :=
|(Pn − P )(γ̂ − γ∗)|

C(
√

Ê)
,

whenever Ê > 0. Then
√

Ê ≤
√

E∗ + CZ .

For any n constants (b1, . . . , bn), we know that

∥

∥

∥

∥

∥

1

n

n
∑

i=1

biǫi

∥

∥

∥

∥

∥

s

≤ csM

n

√

√

√

√

n
∑

i=1

b2
j

(see Whittle [26] or Appendix A of van der Vaart and Wellner [23]). Hence

‖Z‖s ≤ csp
1/sM/

√
n,

and thus
∥

∥

∥

√

Ê
∥

∥

∥

s
≤
√

E∗ + Ccsp
1/sM/

√
n .
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[16] Lecué, G. (2007). Optimal rates of aggregation in classification under low
noise assumption. Bernoulli 13, 4: 1000–1022. MR2364224

[17] Lee, W.S., Bartlett, P.L. and Williamson, R.C. (1998). The im-
portance of convexity in learning with squared loss. IEEE Transactions on
Information Theory 44, 5: 1974–1980. MR1664079

http://www.ams.org/mathscinet-getitem?mr=2096215
http://www.ams.org/mathscinet-getitem?mr=2280620
http://www.ams.org/mathscinet-getitem?mr=1679028
http://www.ams.org/mathscinet-getitem?mr=2240689
http://www.ams.org/mathscinet-getitem?mr=1462939
http://www.ams.org/mathscinet-getitem?mr=1890640
http://www.ams.org/mathscinet-getitem?mr=2351101
http://www.ams.org/mathscinet-getitem?mr=1920390
http://www.ams.org/mathscinet-getitem?mr=2444565
http://www.ams.org/mathscinet-getitem?mr=2458184
http://www.ams.org/mathscinet-getitem?mr=2198228
http://www.ams.org/mathscinet-getitem?mr=2397584
http://www.ams.org/mathscinet-getitem?mr=2364224
http://www.ams.org/mathscinet-getitem?mr=1664079


C. Mitchell and S. van de Geer/General oracle inequalities for model selection 204

[18] Mendelson, S. (2007). Obtaining fast error rates in nonconvex situations.
J. Complexity 24: 380–397. MR2426759

[19] Mendelson, S.. Lower bounds for the empirical minimization algorithm.
To appear in IEEE Transactions on Information Theory. MR2451042
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