基于改进 Harris 角点提取的摄像机神经网络标定技术*

崔 岸 袁 智 王 丹 张海鹏 (吉林大学汽车动态模拟国家重点实验室,长春 130025)

【摘要】 以前馈型 BP 神经网络进行双目立体视觉系统的摄像机标定研究,基于 Harris 角点提取,提出了增加 约束的改进方法,从而提高网络训练样本集的数据精度;探讨了神经网络的欠泛化、过泛化问题,综合运用归一化、 提前终止等多种策略,进一步提高网络泛化能力,并与经典标定方法进行对比。试验结果表明,该方法能够获得较 高的摄像机标定精度。

关键词:摄像机标定 神经网络 Harris 角点 泛化中图分类号: TP391.4 文献标识码: A

Neural Network Technique on Camera Calibration Based on Improved Harris Corner Extraction Method

Cui An Yuan Zhi Wang Dan Zhang Haipeng

(State Key Laboratory of Automotive Dynamic Simulation, Jilin University, Changchun 130025, China)

Abstract

Camera calibration in a binocular stereo vision system was studied based on BP neural network techniques. A neural network was built to investigate the relationship between the image coordinates and the space coordinates. To improve the accuracy of training data, a corner extraction algorithm based on Harris algorithm was modified by increasing constraints. The generation ability of neural networks was discussed, and was further improved by synthesizing many strategies such as the regularization and stopped training strategies. At last, compared with the traditional calibration method, the test result shows that this method is available and can get a higher precision for binocular camera calibration.

Key words Camera calibration, Neural network, Harris corner, Generality

引言

摄像机标定是计算机视觉测量中的重要环节, 它建立起二维图像坐标到三维空间坐标的映射关 系。由于图像的成像过程受到镜头畸变和光介质等 因素的影响,使得映射呈现一种非线性关系。传统 的摄像机标定技术多采用针孔成像模型,线性标定 或两步法等,但线性标定精度较差,两步法只考虑径 向畸变,当切向畸变较大时不实用,因而如何有效合 理确定非线性畸变校正模型的参数一直是研究的难 点。由于神经网络技术具有很强的非线性逼近能 力,可以直接学习图像信息和三维信息之间的关系, 不需确定摄像机具体的内部参数和外部参数,也不 需要了解有关模型和参数的先验知识,而是将所有 的非线性因素都包含在网络当中,作为一种隐式的 立体标定技术而显示出它的优越性。

建立性能优越的神经网络需要高精度的训练样本数据,一些学者提出了很好的角点提取算法^[1~3],但是提取出的结果有时并不令人满意。本文鉴于原有 Harris 角点提取算法存在多义性或漏检的缺欠,对其进行进一步约束改进,从而既消除了多义性又使角点提取精度显著提高。同时,神经网络

作者简介: 崔岸,副教授,主要从事车身制造质量控制及车身现代设计方法的研究, E-mail: cuian@jlu.edu.cn

收稿日期: 2008-10-09 修回日期: 2009-01-12

^{*}现代车身技术教育部重点实验室开放基金资助项目(KLVBDM2005003)和吉林省科技发展计划基金资助项目(20080539)

的泛化能力是评价其性能的一个重要指标^[4],提高 泛化能力一直是研究者关注的问题,但总体上说仍 然是一个没有完全解决的问题。本文结合多种策略 并进行对比分析使其达到一个较好的泛化效果。

1 标定数据的准备

本文以双目立体视觉为系统模型,用左右两个 摄像机分别拍摄图片,摄像机型号为 DH-HV1302UM-T的CMOS,分辨率为1280×1024,镜

头为 $12.5 \sim 75 \text{ mm F1.8}$ 的 CCTV lens_o

以 BP 网络建立神经 网络时,为了获得神经网 络所需的样本数据集,采 用 20×20 棋盘格式立体 标靶。对角点的空间坐标 进行预先设置来作为输出 数据样本集,利用 Harris 角点提取算法得到角点的 二维坐标作为输入数据样 本集,如图1所示。

由于打印机分辨率及 照明的原因使得 Harris 检 测出的角点效果不佳,有 些角点出现两个图像对应 点的情况,如图 2 为图 1 的局部放大图。为了获得 准确单一的图像角点坐 标,本文对 Harris 角点提 取结果进行了改进。

图 1 Harris 角点提取 Fig. 1 Harris corner extraction

图 2 Harris 角点提取 局部放大图 Fig. 2 Details of Harris corner extraction

2 Harris 角点提取算法及其改进

2.1 Harris 角点提取算法

角点是反映图像信息的重要特征,如图 3 中的

a 所表示的部分,在水平、*a*. 竖直方向的灰度变化都很 大。图 3 中的 *b* 表示边 缘,其仅在水平或仅在竖 直方向的灰度变化量大; 图 3 中的 *c* 所表示的平坦 区域,其水平或竖直灰度 ^F 变化量都较小。

图 3 图像信息特征图 Fig. 3 Image characteristics

Harris 角点提取算法步骤^[2]:

(1)利用水平、竖直差分算子对图像每个像素进 行滤波以求得水平与竖直的灰度梯度 *I_x* 和 *I_y*,进而 得到矩阵

$$\boldsymbol{m} = \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
(1)

(2)对 m 中 4 个元素进行高斯滤波,得到新的m。离散二维零均值高斯函数为

$$G = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \tag{2}$$

(3)利用 m 计算对应于每个像素的角点量为

$$cim = \frac{I_x^2 I_y^2 - (I_x I_y)^2}{I_x^2 + I_y^2}$$
(3)

(4)在角点量矩阵 cim 中,同时满足 cim 大于 阈值和 cim 是某邻域内的局部极大值的点被认为是 角点。

2.2 改进 Harris 角点提取

针对上述算法,改进的 Harris 角点提取方法增加了第(5)步:

步骤(5)对步骤(4)返回的角点坐标进行检验, 如果 $|u_i - u_j| \leq \epsilon$, $|v_i - v_j| \leq \epsilon$ 则把它们合并成一 个点, ϵ 为合并阈值, 它的选取与图像的拍摄角度有 关。通常情况下 ϵ 的最大值应小于相邻棋盘点所含 像素最小值的一半, ϵ 最小值应大于歧义点横纵坐 标差值的最大者, 本文选取 $\epsilon = 10$ 。进行平均插值 运算

$$\begin{cases} u_m = \frac{u_i + u_j}{2} \\ v_n = \frac{v_i + v_j}{2} \end{cases}$$
(4)

式中 $u_i \, u_j$ — 步骤(4)提取出的角点行坐标 $v_i \, v_j$ — 步骤(4)提取出的角点纵坐标

*u_m、<i>v*_n——改进后角点的新坐标

改进后的 Harris 角点 提取效果如图 4 所示。

3 摄像机神经网络标 定设计

在标定图像与标靶中 共选取了 588 个坐标点 对,为了使神经网络能够 合理、顺利地建立,将其中 294 对(分布均匀,下同) 作为训练样本数据,147

图 4 改进后 Harris 角点 提取局部放大图 Fig. 4 Details of modified Harris corner extraction

对作为确认样本数据,另147对作为神经网络的测试样本数据。

3.1 初步建立的神经网络标定

本文采用 3 层 BP 网络对摄像机进行标定^[5],

直接运用获取的角点坐标和空间坐标进行神经网络的创建与训练。由于样本数较多,网络采用批处理的训练方式。选取隐层的传递函数为 logsig 函数,输出层为 purelin 函数,性能指标均方误差 MSE 设

为0.05,由输出结果维数可知输出层神经元个数为 3,分别取隐层神经元个数为5、10、15、20、25、30、35 对 BP 及其改进型网络进行训练,其训练均方误差、 次数及时间如表1所示。

表	1 网	络训练	F结果	;

Tab.1 Training result of direct-coordinate network

神经	1	traingd		ti	raingdm	L	t	raingd	х		trainrp		t	rainscg		1	trainlm	
元数	均方	迭代	时间	均方	迭代	时间	均方	迭代	时间	均方	迭代	时间	均方	迭代	时间	均方	迭代	时间
	误差	次数	/s	误差	次数	/s	误差	次数	/s	误差	次数	/s	误差	次数	/s	误差	次数	/s
5	9 221.38	130	1.687	661 035	527	4.406	-	-	-	5 592.61	5000	23.782	5861.84	3 701	25.563	53.7966	200	13.859
10	7 537.58	767	7.123	7 070.04	796	6.875	-	-	-	2 444 . 79	3 701	20.672	5805.31	3 101	29.468	4.5273	801	58.969
15	6 285.62	2 978	27.156	6135.4	3 338	30.609	_	_	-	3 515.66	3 901	27.469	4 583.10	3 901	48.063	4.7235	701	60.031
20	6 399.52	2 571	25.484	6 529.2	1 040	8.359	_	_	-	2 343.77	3 401	26.656	5287.46	2 201	31.860	218.2070	501	41.219
25	6 501.01	396	4.922	5 900.48	541	4.812	_	_	_	2 309.28	3 701	34.172	6 107.00	2 401	40.375	4.7476	501	58.951
30	6 002.10	5 000	68.704	5 405.25	3 544	36.797	_	_	_	2 385.54	3 001	31.531	6746.79	1 601	31.906	82.8410	401	64.438
35	6 117.70	2 455	35.843	6 490.32	1 843	18.625	-	-	-	2880.57	2 401	42.562	6725.62	1 801	40.516	21.1389	301	58.406

从表1中可以看出,当隐层神经元个数为10~ 15,训练函数为trainlm时,迭代次数最少,最后的性能参数MSE较小,同时也可以看出随着隐层神经 元个数的增多,其每次迭代所需要的时间增加,所以 选隐层神经元个数为10较好;当训练函数为 traingdx时性能参数MSE出现了一些波动,因而在 表中没有将其结果列出;其余训练结果MSE都十 分大。总体来看,包括训练函数trainlm在内的所有 网络训练结果都不能达到理想的性能参数,不能很 好地记住样本,属于欠泛化问题,而在有些问题中, 能记住样本但是不能逼近非样本数据,出现了过泛 化问题^[6]。

3.2 摄像机神经网络标定

基于网络泛化能力的考虑,初始建立的神经网 络中,样本数据采用了均匀分布的的选取;神经网络 初始参数的设置参考了先验知识,但结果依然不理 想。为了进一步提高神经网络的泛化能力,针对所 建立的网络模型,采取了如下改进措施。

(1)在建立神经网络之前,先对数据进行归一化 处理,使其数据在 0~1 之间,以控制网络的有效复 杂程度,加快收敛速度。具体步骤为:首先,找出样 本数据集 P 的最大值 P_{max} 、最小值 P_{min} ;然后对样 本数据集 P 进行归一化处理,其算法公式为: $P'_i = (P_i - P_{min})/(P_{max} - P_{min}),其中 i 为样本序列$ 号。

(2)在网络训练过程中。一般来说学习误差会随着迭代次数的增加而降低,当出现性能函数长时间变化范围很小时,基于泛化精度及训练时间的考虑,采用提前终止策略。

隐层的传递函数设为 tansig,输出层的传递函数为 logsig,性能指标 MSE 设为 1×10⁻⁵。取隐层神经元个数为 5、8、10、15、18、20、25 对 BP 及其改进算法进行训练,其训练均方误差、次数及时间如表 2 所示。

表 2 改进的网络训练结果

	— • •				
Tab. 2	Training	result	of	indirect-coordina	te network

油叔		traingd		t	traingdn	1		traingdx			trainrp			trainscg			trainlm	
件空 元数	均方	迭代	时间人	均方	迭代	时间人	均方	迭代	时间 /-	均方	迭代	时间人	均方	迭代	叶词人	均方	迭代	时间 /_
	误差	次数	р ј [¤ ј / S	误差	次数	р ј [¤ ј /S	误差	次数	n] n]/S	误差	次数	PJ [P] / S	误差	次数	时][FJ/S	误差	次数	时间78
5	0.00467	5 000	22.547	0.00424	5 000	25.547	0.00308	4 151	20.641	0.002 95	3 901	19.984	0.00287	2 201	19.696	0.00041	1 451	26.828
8	0.00328	5 000	30.875	0.003 17	4 451	26.203	0.00209	3 151	17.610	0.00260	2 651	16.703	0.000 42	3 751	37.157	0.00026	1 101	30.984
10	0.001 83	5 000	31.203	0.002 54	4 501	28.266	0.00179	3 151	21.796	0.001 57	3 351	21.796	0.00077	3 851	43.140	0.00022	901	32.375
15	0.001 84	5 000	35.578	0.00188	3 601	27.609	0.00099	5 000	39.375	0.00148	2 901	22.532	0.00029	2 701	36.078	1.00×10^{-5}	3 186	173.270
18	0.001 22	5 000	41.734	0.00275	3 001	26.234	0.00137	3 701	30.703	0.00125	3 351	28.975	0.000 31	2 701	42.032	1.00×10^{-5}	4 527	292.890
20	0.00129	5 000	45.297	0.00169	3 201	29.985	0.00130	3 901	33.297	0.00109	3 601	31.515	0.00027	3 1 5 1	52.203	1.00×10^{-5}	682	54.109
25	0.00140	5 000	48.485	0.00281	3 201	32.391	0.00163	2 901	28.063	0.000 94	2 801	28.562	0.00028	2 001	39.625	1.00×10^{-5}	366	40.640

从表 2 中可以看出采用归一化后的网络训练次数大幅减少,所需时间大量缩短,所能达到的性能参数 MSE 也较小,其中当隐层神经元个数为 25,训练函数为 trainlm 时,效果最佳,其网络训练过程如图 5 所示。

选用该网络,并保存权阈值对确认样本数据进 行试验,经反归一化后得出结果显示坐标误差小于 1 mm,比直接运用样本数据坐标建立的网络有了非 常大的改善。故而在样本空间较大的情况下采取归 一化和提前终止相结合的方法能够很好地改善神经 网络的泛化能力和训练所耗时间。

4 摄像机标定试验

为了进一步验证该研究方法的可行性,本文还

将其标定结果与经典的摄像机标定方法^[7~8]作了 对比,这里选用自由平面标定法作为试验参照法,运 用左右摄像机分别拍摄 20 幅图像对,如图 6 所示 (只列出 2 对)。

图 6 平面标定法图像对 Fig. 6 Image pairs of free-plane calibration (a) 左(第1对) (b) 右(第1对) (c) 左(第2对) (d) 右(第2对)

经过标定优化计算后,分别得出2个摄像机的 内外部参数,再对它们进行融合,得到的最后参数如 表3所示。

表 3 自由平面标定法内外部参数结果

Tab.3 Result of interior and exterior parameters using free-plane cali	bration
--	---------

	左摄像机	右摄像机
焦距/mm	$[2437.493192438.08283] \pm [2.374632.40516]$	$[2 433.256 05 2 432.687 81] \pm [2.4610 3 2.555 41]$
图像中心	$[175.72505223.18885] \pm [5.199314.19920]$	$[211.148\ 80\ 276.411\ 72]\pm[5.471\ 95\ 4.534\ 63]$
歪斜系数	$[0.000\ 00] \pm [0.000\ 00]$	$[0.000\ 00] \pm [0.000\ 00]$
扭曲系数	$\begin{bmatrix} -0.257\ 83\ 0.744\ 42\ -0.001\ 82\ 0.002\ 82\ 0.000\ 00 \end{bmatrix} \\ \pm \begin{bmatrix} 0.012\ 63\ 0.109\ 39\ 0.000\ 32\ 0.000\ 70\ 0.000\ 00 \end{bmatrix}$	$\begin{bmatrix} -0.224\ 43\ 0.706\ 47\ -0.000\ 04\ 0.000\ 99\ 0.000\ 00 \end{bmatrix} \\ \pm \begin{bmatrix} 0.012\ 66\ 0.133\ 03\ 0.000\ 33\ 0.000\ 70\ 0.000\ 00 \end{bmatrix}$
旋转矢量	$[0.004\ 22\ -0.218\ 22\ -0.285$	$[44] \pm [0.002\ 35\ 0.003\ 02\ 0.000\ 33]$
平移矢量	[267.668 52 0.627 09 24.769	20] ± [0.197 52 0.124 22 1.469 19]

运用本文所建立的神经网络模型对测试样本数 据进行测试,2种方法的结果列于表4(只列出其中 的10组数据)。从上述对比结果看,经典的自由平 面标定法 x 坐标平均偏差为2.43 mm, y 坐标平均 偏差为0.95 mm, z 坐标平均偏差为1.55 mm, 而采 用本文研究的神经网络标定技术, x 坐标平均偏差 为0.19 mm, y 坐标平均偏差为0.16 mm, z 坐标平 均偏差为0.26 mm, 很显然达到了更高的精度。

5 结束语

神经网络技术更多的是作为分类器使用的,然 而同样具有很强的非线性逼近能力。本文结合双 目立体视觉测量方法,利用前馈型BP网络进行了

表 4 2 种标定结果对比

Tab.4 Comparison of two calibration results mm

实际坐标	图像坐标	标定方法	$\hat{z}(x,y,z)$
(x,y)	(x,y)	神经网络	自由平面
260,0,280	92,154.5	259.85,0.09,280.01	257.39, -1.07, 284.12
160,0,280	264,113.5	159.67, -0.04, 279.67	155.59, -0.78, 283.38
240,0,240	123.5,208.5	239.93, -0.15, 240.31	237.11, -1.45, 242.88
120,0,240	322,158.5	119.77,0.04,239.98	115.84, -0.33, 243.01
180,40,0	224,552	179.74,39.83,-0.05	179.85,39.55,-0.10
80,220,0	530,708	79.84,219.85,0.18	80.09,220.22,0.04
220,260,0	351,842	220.13,260.11,0.17	219.43,260.04,-0.23
0,100,220	599.5,243	-0.34,99.84,220.05	-5.04, 101.90, 220.54
0,20,160	504.5,247	-0.84, 19.35, 158.68	-3.62, 21.92, 160.99
0,260,80	716,614.5	0.18,260.04,80.16	-0.79,261.31,79.75

摄像机标定技术研究。通过试验与分析可知,基于 改进的 Harris 角点提取方法提高网络训练样本集的 数据精度,综合采用归一化、提前终止等多种策略, 合理选择隐层神经元个数和网络训练函数,从而改 善网络的泛化能力,可以显著提高摄像机的标定精度,并能大大降低传统方法操作的复杂程度,减少坐标间转换造成的累计误差。本文研究方法可应用于高精度的三维测量工作。

参考文献

- 1 Yang Haojun, Zhang Guilin. Feature correlation tracking algorithm using SUSAN operator [J]. Infrared and Laser Engineering, 2000, 29(4): 34~37.
- 2 Harris C G, Stephens M J. A combined corner and edge detector [C] // Proceedings Fourth Alvey Vision Conference, Manchester, 1988:147~151.
- 3 刘阳成,朱枫.一种新的棋盘格图像角点检测算法[J].中国图像图形学报,2006,11(5):656~660. Liu Yangcheng, Zhu Feng. A new kind of arithmetic of chessboard corner detection[J]. Journal of Image and Graphics,2006, 11(5):656~660. (in Chinese)
- 4 Martin T H, Howard B D, Mark B. Neural network design[M]. Beijing : China Machine Press, CITIC Publishing House, 2008.
- 5 Mark B L, Cihan H D, Mahesh V. The use of feed forward neural networks for machine vision calibration [J]. International Journal of Production Economics, 1999, 60~61:479~489.
- 6 周开利,康耀红.神经网络及其 MATLAB 仿真程序设计[M].北京:清华大学出版社,2005.
- 7 Tsai R. A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal of Robotics & Automation, 1987, 3(4): 323~344.
- 8 张健新,段发阶,叶声华."两步法"求取双目视觉传感器中摄像机位置关系[J].光电工程,1998,125(5):38~42.
- 9 崔岸,刘业峰,袁智,等. 摄像机参数的三线性插值误差补偿标定方法[J]. 农业机械学报,2008,39(10):187~190. Cui An, Liu Yefeng, Yuan Zhi, et al. Camera calibration method of tri-linear interpolation error compensation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2008,39(10):187~190. (in Chinese)

(上接第 174 页)

- 5 Henten E J, Tuijl B J, Hoogaker G J, et al. An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system[C]//Biosystems Engineering, 2006, 94(3): 317~323.
- 6 Xu Huirong, Zhu Shengpan, Ying Yibin, et al. Application of multispectral reflectance for early detection of tomato disease [C]//Proc. of SPIE 2006 Optics for Natural Resources, Agriculture, and Foods, 2006, 6381: 63810R.1~63810R.8.
- 7 毛罕平,张红涛.储粮害虫图像识别的研究进展及展望[J].农业机械学报,2008,39(4):175~179,186. Mao Hanping, Zhang Hongtao. Research progress and prospect for image recognition of stored-grain pests[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008,39(4):175~179,186. (in Chinese)
- 8 Tsai W. Moment—preserving thresholding: a new approach[J]. CVGIP, 1985, 29(3): 377~393.
- 9 罗诗途,罗飞路,张Ⅰ,等. 基于梯度调整的矩不变自动阈值图像分割算法[J]. 计算机应用, 2004(6): 11~13.
- 10 Arlma S, Kondo N, Shibaxo Y. Studies on cucumber harvesting robot: [[[J]. Journal of the Japanese Society of Agriculture Machinery, 1994, 56(6):69~76.

(上接第 213 页)

- 3 陈敏华. 机器人操作手运动能力指数的应用[J]. 机床与液压, 2003(2): 102~104. Chen Minhua. Applications of moving capability index of robotic manipulator[J]. Machine Tool & Hydraulics, 2003(2): 102~104. (in Chinese)
- 4 理查德·摩雷,李泽湘,夏恩卡·萨里特里.机器人操作的数学导论[M].北京:机械工业出版社,1998.
- 5 林义忠,黄玉美,程祥. 串联机器人诱导运动的分析和研究[J]. 中国机械工程, 2004, 15(15): 1 323~1 326. Lin Yizhong, Huang Yumei, Cheng Xiang. Analysis and research of inductive motion in serial robots[J]. China Mechanical Engineering, 2004, 15(15): 1 323~1 326. (in Chinese)
- 6 Goritov A N, Korikov A M. Optimality in robot design and control[J]. Automation and Remote Control, 2001,62(7): 1097~1103.
- 7 Gosselin C M, Angeles J. A globe performance index for the kinematic optimization of robotic manipulators[J]. ASME J. Mech. Des., 1991, 113(3): 220~226.