# 硫酸盐还原菌对 A3 钢电化学腐蚀行为的影响

刘玉秀 刘贵昌 战广深 牛永强

大连理工大学化工学院 大连 116012

**摘要**采用交流阻抗技术和动电位扫描法测 Tafel 曲线技术对 A3 钢在含不同浓度硫酸盐还原菌介质中且未除氧 条件下的电化学特性进行了研究,并采用 SEM 观察试样表面的腐蚀状况.结果表明:硫酸盐还原茵可以促进 A3 钢 的阴极去极化和阳极极化, *E*<sub>orr</sub>降低;不同菌液浓度中的 A3 钢的交流阻抗谱图均呈单容抗弧特征,极化电阻 *R*<sub>p</sub> 随 菌液浓度增大而增大.SRB 对腐蚀的影响作用与生成的生物膜的致密程度有关.

关键词 极化 E<sub>corr</sub> 交流阻抗 R<sub>p</sub>

中图分类号 TG172.7 文献标识码 A 文章编号 1002-6495(2003)03-0141-03

# INFL UENCE OF SUL PHATE - RED UCING BACTERIA ON CORROSION BEHAVIOR OF A3 CARBON STEEL

LIU Yuxiu, LIU Guichang, ZHAN Guangshen, NIU Yongqiang Dalian University of Technology, Dalian 16012

**ABSTRACT** The electrochemical characteristics of A3 carbon steel in different Sulphate - Reducing Bacteria (SRB) media were studied by measuring Tafel polarization curves and electrochemical impedance spectrum (EIS). It was indicated that in SRB media without removing oxygen the corrosion potential ( $E_{corr}$ ) of A3 carbon steel decreased, the EIS was a single capacitive arc and polarization resistance ( $R_p$ ) raised with the increase of SRB content. The results also showed that influence of SRB on the corrosion process varied with the qualities of biofilms.

**KEY WORDS** polarization ,  $E_{\text{corr}}$  , EIS ,  $R_{\text{p}}$ 

SRB(硫酸盐还原菌)广泛存在于土壤、海洋、湖 泊、油田给水系统等环境中,据统计<sup>[11]</sup>,许多严重的 腐蚀破坏,70%~80%直接由细菌引起或者与细菌 有关,其中特别重要的是硫酸盐还原菌(SRB),铁细 菌,腐生菌和硫细菌等.1934年 Kuhr提出了阴极去 极化理论,此后国内外学者对 SRB 在金属腐蚀过程 中所起的作用进行了大量的研究工作,包括对其腐 蚀机理的探讨<sup>[2]</sup>.

一般认为 SRB 是绝对厌氧细菌,然而张小里 等<sup>[3]</sup>通过实验测定 SRB 的耐氧度指出,SRB 可耐受 一定的溶解氧. Hardy<sup>[4]</sup>等人做覆盖有硫化物生物 膜的碳钢暴露在空气前后腐蚀情况的对比实验时发 现,生物膜接触空气之后,碳钢发生了严重的孔蚀. 他认为这可能与硫化物膜在阳极区和阴极区的差异

收到初稿:2001-10-29;收到修改稿:2002-05-22 作者简介:刘玉秀,女,1976年生,硕士,在读博士生 Tel:0411-3631333-3268 E-mail:liuyuxiu@hotmail.com 有关,但对于机理方面的阴极反应还不清楚,实验中 观察到的现象所需要的空气的临界浓度目前也不确 定,有待于进一步的深入研究.为了对氧气在 SRB 引起的腐蚀中的作用有更深一步的理解,本文作者 测量了未除氧条件下不同 SRB 含量介质中 A3 钢的 极化曲线、交流阻抗谱图及腐蚀后试样的表面形貌 观察.

# 1 实验方法

从华能丹东电厂循环冷却水管途经的沼泽土中 提纯出 SRS 菌种,革兰氏染色结果确定其为革兰氏 阴性菌.

培养基成分<sup>[5]</sup> (g/L)为: 0.5 Na<sub>2</sub>SO<sub>4</sub>, 1.0 NH<sub>4</sub>Cl,0.1 CaCl<sub>2</sub>,0.5 K<sub>2</sub>HPO<sub>4</sub>·3H<sub>2</sub>O,2.0 MgSO<sub>4</sub>, 3.5 sodium lactate,1.0 Yeast extract.

用 NaOH 调 pH 为 7.0~7.2,121 下灭菌 20 min.在培养基使用当天分别按 0.1 g/L 加入紫外线 灭菌的 FeSO<sub>4</sub> ·(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> 和维生素 C.

| парас 1           | results of point mattio | ii cui ves               |
|-------------------|-------------------------|--------------------------|
| SRB - inoculation | $E_{ m corr}$           | <i>i</i> corr            |
| count ,cells/ ml  | V                       | $\mu$ A/ cm <sup>2</sup> |
| 2 5 107           | 0.867                   | 0 (0                     |

Table 1 Decults of polarization out

 $2.5 \times 10^7$  -0.867 9.60 

  $2.5 \times 10^5$  -0.817 13.81 

 0 -0.745 25.31 

 
 Table 2 Parameter values of equivalent circuits for A3 steels in three media with different contents of SRB

| SRB - inoculation | $R_{ m p}$        | $C_{\mathrm{d}}$  |
|-------------------|-------------------|-------------------|
| count ,cells/ ml  | k cm <sup>2</sup> | $10^3 \mu F/cm^2$ |
| 2.5 $\times 10^7$ | 2.997             | 1.242             |
| 2.5 $\times 10^5$ | 1.506             | 2.084             |
| 0                 | 0.232             | 0.363             |

实验材料为  $\phi$ 11.3 mm ×8 mm 的圆柱形 A3 钢.电极的有效工作面积为 1 cm<sup>2</sup>.用 200<sup>#</sup>、400<sup>#</sup>和 600<sup>#</sup>水磨砂纸逐级打磨,用自来水冲洗,然后用去 离子水冲洗,滤纸吸干后,在无水乙醇中浸泡去油脱 脂 5 min~10 min,取出用吹风机吹干后放在干燥器 中备用.在进行电化学实验前将试样放在洁净工作 台上紫外线灭菌 30 min.

Tafel 曲线测量使用 CP5 型综合腐蚀测量仪, 扫描速度为 60 mV/min. 交流阻抗测量使用 TD4020型宽频带频率响应分析仪和 TD3690型恒 电位仪.试样的 SEM 表面分析使用英国产 J EOL. J SM - 5600LV 扫描电子显微镜.

实验在二种溶液中平行进行:无菌培养基,接种 2.5 ×10<sup>7</sup> 个/ml、2.5 ×10<sup>5</sup> 个/ml SRB 的培养基;采 用通用的二电极体系,参比电极为饱和甘汞电极 (SCE);介质未经除氧处理,温度 37 .将处理好的



Fig. 1 Tafel curves of A3 steel in media with different content of SRB

A3 钢试样放入测试体系中,密封,于培养箱中培养 8 天后,分别测其 EIS 和 Tafel 曲线.

### 2 结果与讨论

#### 2.1 SRB含量对 Tafel 曲线的影响

由图 1 可以看出,在接种 SRB 的培养基中,试 样的自腐蚀电位与无菌介质中测得的数值相比,都 产生了负移,细菌含量越高,负移的程度越大,其数 值如表 1 所示.这是因为随细菌的生长,试样表面的 细菌菌落增加,细胞外聚合物(EPS)与菌落形成的 生物膜变厚,细菌新陈代谢产物导致生物膜下发生 酸浸蚀,使得试样自腐蚀电位负移,这与除氧条件下 测得的结果相一致<sup>[6]</sup>.新配制的空白培养基的腐蚀 速率明显高于其它试样,可能是由于培养基内含氧 量较高,使试样发生氧的去极化腐蚀,导致腐蚀速率 提高.

由图 1 还可以发现,接种 SRB 的培养基中测得 的阴极极化曲线比空白的斜率小些,SRB 有促进阴 极去极化过程的作用,而阳极极化曲线的变化相反, 极化曲线的斜率比空白的大,SRB 的存在使阳极过 程受阻.如图中所示,接种 SRB 后 A3 钢的阳极极化 曲线都有一段变化较慢的区域,可能是由于试样表 面存在生物膜的缘故,生物膜的存在一定程度上阻 碍了腐蚀的进一步发展<sup>[7]</sup>,这与以往在除氧条件下 测得的实验结果相反.

#### 2.1 SRB 含量对 EIS(交流阻抗谱图)的影响

交流阻抗法测得的不同菌液中 A3 钢的 EIS 分 别如图 2 所示.

从图 2 可以看出,在实验条件下,三种实验介质 中测得的 EIS 均呈现单容抗弧特征.细菌含量不 同,容抗弧的半径有差异,即 *R*<sub>p</sub>的大小不同.采用



Fig. 2 EIS of A3 carbon steel in different SRB - inoculation solution



(a) SEM micrograph of 1<sup>#</sup> specimen ,400 ×
 (b) SEM micrograph of 2<sup>#</sup> specimen ,2000 ×
 Fig. 3 Micrograph of attace surface of A3 carbon steel in SRB - inoculated solution

荷兰学者 Boukamp, B.A. 编制的 Equivret 阻抗解析 软件得到各等效电路的参数值,其结果列于表 2.

#### 2.3 SEM 分析

表 2 中数值显示,随菌液浓度的降低,  $R_p$  减小, 腐蚀电流  $i_{corr}$ 增大,这一实验结果与 Tafel 极化曲线 的测量结果相一致.培养基中接种 SRB 2.5 ×10<sup>7</sup> 个 / ml 时  $R_p$  最大,而空白培养基中测得的 A3 钢的  $R_p$  值最小,从而可以进一步说明由 SRB 产生的生 物膜的存在对腐蚀有一定的阻碍作用.

一般来说, *C*<sub>d</sub> 的大小与膜的厚薄紧密相关, *C*<sub>d</sub> 值大, 膜薄; 反之 *C*<sub>d</sub> 值小, 膜厚. 从表 3 可以看到, SRB 含量高的介质中 *C*<sub>d</sub> 小, *R*<sub>p</sub> 大, 试样表面形成 的生物膜较厚, 增大了反应阻力; 相反在 SRB 含量 较低的介质中 *C*<sub>d</sub> 大, *R*<sub>p</sub> 小. 这一规律适用于接种 SRB 的培养基中测得的数据, 但对于空白培养基中 测得的结果不相符. 对于这一现象的解释需进一步 的实验来验证.

将不同菌液浓度的培养基中的试样表面去除腐 蚀产物后,用扫描电子显微镜观察其表面状况,如图 3 所示.

比较两种不同含量硫酸盐还原菌介质中试样腐 蚀表面的 SEM 可以发现,在实验条件下,试样的腐 蚀表面状态不同,含有 2.5 ×10<sup>7</sup> 个/ml 菌种的培养 基中的试样(1<sup>#</sup>)表面粗糙,腐蚀较严重(图 3(a)). 而接种 2.5 ×10<sup>5</sup> 个/ml 菌种的培养基中的试样 (2<sup>#</sup>)表面蚀孔很少.这一现象说明,SRB 含量不同, 细菌在金属表面形成的生物膜的不同,有的生物膜 比较致密,而有的生物膜则比较疏松.尽管含 2.5 ×  $10^7$  个/ml SRB 的介质中测得 1<sup>#</sup> 试样的  $R_p$  较大, 但由于表面形成的生物膜比较疏松,细菌可借助其 结构疏松而在试样表面大量吸附.生物膜中硫酸盐 还原菌菌落的存在及其代谢产物(主要是有机酸)的 富集,促进碳钢试样的腐蚀<sup>[6]</sup>.2<sup>#</sup>试样表面生成的 表面膜相对较为致密.

从以上分析不难发现,在未除氧条件下,电化学 测量结果与试样腐蚀表面的 SEM 观察结果不一 致.EIS测量结果是 1<sup>#</sup>试样的 R<sub>p</sub>大,但 SEM 观察 发现其表面腐蚀比 2<sup>#</sup>试样严重,关于这一矛盾之处 的解释还不清楚,可能是由于培养基中存在氧气的 缘故,而氧的存在导致电极表面的情况变复杂,氧 在整个反应过程起的作用需进一步的实验来探讨.

# 3 结论

含氧培养基中 SRB 可以促进 A3 钢的阴极去极 化,增加阳极溶解过程的阻力, *E*<sub>corr</sub>降低; A3 钢极化 电阻 *R*<sub>p</sub> 随 SRB 含量增加而增大;试样表面生成的 生物膜致密时,对腐蚀的进一步发展有一定的阻碍 作用.

#### 参考文献:

- [1] 涨学元,王凤平,杜元龙等.石油和天然气化工,1999,28(1):53
- [2] Pope D H. Alan Morris , E. Materials Performance, 1995, 5:23.
- (3) 张小里,陈志昕,刘海洪等.中国腐蚀与防护学报,2000,20 (4):224
- [4] Hardy J A, Bown J L. Corrosion, 1984, 40(12):650.
- [5]郑淳之,梅建.水处理剂和工业循环冷却水系统分析方法,北 京:化学工业出版社,2000.316
- [6] 刘宏芳,许立铭,郑家<sup>築</sup>.中国腐蚀与防护学报,2000,20(1):
  41
- [7] S E Werner, C A Johnson, N J Laycock, et al. Corrosion Science, 1998, 40 (2/3):465