A palynotaxonomic study of the genus *Filipendula* (Rosaceae)

¹Sangtae LEE^{*} ¹Meekyung KANG ¹Kyeong-In HEO ²Wen-Li CHEN ³Chunghee LEE

¹(Department of Biology, Sungkyunkwan University, Suwon 440-746, Korea)

²(State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China) ³(Division of Botanical Research, Korea National Arboretum, Pocheon 487-821, Korea)

Abstract Pollen grains from 15 species (18 taxa) of the genus *Filipendula* were examined with light and scanning electron microscopy. It was revealed that the pollen grains are isopolar, tricolporate, with scabrate or scabrate-microechinate surface. The pollen morphology was compared with the conventional classification systems of the genus by different authors, and supported Shimizu's system (1961), in which the genus was divided into three subgenera. The monotypic subgen. *Hypogyna* is characterized by pollen lacking fastigium and thickened costae colpi. The other monotypic subgen. *Filipendula* differs from others by pollen having larger grain, larger pore size, longitudinally elliptic fastigium and thickened costae colpi. The largest subgen. *Ulmaria* is distinguished by pollen having rounded or latitudinally elliptic fastigium and thickened costae colpi. Sectional classification was not supported by the pollen morphology due to insufficient variability. **Key words** *Filipendula*, palynology, systematics.

Genus Filipendula Mill. (Rosaceae) includes about 20 species and is predominantly distributed in the temperate and subarctic northern hemisphere, especially in northeastern Asia including Korea, Japan, northeastern China and eastern Siberia (Ohwi, 1953; Shimizu, 1961; Schanzer, 1994). Infrageneric classifications of Filipendula have been proposed by Juzepczuk (1941) and Popov (1957). The former divided the genus into three subgenera and two sections, while the latter into two subgenera and two sections (Table 1). In their systems, however, only indigenous species to their own country were included. After them, Shimizu (1961) revised the whole genus, amending the two former systems. In his system (Table 1), 15 species all over the world were classified into two monotypic subgenera Hypogyna T. Shimizu and Filipendula, and one large subgenus Ulmaria Moench with four sections Ulmaria Hill, Albicoma Juz., Sessilia T. Shimizu and Schalameya Juz., based mainly on morphological characters such as roots, stipules, leaves, flowers and achenes. Sergievskaya (1967) revised Shimizu's system (1961) and made a different one in which the genus was divided into four subgenera, by retaining only Shimizu's sect. Ulmaria within subgenus Ulmaria and transferring the remaining sections into subgenus Aceraria as in Juzepczuk (1941). Schanzer (1989, 1994) provided a new taxonomic treatment of the genus on the basis of morphological and geographical data. He divided the genus into four sections: Hypogyna, Schalameya, Albicoma and Filipendula. In his treatment, however, no species of section Sessilia (Shimizu, 1961) or *Gymnocarpa* (Sergievskaya, 1967) were included and F. hexapetala Gilib., the type species of the monotypic subgenus Filipendula (Shimizu, 1961; Sergievskaya, 1967) or Eu-Filipendula (Juzepczuk, 1941), was treated as a species in the name of F. vulgaris of section Filipendula including most species of subgenus Ulmaria (Juzepczuk, 1941; Shimizu, 1961; Sergievskaya, 1967). The sections of Sergievskaya (1967) do not correspond with subgenera of any previous authors. The four systems of Juzepczuk (1941), Shimizu (1961), Sergievskaya (1967), and Schanzer (1994) are incongruent with each other to a certain extent (Table 1).

Pollen morphology has been used to elucidate taxonomic relationships in many angiosperm taxa (Erdtman, 1972), including Rosaceae (Reitsma, 1966; Eide, 1981). The pollen morphology of *Filipendula* was optically observed from limited number of local species (Ikuse, 1955; Kim & Chung, 1986) and has never been utilized in constructing or evaluating the infrageneric systems. The present study aimed to provide the palynological data for the taxonomy of the genus *Filipendula*, and to evaluate the infrageneric systems mentioned above on the basis of a new set of characters.

Received: 17 October 2007 Accepted: 28 September 2008

^{*} Author for correspondence. E-mail: stlee@skku.edu; Tel. & Fax: +82-31-290-7001.

Juzepczuk (1941)	Shimizu (1961)	Sergievskaya (1967)	Schanzer (1994)		
	Subgen. Hypogyna T. Shimizu 1. F. occidentalis (S. Watson) Howell	Subgen. Hypogyna T. Shimizu 1. F. occidentalis (S. Watson) Howell	Sect. Hypogyna (T. Shimizu) Shantser 1. F. occidentalis (S. Watson) Howell		
Subgen. Aceraria Juz.	Subgen. <i>Ulmaria</i> Moench	Subgen. Aceraria Juz.			
 Sect. Schalameya Juz. 1. F. kamtschatica Maxim. 2. F. glabra Nakai ex Kom. & Aliss. 3. F. purpurea Maxim. 4. F. palmata (Pall.) Maxim. 	 Sect. Schalameya Juz. 2. F. kamtschatica Maxim. 3. F. glaberrima Nakai 4. F. yezoensis Hara 5. F. purpurea Maxim. 6. F. multijuga Maxim. 7. F. palmata (Pall.) Maxim. 8. F. rubra (Hill) B. L. Rob. 	 Sect. Aceraria Serg. 2. F. kamtschatica Maxim. 3. F. koreana Nakai 4. F. auriculata (Ohwi) Kitam. 5. F. glaberrima Nakai 6. F. vestita (Wall.) Maxim. 7. F. palmata (Pall.) Maxim. 8. F. purpurea Maxim. 	 Sect. Schalameya Juz. 2. F. kamtschatica Maxim. 3. F. glaberrima Nakai 4. F. formosa Nakai 5. F. multijuga Maxim. 6. F. tsuguwoi Ohwi 7. F. kiraishiensis Hayata 		
 Sect. Albicoma Juz. F. angustiloba (Turcz) Maxim. F. intermedia (Glehn) Juz. 	Sect. Albicoma Juz. 9. F. angustiloba (Turcz.) Maxim.	Sect. Albicoma Juz. 9. F. angustiloba (Turcz.) Maxim. 10. F. intermedia (Glehn) Juz. 11. F. rubra (Hill) B. L. Rob.	Sect. Albicoma Juz. 8. F. angustiloba (Turcz.) Maxim. 9. F. palmata (Pall.) Maxim. 10. F. rubra (Hill) B. L. Rob.		
	Sect. Sessilia T. Shumizu 10. F. vestita (Wall.) Maxim. 11. F. kiraishiensis Hayata 12. F. formosa Nakai 13. F. tsuguwoi Ohwi	Sect. Gymnocarpa Serg. 12. F. kiraishiensis Hayata 13. F. formosa Nakai 14. F. tsuguwoi Ohwi 15. F. multijuga Maxim.			
 Subgen. Ulmaria Moench 7. F. ulmaria (L.) Maxim. 8. F. denudata (J. Presl & C. Presl) Fritsch 9. F. stepposa Juz. 10. F. megalocarpa Juz. 	Sect. Ulmaria Hill 14. F. ulmaria (L.) Maxim.	 Subgen. Ulmaria Moench 16. F. ulmaria (L.) Maxim. 17. F. denudate (J. & C. Prest) Fritsch. 18. F. stepposa Juz. 19. F. megalocarpa Juz. 	Sect. Filipendula 11. F. vestita (Wall.) Maxim. 12. F. ulmaria (L.) Maxim. 13. F. stepposa Juz. 14. F. megalocarpa Juz.		
Subgen. Eu-Filipendula Juz. 11. F. hexapetala Gilib.	Subgen. <i>Filipendula</i> 15. <i>F. hexapetala</i> Gilib.	Subgen. <i>Filipendula</i> 20. <i>F. hexapetala</i> Gilib.	15. <i>F. vulgaris</i> Hill (= <i>F. hexapetala</i> Gilib.)		

 Table 1
 Comparison of the infrageneric systems of the genus Filipendula (from Schanzer, 1994)(Bold-typed species were investigated in this study)

1 Material and methods

The materials used in the study were taken from the specimens loaned from several herbaria (GH, KYO, SNU, SNUA, TI) (Table 2).

Pollen grains were collected from herbarium specimens and processed by Erdtman's acetolysis method modified by Livingstone (Lee & Kim, 1978). Acetolysed pollen grains were embedded in glycerine jelly to make permanent slides, which were observed with a light microscope (LEITZ Laborlux 12). For scanning electron microscopy, the acetolysed pollen grains preserved in 70% ethanol were placed on a stub, dried, coated with gold by an ion-sputter (JOEL-JFC1100), and observed with scanning electron microscope (JEOLSS EM-ASID-4A) at 20 kV.

2 Results

General description

Pollen grains are isopolar, radially symmetrical, monads, varying in shape from suboblate to subprolate (polar length (P) / equatorial diameter (E)= 0.97-1.15 in average, Table 3), amb shapes circular,

with tricolporate aperture (Figs. 1-39). The grain size falls in the range of 14.00–23.24 μ m × 13.72–22.82 μm (P×E, minimum-maximum), the smallest in F. vezoensis (15.19 μ m × 14.22 μ m in average; Fig. 34) and the largest in F. hexapetala (21.11 μ m × 21.83 µm in average; Fig. 35) (Table 3). The endoaperture is equatorially elongate. The endoaperture is not fastigiated (arrow) only in F. occidentalis (Fig. 9). The fastigium is longitudinally elliptic (arrow) in F. hexapetala (Fig. 26) and latitudinally elliptic or round in the remaining species. The colpus is 12.41-17.08 um long, mostly acute at the ends or sometimes blunt. Contrary to other species, the costa colpi (inner margin) is not thickened (arrow) in F. occidentalis (Fig. 1). The colpus surface is mostly microgranulate or psilate (arrow) in F. formosa only (Fig. 32). Sculpturing patterns of the grain surface are mostly scabrate, or rarely scabrate-microechinate. The size of the supra-tectal processes is somewhat even in most species but conspicuously variable in F. rubra (Fig. 35) and F. palmata (Fig. 33). The numbers of processes vary from 3 to 23 per 4 μ m². The palynological groupings of the species are summarized in the following key.

Table 2	Collection	data for v	voucher s	pecimens	(Herbarium	abbreviation	follows	Holmgren	et al.,	1990)	
---------	------------	------------	-----------	----------	------------	--------------	---------	----------	---------	-------	--

Taxon	Locality	Collected date	Voucher		
Subgen. Hypogyna					
F. occidentalis (S. Watson) Howell	Mt. Rocky, USA	1936-06-08	Anonymous (GH)		
Subgen. Filipendula					
F. hexapetala Gilib.	Newfoundland, Canada	1928	M. Ayre s.n. (GH)		
	Nova Scotia, Canada	1920-07-08	C. H. Bissel s.n. (GH)		
Subgen. Ulmaria					
Sect. Ulmaria					
F. ulmaria (L.) Maxim.	Newfoundland, Canada	1908-07-22	E. H. Eames 7009 (GH)		
Sect. Albicoma					
F. angustiloba (Turcz.) Maxim.	Harbin, China	1937-06-01	Anonymous (GH)		
	Tuberdai, China	1925-06-24	P. H. Dorsett 3420 (GH)		
	no exact locality	1942-07-11	T. Kira s.n. (KYO)		
Sect. Sessilia					
F. formosa Nakai	Mt. Chiri, Korea	1960-08-01	T.B. Lee s.n. (SNUA)		
	Mt. Chiri, Korea	1982-07-04	T.B. Lee s.n. (SNUA)		
F. kiraishiensis Hayata	Teadongju Kangsan, China	1938-07-24	S. Okamoto s.n. (KYO)		
F. tsuguwoi Ohwi	Mt. Shiraiwa, Miyazaki Pref., Japan	1958-10-23	T. Shimizu 3418 (KYO)		
F. vestita (Wall.) Maxim.	Yunnan, China	no exact collected date	T. T. Yu s.n. (GH)		
	Yunnan, China	1939-09-08	K. M. Feng s.n. (GH)		
sect. Schalameya					
F. glaberrima Nakai	Mt. Keumkang, Korea	1933-07-29	B. S. Doo s.n. (SNU)		
	Myoungdangbong, Korea	1934-07-17	B. S. Doo s.n. (SNU)		
F. kamtschatica Maxim.	Hondo, Japan	1955-08-05	M. Mizushima 16534 (TI)		
	no exact locality	1980-06	T. Shimizu s.n. (GH)		
	Tsutanuma, Japan	1940-07-11	H. Ohashi s.n. (TI)		
F. multijuga Maxim. var. multijuga	Mt. Kamihiruzen, Japan	1962-07-29	G. Murata 27195 (KYO)		
F. multijuga var. ciliata Koidz.	Futakuchitoge, Japan	1985-07-29	H. Ohashi 11690 (GH)		
F. palmata (Pall.) Maxim. var. palmata	Kamtchatka, USSR	1928-07-16	E. Hulten s.n. (GH)		
F. palmata f. nuda (Grub.) T. Shimizu	Heungkyori, Korea	1964-07-12	T. B. Lee s.n. (SNUA)		
F. purpurea Maxim. var. purpurea	Yamagata Pref., Japan	1990-07-03	H. Ohashi 28143 (GH)		
F. purpurea var. auriculata Ohwi	Oizumi, Japan	1942-06-10	T. Makino 129397 (TI)		
	Hondo, Japan	1922-07-20	K. Shiota 1085 (GH)		
	Mt. Iide, Nigata Pref., Japan	1965-07-22	M. Togashi 9963 (GH)		
F. rubra (Hill) B. L. Rob.	Nova Scotia, Canada	1919-07-14	R. W. Woodward s.n. (GH)		
	New Hampshire, USA	1910-07-17	E. F. Willamson s.n. (GH)		
F. yezoensis H. Hara	Japan	1903-06-20	Anonymous (GH)		
	Mt. Seuilbong, Korea	1940-07-25	B. S. Doo s.n. (SNU)		
	Dongkunung, Korea	1944-05	B. S. Doo s.n. (SNU)		

Key to the Filipendula pollen

1a. Pollen lacking fastigium and thickened costae colpis	ıbgen.	Hypogyna
1b. Pollen with fastigium and thickened costae colpi.		2
2a. Fastigium longitudinally elliptic. Average pollen size >21 μ m × 22 μ m (P × E)su	bgen.	Filipendula
2b. Fastigium round or latitudinally elliptic. Average pollen size <20 μm × 20 μm	subge	en. Ulmaria

As shown in the pollen key above to *Filipendula* groups, the monotypic subgen. *Hypogyna*, consisting of *F. occidentalis* (Figs. 1, 5, 9, 25), is distinguished by pollen lacking fastigia and thickened costae colpi. The monotypic subgen. *Filipendula*, including species *F. hexapetala* (Figs. 2, 6, 10, 26), is characterized by

pollen having larger grains, larger pore sizes, longitudinally elliptic fastigia and thickened costae colpi. Finally subgen. *Ulmaria*, comprising the remaining 13 species, is characterized by pollen with rounded or latitudinally elliptic fastigia and thickened costae colpi. Thus, the classification of the genus into the three subgenera *Hypogyna*, *Filipendula* and *Ulmaria*, as recognized by Shimizu (1961) is strongly supported by the pollen morphology.

The pollen characters are, however, not useful to distinguish the sections (Juzepczuk, 1941; Shimizu, 1961; Sergievskaya, 1967; Schanzer, 1994) although some species are distinguishable from others within the section.

3 Discussion

The present palynological data support Shimizu's (1961) classification of *Filipendula*, in which the genus was divided into two monotypic subgenera and one large subgenus consisting of 13 species in four sections.

Shimizu (1961) newly added F. occidentalis to the genus Filipendula and treated it as a monotypic subgen. Hypogyna. It possesses the unique morphology characterized by hypogynous perianths and indistinct calyx tubes, in contrast to all the other species which possess perigynous perianths and distinct calyx tubes. The pollen morphology showed that F. occidentalis is well separated from the other species by lacking a fastigium and thickened costae colpi which occur in all the other members of the genus. Palynologically it was supported that F. occidentalis (subgen. Hypogyna) occupies the most primitive position (Shimizu, 1961; Schanzer, 1994) because fastigium and costa colpi are not general and presumably apomorphic in the angiosperm pollen (Walker & Doyle, 1975). The primitive position of

 Table 3
 Pollen measurements of the *Filipendula* species (Species of subgenera are divided by solid lines and those of sections by dotted lines)

Species name	*	Polar axis (P)(µm)**	Equatorial Diameter (E)(µm)**	P/E ratio**	Colpus length (µm)**	Exine thickness (µm)**	Pore size (µm)***	Protrusion number/4 μm	Protrusion ² diam. (µm)
F. occidentalis		19.71±1.05	19.80±1.44	1.00 ± 0.07	15.81±1.73	1.92±0.20	0.58×5.96	21-23	0.07
F. hexapetala	(1)	21.11±1.03	21.83±0.81	0.97±0.04	17.08±1.01	2.24±0.21	1.50×6.13	11-13	0.26
	(2)	20.90 ± 0.41	20.59±0.37	1.02 ± 0.03	16.76±0.33	2.31±0.14	1.52×6.09	11-13	0.26
F. ulmaria	-	17.12 ± 0.62	16.98±0.28	1.01 ± 0.03	13.72±0.79	1.79±0.25	1.08×5.12	7–10	0.29
F. angustiloba	(1)	19.12±0.89	18.57±1.01	1.03 ± 0.04	14.93±1.12	1.67±0.31	0.88×5.33	7-10	0.27
	(2)	19.94±0.14	18.05±0.29	1.11±0.04	15.47±0.35	1.57±0.14	0.75×5.91	7-10	0.27
	(3)	18.82 ± 0.43	16.89±0.27	1.11±0.05	14.67±0.49	1.63±0.22	0.56×5.52	7-10	0.27
F. tsuguwoi		16.87±0.36	16.72±0.29	1.01 ± 0.02	13.54±0.72	1.60 ± 0.30	0.54×5.32	5-7	0.26
F. kiraishiensis	(1)	$18.84{\pm}1.05$	18.97±1.30	1.00 ± 0.07	14.13±0.99	2.56±0.17	1.08×5.58	4–6	0.28
	(2)	19.05 ± 0.37	18.59±0.30	1.02 ± 0.06	14.67±0.37	2.51±0.09	1.23×5.58	4–6	0.28
F. formosa	(1)	18.13±0.90	16.67±0.72	1.09±0.32	14.63±0.68	1.35±0.33	0.42×4.86	7-10	0.29
	(2)	18.79 ± 0.03	17.37±0.04	1.08 ± 0.05	15.47±0.05	1.43 ± 0.20	0.47×4.91	7-10	0.29
F. vestita	(1)	17.68 ± 0.87	17.40±1.18	1.02 ± 0.06	13.39±0.95	1.22±0.15	1.04×5.42	6–9	0.29
	(2)	16.21±0.38	15.82±0.35	1.03±0.07	13.48±0.41	1.28±0.11	1.20×5.36	6–9	0.29
F. yezoensis	(1)	16.21±0.99	15.74±1.08	1.03±0.06	12.90±0.89	1.22±0.28	0.79×4.17	17-20	0.15
	(2)	15.72±0.98	14.64±0.71	1.07±0.05	12.41±1.19	1.41 ± 0.28	0.79×4.25	10-12	0.18
	(3)	15.19±0.31	14.22±0.37	1.07 ± 0.06	12.18±0.34	1.56 ± 0.12	0.67×4.91	10-12	0.18
F. rubra	(1)	19.89±1.18	19.38±0.72	1.03 ± 0.06	16.10±1.14	1.28 ± 0.32	1.08×4.50	11-13	0.29
	(2)	19.19±0.39	19.40±0.37	0.99±0.12	15.32±0.37	1.31±0.14	1.03×4.93	11-13	0.29
F. kamtschatica	(1)	17.56±0.90	16.55±0.98	1.06 ± 0.08	14.13±0.52	1.28 ± 0.44	0.54×4.92	8-10	0.33
	(2)	16.69±0.77	16.51±0.49	1.01 ± 0.05	12.68±1.33	1.12±0.26	0.67×5.58	4–6	0.28
	(3)	17.04 ± 0.22	16.98±0.43	1.09±0.06	13.93±0.27	1.27 ± 0.10	0.28×5.74	8-10	0.28
F. multijuga									
var. <i>multijuga</i>		19.32 ± 1.30	17.26±0.71	1.12 ± 0.06	16.10±1.03	2.05 ± 0.33	0.63×5.54	6-8	0.27
var. ciliata		17.93±1.04	17.23 ± 0.86	1.04 ± 0.05	14.40 ± 1.14	1.35 ± 0.27	0.68×5.75	4–6	0.28
F. palmata									
var. palmata		17.51±0.97	17.09 ± 0.87	1.03 ± 0.04	13.70 ± 1.02	0.96±0.37	0.75×4.29	7–10	0.29
f. nuda		20.06 ± 1.10	20.49±1.12	0.98 ± 0.04	16.63±0.74	2.24 ± 0.40	1.35×5.42	5-7	0.31
F. glaberrima	(1)	18.13 ± 1.02	17.30 ± 1.10	1.05 ± 0.07	14.31±0.98	1.15 ± 0.39	0.48×4.83	11-13	0.27
	(2)	18.94±0.27	17.53 ± 0.25	1.08 ± 0.04	14.60±0.29	1.13 ± 0.11	0.36×5.04	11-13	0.27
F. purpurea									
var. purpurea		17.54±1.55	16.10±1.06	1.09±0.06	13.90±1.74	0.96±0.47	0.41×5.55	11–13	0.22
var. auriculata	(1)	17.43±0.56	15.59±0.10	1.12 ± 0.06	13.86±0.63	0.77±0.22	0.42×5.58	11-13	0.23
	(2)	18.54±0.92	16.06±1.23	1.15 ± 0.07	15.08±1.25	0.64±0.33	0.45×5.64	7–10	0.25
	(3)	16.34±1.20	16.55±1.13	0.99±0.06	11.61±1.15	0.91±0.30	0.42×5.54	7–10	0.21

*, Serial numbers of duplicates are the same as those of SPECIMENS EXAMINED in the text; **, Mean ± standard deviation; ***, Polar diameter (mean) × Equatorial diameter (mean).

Figs. 1–24. Light microscopic photographs of pollen grains of *Filipendula* species. 1–4, 13–16. Equatorial view focused on costa colpi. 5–8, 17–20. Aperture at equator. 9–12, 21–24. Polar cross-section. 1, 5, 9. *F. occidentalis*. 2, 6, 10. *F. hexapetala*. 3, 7, 11. *F. ulmaria*. 4, 8, 12. *F. angustiloba*. 13, 17, 21. *Filipendula vestita*. 14, 18, 22. *F. kiraishiensis*. 15, 19, 23. *F. multijuga* var. *ciliata*. 16, 20, 24. *F. multijuga* var. *multijuga*. 1. Arrow: costa copi not thickened. 9. Arrow: pollen lacking fastigia. Scale bars=4 µm.

F. occidentalis is well matched with the trend of fruit morphology in which the stigma was differentiated from broad to narrow, the style from long to short, and the ovary from slender and lanceolate to broad within the genus (Shimizu, 1961; Lee & Lee, 1998).

Except Schanzer (1994), all the previous authors (Juzepczuk, 1941; Popov, 1957; Shimizu, 1961) treated F. hexapetala as its own monotypic subgen. Filipendula. This monotypic subgenus is characterized by some unique characters in the genus, such as many lateral leaflets, tuberous roots, solid stems, and large calyx tubes. But Schanzer (1989, 1994) synonymized F. hexapetala to F. vulgaris and insisted that some of the above mentioned characters, i.e. root tubers and strongly dissected leaves, are only a kind of adaptation to the dry habitat. He revised the subgen. Ulmaria of Sergievskaya (1967) by adding F. vulgaris plus shifting a few other species between the sects. Ulmaria and Sessilia (Table 1). Palynologically, the monotypic subgen. Filipendula is distinguished from the other two subgenera by possessing a longitudinally elliptic fastigium, large pollen grains, and large pore, which are unique pollen characters in the genus. The distinct position of subgenus Filipendula inferred from pollen morphology is also supported by the fruit morphology in which the fruit is laterally attached and hairless (Lee & Lee, 1998). Schanzer's treatment merging F. vulgaris (to which F. hexapetala was synonymized by himself) to sect. Filipendula is not supported by the present pollen data at all. In addition, the high correlation observed between the pollen size and the floral part sizes in F. hexapetala (Juzepczuk, 1941; Popov, 1957; Shimizu, 1961) is interesting in terms of the functional significance of pollen size characters (Lee, 1978), i.e. the larger the pollen grains, the higher the nutrition contents for the pollen tube to penetrate the style.

The largest subgen. *Ulmaria* s.l. (Popov, 1957; Shimizu, 1961) is delimited by lacking the floral, vegetative, and pollen features, which are possessed by the other two subgenera. Juzepczuk (1941) divided subgen. *Ulmaria* s.l. into two subgenera *Ulmaria* s.s. and *Aceraria*, which was rejected by Popov (1957) and Shimizu (1961). Because there is no supporting evidence to distinguish the two subgenera, the present palynological result does not support Juzepczuk's system, which was later adopted by Sergievskaya (1967).

Within the subgen. *Ulmaria* (*sensu* Shimizu), the subgroupings by different authors are quite incongruous with each other. The present authors tried to find the palynological characters supporting the subgroups, but failed. The pollen morphology of the subgenus has not been differentiated enough to support or reject the sectional classification. Shimizu (1961) and Lee & Lee (1998) pointed out the evolutionary tendency would have proceeded from sect. *Schalameya*, through sect. *Albicoma* and sect. *Sessilia*, to sect. *Ulmaria* by "means of shortening of the ventral margins of achene." Based on the palynological results, however, such a trend was not clear.

Finally, it is noted that the pollen character, such as amb shape and surface protrusion number, is variable within *F. yezoensis*. According to the previous study (Lee & Lee, 1998), fruit shape and size are also variable in this taxon. This seems to be the reason why Kim & Chung (1986) and Sergievskaya (1967) divided this taxon into two different species, *F. koreana* and *F. yezoensis*. In the present paper, we temporarily accepted Shimizu (1961) and Schanzer (1989), in which *F. koreana* was treated as the synonym of *F. yezoensis*. Further studies on the populations would be needed to resolve the taxonomic treatment of the two taxa.

Since last a few decades, molecular systematics studies have contributed to the evaluation of many taxonomic systems. This approach has not been applied to the whole genus *Filipendula*, but it has been used for subfamily Rosoideae (Eriksson et al., 2003), subtribe Geinae (Smedmark et al., 2005), and *Geum* and relatives (Smedmark & Eriksson, 2002), in which *Filipendula* was always the most basal group or an outgroup. Molecular studies of the whole genus would be needed to evaluate the classification systems proposed by previous authors and to test our conclusions based on the palynological results presented here.

Acknowledgements The authors would like to thank the directors of herbaria (GH, KYO, SNU, SNUA, and TI) for allowing us to take pollen samples from specimens in their care. This work was

 $[\]leftarrow$

Fig. 25–39. Scanning electron microscopic photographs of pollen grains of *Filipendula* species. Equatorial view with a colpus. **25.** *F. occidentalis.* **26.** *F. hexapetala.* Arrow: fastigium longitudinally elliptic. **27.** *F. tsuguwoi.* **28.** *F. ulmaria.* **29.** *F. angustiloba.* **30.** *F. vestita.* **31.** *F. kiraishiensis.* **32.** *F. formosa.* Arrow: colpus surface microgranulate or psilate. **33.** *F. palmate* var. *palmate.* **34.** *F. yezoensis.* **35.** *F. rubra.* **36.** *F. glaberrima.* **37.** *F. kantschatica.* **38.** *F. multijuga* var. *multijuga.* **39.** *F. purpurea* var. *purpurea.* Scale bars=3 μm.

supported by GRANT No. KOSEF 951-0100-001-2 from the Korea Science and Engineering Foundation.

References

- Eide F. 1981. Key for Northwest European Rosaceae pollen. Grana 20: 101–118.
- Erdtman G. 1972. Pollen morphology and plant taxonomy, angiosperm. New York: Hafner Publishing Company.
- Eriksson T, Hibbs MS, Yoder AD, Delwiche CF, Donoghue MJ. 2003. The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the *trn*L/F region of chloroplast DNA. International Journal of Plant Sciences 164: 197–211.
- Holmgren PK, Holmgren NH, Barnett LC. 1990. Index herbariorum. Part I: The herbaria of the world. New York: New York Botanical Garden.
- Ikuse M. 1955. General survey list of pollen grains in Japan (6). Botanical Magazine (Tokyo) 30: 303–308.
- Juzepczuk SV. 1941. *Filipendula* Mill. In: Komarov VL ed. Flora of the USSR. Moskva-Leningrad: Izd-vo Akademii Nauk SSSR. 10: 208–215.
- Kim KJ, Chung YH. 1986. Monographic study of the endemic plants in Korea. V. Taxonomy and interspecific relationships of the genus *Filipendula*. Korean Journal of Botany 29: 19–40.
- Lee S. 1978. A factor analysis study of the functional significance of angiosperm pollen. Systematic Botany 3 (1): 1–19.
- Lee S, Kim KH. 1978. Contribution to the pollen morphology and taxonomy of Korean gymnosperms on the generic level. Journal of Korean Forestry Society 40: 35–42.

- Lee S, Lee J. 1998. A taxonomic study of the *Filipendula* Mill. (Rosaceae) on the basis of fruit morphology. Korean Journal of Plant Taxonomy 28: 1–24.
- Ohwi J. 1953. *Filipendula* Mill. In: Ohwi J ed. Flora of Japan. Tokyo: Shibundo Co. Ltd. Publishers. 754–755.
- Popov MG. 1957. *Filipendula* Mill. In: Popov MG ed. Flora Srednei Sibiri. Moskva: Izd-vo Akademii Nauk SSSR. 1: 305–307.
- Reitsma TJ. 1966. Pollen morphology of some European Rosaceae. Acta Botanica Neerlandica 15: 290–307.
- Schanzer IA. 1989. On the geographical variability and evolution of *Filipendula ulmaria* (L.) Maxim. and allied species. Bjulleten Moskovskogo Obscestva Ispytatelej Prirody. Otdel Biologiceskij 94 (6): 59–69.
- Schanzer IA. 1994. Taxonomic revision of the genus *Filipendula* Mill. (Rosaceae). Journal of Japanese Botany 69: 290–319.
- Sergievskaya EV. 1967. A monograph of the genus *Filipendula* Mill. Ph.D. Dissertation. Leningrad: Leningrad State University. (in Russian)
- Shimizu T. 1961. Taxonomical notes on the genus *Filipendula* Mill. (Rosaceae). Journal of the Faculty of Textiles and Sericulture, Shinshu University, ser A, Biology 26 (10): 1–31.
- Smedmark JEE, Eriksson T. 2002. Phylogenetic relationships of *Geum* (Rosaceae) and relatives inferred from the nrITS and *trnL-trnF* regions. Systematic Botany 27: 303–317.
- Smedmark JEE, Eriksson T, Bremer B. 2005. Allopolyploid evolution in *Geinae* (Colurieae: Rosaceae)—building reticulate species trees from bifurcating gene trees. Organisms Diversity & Evolution 5: 275–283.
- Walker JW, Doyle JA. 1975. The bases of angiosperm phylogeny: palynology. Annals of the Missouri Botanical Garden 62: 664–723.