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Abstract  Appropriate and extensive taxon sampling is one of the most important determinants of accurate 
phylogenetic estimation. In addition, accuracy of inferences about evolutionary processes obtained from phyloge-
netic analyses is improved significantly by thorough taxon sampling efforts. Many recent efforts to improve 
phylogenetic estimates have focused instead on increasing sequence length or the number of overall characters in 
the analysis, and this often does have a beneficial effect on the accuracy of phylogenetic analyses. However, 
phylogenetic analyses of few taxa (but each represented by many characters) can be subject to strong systematic 
biases, which in turn produce high measures of repeatability (such as bootstrap proportions) in support of incor-
rect or misleading phylogenetic results. Thus, it is important for phylogeneticists to consider both the sampling of 
taxa, as well as the sampling of characters, in designing phylogenetic studies. Taxon sampling also improves 
estimates of evolutionary parameters derived from phylogenetic trees, and is thus important for improved applica-
tions of phylogenetic analyses. Analysis of sensitivity to taxon inclusion, the possible effects of long-branch 
attraction, and sensitivity of parameter estimation for model-based methods should be a part of any careful and 
thorough phylogenetic analysis. Furthermore, recent improvements in phylogenetic algorithms and in computa-
tional power have removed many constraints on analyzing large, thoroughly sampled data sets. Thorough taxon 
sampling is thus one of the most practical ways to improve the accuracy of phylogenetic estimates, as well as the 
accuracy of biological inferences that are based on these phylogenetic trees. 
Key words  consistency, long-branch attraction, phylogenetic accuracy, phylogenomics, systematic error, taxon 
sampling, Tree of Life. 

The past two decades have seen great progress in 
reconstructing the Tree of Life. The endeavor of 
inferring the relationships among all living things is 
not only of intrinsic interest to biologists, but also has 
many practical applications throughout biology. 
Phylogenetic trees allow biologists to make predic-
tions about biology, because we can infer when and 
where various structures, molecules, or behaviors have 
evolved in living organisms. Trees also provide 
information about the expected distribution of these 
features across taxonomic groups. Moreover, phylog-
enies facilitate the interpretation of comparative 
observations by accounting for the historical 
non-independence of organisms when analyzing 
across various levels of biological organization (e.g., 
genes, genomes, individuals, populations, species, or 
clades).  

The number of practical applications of phy-
logenetics continues to grow each year. For example, 
phylogenetics has become crucial for comparing and 
interpreting the various genome sequencing projects. 

The very reason that many such projects are under-
taken is to provide a broad evolutionary spectrum for 
interpretation of genome function and evolution in the 
framework of the Tree of Life (Eisen, 1998). Without 
a phylogenetic framework, every genome would be a 
new independent mystery, and the detection of gene 
function would be greatly hindered without compara-
tive analyses. In the absence of phylogenetic com-
parisons, studying many gene functions in the human 
genome would require experimentation and manipula-
tion that is not practical or ethical in humans. There-
fore, in a very real sense, the Tree of Life helps us to 
understand how humans function and how we differ 
from one another and from other species. The same is 
also true of all the organisms that we eat, of all the 
organisms that make us sick, of all the organisms that 
maintain our ecosystems, and of all the organisms that 
make the biological world interesting, entertaining, 
and beautiful.  

Applications of phylogenetics are by no means 
limited to the functional and structural study of ge-
nomes, however. Phylogenetic applications span much 
of biology, from human health (Bush et al., 1999) and 
forensics (Hillis & Huelsenbeck, 1994; Metzker et al., 
2002) to conservation biology (Crandall et al., 2000) 
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and studies of behavior (Martins, 1996). Many of 
these applications require accurate phylogenetic 
estimates, not only in terms of tree topologies, but also 
in branch lengths (for estimation of time and/or the 
amount of change), ancestral character states (for 
estimation of evolutionary transitions), and parameters 
of evolutionary models (for study of evolutionary 
processes). In general, accurate molecular phyloge-
netic estimates (estimates that represent true historical 
relationships among species) are dependent on four 
primary factors (Swofford et al., 1996): (1) appropri-
ate selection of target genes for analysis; (2) collection 
of enough sequence data to obtain a robust and re-
peatable estimate; (3) use of accurate analytical 
methods; and (4) sufficient taxon sampling for the 
problem of interest. The first three of these factors 
often receive the greatest attention from investigators, 
but increased taxon sampling can be one of the most 
practical and feasible approaches for improving 
phylogenetic estimates (Zwickl & Hillis, 2002). Here 
we explore and review the effects of taxon sampling 
on phylogenetic analyses and their applications. 

1  Dense taxon sampling improves phyloge-
netic accuracy 

Phylogeneticists have long acknowledged that 
data sets containing a large number of taxa create a 
more complex computational problem for phyloge-
netic analysis. As more taxa are added to a phyloge-
netic data set, the number of possible tree topologies 
increases very rapidly. In addition, the degree of 
homoplasy (convergent changes or reversals) in-
creases with the number of taxa (Sanderson & 
Donoghue, 1989). Regardless, numerous studies on 
the importance of dense taxon sampling have indi-
cated that introducing additional taxa into a phyloge-
netic analysis results (on average) in more accurate 
estimates of evolutionary relationships (Lecointre et 
al., 1993; Philippe & Douzery, 1994; Hillis, 1996, 
1998; Graybeal, 1998; Rannala et al., 1998; Zwickl & 
Hillis, 2002; Pollock et al., 2002; Poe, 1998a, 2003; 
DeBry, 2005; Hedtke et al., 2006). These studies 
represent a broad range of approaches including 
simulations, examinations of well-studied biological 
groups, and comparisons to known phylogenies. Each 
of these approaches has distinct advantages and 
disadvantages (Hillis, 1995) and together they provide 
a strong and consistent message about the importance 
of dense taxon sampling. The benefits of denser taxon 
sampling are especially evident in conjunction with 
more thorough searches of solution space (Fig. 1). 

Additionally, evaluations of phylogenetic analyses 
often attribute problematic reconstruction and low 
resolution to inadequate taxon sampling (e.g., Bremer 
et al., 1999; Johnson, 2001; Lin et al., 2002; Braun & 
Kimball, 2002; Chen et al., 2003; Freudenstein et al., 
2003; Sorenson et al., 2003; Albrecht et al., 2007). 

Although the importance of taxonomic sampling 
has been intensely investigated, many studies have 
focused primarily on parsimony and distance methods. 
Felsenstein (1978) demonstrated that under certain 
circumstances, parsimony methods are inconsistent, 
meaning they converge on an incorrect topology as 
more and more characters are added for a limited 
sample of taxa. When two non-adjacent taxa share 
many homoplastic character states along long 
branches, parsimony methods often interpret such 
similarity as homology. The resulting tree depicts the 
two taxa as sister to one another, attributing the shared 
changes to a branch joining them; this effect is termed 
long-branch attraction (LBA). Inconsistency is not 
restricted to parsimony, however, as all phylogenetic 
reconstruction methods can exhibit this behavior if 
their assumptions are seriously violated or if there are 
not enough taxa in the analysis to accurately estimate 
the parameters of the evolutionary model (Felsenstein, 
1978; Hendy & Penny, 1989; DeBry, 1992; Huelsen-
beck & Hillis, 1993; Yang, 1994; Huelsenbeck, 1995; 

 
 

 
 
Fig. 1.  Error in phylogenetic reconstruction typically decreases with 
increased taxon sampling of a given taxonomic group.  The benefits of 
increased taxon sampling are particularly evident when searches of the 
solution space are more thorough. In this graph (adapted from Zwickl 
& Hillis, 2002, fig. 6), phylogenetic error decreases with increased 
taxon sampling across all analyses. However, the benefits of adding 
additional taxa are smaller if only the stepwise-addition algorithm (SA) 
is used to find an approximate solution, compared to the more thorough 
searches provided by stepwise-addition plus nearest-neighbor-    
interchanges branch-swapping (SA+NNI) or tree bisection-reconnection 
branch-swapping (SA+TBR). Analyses of larger data sets generally 
require more thorough search algorithms (and thus more computational 
effort), but result in greatly decreased phylogenetic error. 
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Lockhart et al., 1996; Gascuel et al., 2001; Huelsen-
beck & Lander, 2003; Susko et al., 2004; Philippe et 
al., 2005). For example, maximum likelihood estima-
tion has been shown to be inconsistent in the presence 
of severe branch-length heterogeneity (heterotachy, a 
form of non-stationarity) if the substitution process is 
assumed to be homogeneous across all lineages 
(Kolaczkowski & Thornton, 2004; Spencer et al., 
2005; Philippe et al., 2005). This example emphasizes 
the need for probabilistic models that incorporate 
complex evolutionary processes (Yang & Roberts, 
1995; Galtier & Gouy; 1998; Foster, 2004; Blanquart 
& Lartillot, 2006; Gowri-Shankar & Rattray, 2007; 
Blanquart & Lartillot, 2008; Kolaczkowski & Thorn-
ton, 2008).  

Including additional taxa in a phylogenetic 
analysis will increase the accuracy of the inferred 
topology by dispersing homoplasy across the tree and 
reducing the effect of long-branch attraction. Hillis 
(1996) analyzed data simulated on a 228-taxon tree 
and showed that simple parsimony and distance 
methods accurately reconstruct the true topology when 
provided with sequences 5,000 nucleotides in length. 
At the time, this result was surprising because it 
seemingly contradicted the common belief that accu-
rate phylogenetic reconstruction from very large data 
sets was infeasible. Moreover, Hillis et al. (1994b) had 
previously shown that analyses of much smaller data 
sets, containing only 4 taxa, required considerably 
longer sequences to attain the same level of accuracy. 
The results of Hillis’s (1996) large-scale simulation 
indicated that for phylogenies containing many taxa, 

convergent substitutions or reversals (homoplasy) are 
distributed among the many lineages in the tree and 
therefore such misleading information is less likely to 
overwhelm the true phylogenetic signal.  

Because inadequate species sampling can result 
in trees containing relatively long terminal branches, 
sparsely sampled data sets are more likely to be 
affected by LBA. Rannala et al. (1998) simulated 
ultrametric trees under a simple model of cladogenesis 
to investigate the impact of removing ingroup taxa on 
the distribution of branch lengths. They demonstrated 
that decreasing the proportion of sampled taxa leads to 
an increase in the average length of terminal branches 
and generates tree shapes that may be susceptible to 
long-branch attraction (Fig. 2). Huelsenbeck and 
Lander (2003) simulated sequences using simple 
evolutionary models and determined that the probabil-
ity that parsimony is inconsistent becomes greater as 
the proportion of taxa sampled decreases and substitu-
tion rates increase. Even under very simple models of 
evolution, unweighted parsimony underestimated the 
number of changes along branches and converged on 
an incorrect topology (Huelsenbeck & Lander, 2003).  

In general, many studies have shown that adding 
taxa to bisect long branches can mitigate the effect of 
LBA (Hendy & Penny, 1989; Graybeal, 1998; Poe & 
Swofford, 1999; Poe, 2003). However, taxon addition 
should be practiced judiciously to ensure that enough 
taxa are added to sufficiently partition multiple long 
branches (Graybeal, 1998; Poe, 2003) and that the 
new taxa do not introduce additional long branches 
(Kim, 1998). Prudent taxon addition is particularly 

 

 
 
Fig. 2.  Two simulations of a birth-death process to model cladogenesis.  The speciation rate (λ) and extinction rate (μ) were fixed throughout the 
simulation and arbitrarily set to λ /μ=2. A, Phylogenetic tree with complete (100%) taxon sampling (20 taxa total). B, Phylogenetic tree with 10% 
taxon sampling (20 taxa sampled from 200 taxa total). When taxon sampling is low, terminal branch lengths are longer, indicating that sparsely 
sampled data sets are susceptible to the effects of long-branch attraction. Adapted from Rannala et al. (1998; figs. 1 and 2). 



Journal of Systematics and Evolution  Vol. 46  No. 3  2008 242 

important when conducting parsimony analyses since 
this method is especially liable to inconsistency due to 
long-branch attraction. Because parametric methods, 
such as maximum likelihood, incorporate models that 
account for unobserved substitutions, these methods 
are less prone to the effects of long-branch attraction, 
as long as the models of evolution are adequate. 
However, enough taxa must be sampled to parameter-
ize these models effectively (Pollock et al., 2002). In 
addition, longer branches require more accurate 
models of evolution (because more unobserved 
changes must be inferred), so increased taxon sam-
pling (which breaks up long branches) greatly benefits 
parametric methods as well as nonparametric meth-
ods. We discuss methods for detecting and minimiz-
ing LBA more completely below. 

Apart from its effect on topological accuracy, the 
density of taxon sampling also has an impact on 
branch-length estimation. Branch lengths provide 
important information about the amount of change 
that has occurred over the tree and are critical for 
applications using phylogenies to make inferences 
about evolution. Under the parsimony criterion, 
branch lengths are often underestimated in sparsely 
sampled regions of the tree because less information is 
available to infer the history of unobserved substitu-
tions (Fitch & Bruschi, 1987; Fitch & Beintema, 
1990). This artifact has been termed the node-density 
effect (NDE) and may mislead studies that investigate 
correlations between rates of molecular evolution and 
biodiversity (Webster et al., 2003; Venditti et al., 
2006; Hugall & Lee, 2007). Maximum likelihood, 
Bayesian, and distance methods are also susceptible to 
node-density effects, particularly when the assumed 
model of sequence evolution is overly simple and 
substitution rates are high (Gojobori et al., 1982; 
Bruno & Halpern, 1999; Hugall & Lee, 2007). If the 
density of taxon sampling is increased, additional 
internal nodes can reveal undetected substitutions and 
improve estimates of branch lengths.  

It has been shown that mis-estimation of branch 
lengths can, in turn, lead to biased tree topologies 
(Xia, 2006). Errors in estimates of genetic distance 
become greater as the amount of divergence between 
two sequences increases. Pairwise distance methods 
for phylogenetic reconstruction typically use log- 
transformed formulae to account for unobserved 
substitutions (Swofford et al., 1996; Hoyle & Higgs, 
2003). When using log-transformed formulae to 
calculate genetic distances, particularly at high levels 
of sequence divergence, there is a significant prob-
ability that the distance estimates will be undefined 

even if the “true” model of sequence evolution is 
assumed (Hoyle & Higgs, 2003). Therefore, when 
conducting distance-based analyses, it is very impor-
tant to consider how taxa are sampled and avoid 
inclusion of highly divergent sequences. 
1.1  Increased taxon sampling versus increased 
sequence length 

Increasing the total number of characters in a 
data set can increase resolution and support for a 
phylogeny (Hillis et al., 1994a; Graybeal, 1994; 
Rannala et al., 1998). In particular, increasing charac-
ter data such as the number of genes (or total number 
of nucleotides) should reduce stochastic error or 
character sampling bias (Phillips et al., 2004; Delsuc 
et al., 2005). The rapidly increasing amount of se-
quence data available to researchers from whole 
genomes, expressed sequence tags or cDNA libraries, 
and individual gene-based studies means that many 
analyses of these character-rich phylogenetic matrices 
can greatly reduce stochastic error. 

This plethora of sequence data has caused some 
researchers to argue that large character data sets 
alone are sufficient to estimate an accurate phylogeny, 
notwithstanding the conclusions reached by numerous 
studies showing the importance of taxon sampling. 
For example, Rosenberg and Kumar (2001) conducted 
a simulation study indicating that adding taxa to a 
problematic phylogeny is less effective than adding 
additional characters. This paper led to a debate in the 
literature and reanalyses of the Rosenberg and Kumar 
(2001) data (Zwickl & Hillis, 2002; Pollock et al., 
2002; Rosenberg & Kumar, 2003; Hillis et al., 2003). 
Pollock et al. (2002) reanalyzed the Rosenberg and 
Kumar (2001) data using a different approach to 
summarizing results (measurement of error), and 
Zwickl and Hillis (2002) re-conducted the Rosenberg 
and Kumar (2001) study with a different approach to 
study design that examined a fuller spectrum of taxon 
sampling strategies. Both studies concluded that taxon 
sampling has a very strong and positive effect on the 
accuracy of phylogenetic reconstruction, and showed 
in many cases that increasing the number of taxa had a 
much greater beneficial effect than increasing the 
number of characters. However, because of the 
ever-increasing availability and generation of genomic 
data and the difficulty of obtaining sequence data for 
many taxa, the debate about the relative importance of 
taxon sampling versus character sampling continues in 
the literature (Hillis et al., 2003; Rosenberg & Kumar, 
2003; Rokas et al., 2003; Cummings & Meyer, 2005; 
Rokas et al., 2005; Hedtke et al., 2006; Gatesy et al., 
2007).  
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More recently, Rokas et al. (2003) argued that, 
under parsimony, an accurate phylogeny for seven 
yeast taxa could be obtained using twenty genes 
randomly selected from a data set of 106, regardless of 
taxonomic sampling. The authors based this claim on 
the bootstrap support for each node in their tree: once 
twenty genes were sampled, the bootstrap support for 
each node rose above 95%, and the topology was 
identical to that of the data set using all 106 genes. 
Therefore, they concluded, accuracy was increased by 
increasing the number of genes, with the implication 
that many phylogenetic studies may be using an 
insufficient number of genes to accurately reconstruct 
topologies. The most obvious problem with their 
study design was that the authors equated high boot-
strap support with accuracy (rather than more properly 
with repeatability). Analyzing many characters may 
result in convergence on a single answer, but small 
systematic biases can result in convergence on the 
incorrect answer (a point we explore in the next 
section). 
1.2  Increased character data can reduce stochas-
tic error, but can contribute to systematic error 

Increasing the number of nucleotides will not 
solve inaccurate reconstruction due to method incon-
sistency, or systematic error. All phylogenetic meth-
ods to date have conditions in which they will perform 
inconsistently. Phylogenomic data sets, which tend to 
have large numbers of characters with relatively few, 
widely dispersed taxa, may be particularly prone to 
problems with long-branch attraction. LBA has been 
identified as causing spurious relationships in 
large-scale studies of several taxonomic groups, 
including mammals (Lin et al., 2002), metazoans 
(Anderson & Swofford, 2004; Baurain et al., 2007), 
arthropods (Delsuc et al., 2003) and angiosperms 
(Stefanovic et al., 2004). When methods are inconsis-
tent, increasing character data can increase statistical 
support for an inaccurate phylogeny (Huelsenbeck & 
Hillis, 1993). This occurs because measures of support 
such as the nonparametric bootstrap proportion or 
Bayesian posterior probabilities are conditional on the 
data and the method (Delsuc et al., 2005).  

A reanalysis of the Rokas et al. (2003) data set by 
Hedtke et al. (2006) showed that much of the conflict 
between genes under parsimony is due to LBA. The 
taxa sampled are unevenly dispersed across the tree of 
yeast, and a long branch leading to the outgroup has a 
tendency to pull particular taxa together across many 
independent genes. Hedtke et al. (2006) additionally 
used genes simulated on a more densely sampled 
yeast phylogeny to demonstrate that for a given 

bipartition affected by long-branch attraction, boot-
strap support for the wrong reconstruction increased 
as genes were added to the analysis (Fig. 3). However, 
when taxon sampling was increased, fewer genes were 
needed to get acceptable support for the correct bipar-
tition. Although Hedtke et al. (2006) did not examine 
increases in support or accuracy across the entire tree, 
their results are consistent with the general finding 
that increased taxon sampling improves accuracy 
across the tree. 

This discussion so far has assumed that all genes 
share the same evolutionary history, and that by 
increasing the number of nucleotides a researcher 
increases the signal for that one history — i.e., that 
topological conflicts between trees based on single 
genes are stochastic. However, genes do not always 
share an identical history, because of horizontal gene 
transfer, introgression, incomplete lineage sorting, or 
gene duplication/loss. In some cases, it may be more 
appropriate to analyze genes separately rather than 
concatenating all the data (e.g., Ane & Sanderson, 
2005), particularly if a researcher is interested in 
identifying processes that may have affected the 
evolution of a species.  

2  Strategies for effective taxon sampling  

We have discussed how increased taxon sam-
pling can generally improve topological estimates. 
Unfortunately, there is no “magic number” of taxa and 
genes which ensures the accuracy of a phylogeny. The 
percentage of taxa sampled within a taxonomic group 
may be more important than the total number of taxa 
(Yang & Goldman, 1997; Hillis, 1998). For small 
clades of closely-related taxa, reduced taxonomic 
sampling may not be problematic for phylogeny 
reconstruction (Poe, 1998b). Critically, whether to 
increase sampling within a taxonomic group of inter-
est should not depend on whether there is statistical 
support for a topology, as strong support does not 
indicate a lack of systematic error. 
2.1  Information theory and taxon addition 

Several techniques have been developed from 
information theory to examine where taxa could be 
added to an analysis to increase the precision of a 
topological estimate (Goldman, 1998; Massingham & 
Goldman, 2000; Geuten et al., 2007). The observed 
information matrix, which is a measure of the sharp-
ness of the curve about the likelihood function, is 
compared to the expected (or Fisher) information 
matrix when a branch is added to different parts of the 



Journal of Systematics and Evolution  Vol. 46  No. 3  2008 244 

 
 
Fig. 3.  A, Well-sampled yeast tree used for simulating data. Dark lines represent four taxa known to be susceptible to long-branch attraction under 
parsimony. B, Results of randomly sampling 1–25 genes for 4–40 taxa. As the number of genes in a parsimony analysis increases, the bootstrap for 
the correct reconstruction of the four-taxon statement decreases, unless taxon sampling is sufficient to break the long branches. Adapted from Hedtke 
et al. (2006; figs. 1 and 3). 

 
topology (Geuten et al., 2007). In essence, this com-
parison indicates the increase in precision of the 
topology estimate that is gained by adding a taxon 
along a particular branch of the tree. Based on a data 
set from angiosperms, Geuten et al. (2007) found that 
information theory generally supports adding addi-
tional taxa close to where the long branch attaches to 
the rest of the tree, in congruence with other studies 
based on simulation (Graybeal, 1998; Poe & Swof-
ford, 1999). Unfortunately, these techniques, while 

promising, have not been rigorously tested, and 
generally assume that one has strong a priori expecta-
tions about where additional taxa might fall on the 
phylogeny.  
2.2  Detecting LBA 

Most studies that explore specific recommenda-
tions for increased taxon sampling focus on detecting 
and correcting LBA. LBA is often cited when a 
topology fails to meet a priori expectations, but 
caution must be applied before attributing unexpected 
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results to method inconsistency (Anderson & Swof-
ford, 2004) or method bias. Many claims of LBA in 
published studies are a posteriori explanations of 
unexpected results. Often, when taxa are added to an 
analysis that originally generated an unexpected tree, 
topological relationships change to match expectations 
based on traditional taxonomy, and this change is 
attributed to LBA (e.g. Lin et al., 2002; Stefanovic et 
al., 2004; Philippe et al., 2005; Baurain et al., 2007). 
Here we discuss strategies which could provide useful 
heuristics for exploring whether method inconsistency 
or bias, particularly LBA, is affecting the analysis. 

Disagreement among independent data sets— 
particularly those based on traditional morphological 
taxonomy versus molecular analyses—may be the 
first signal that LBA may be present in the data set 
(Lin et al., 2002; Chen et al., 2003). If two long 
branches are unexpectedly drawn together in one or 
the other analysis, LBA may be the culprit. However, 
a researcher must also consider the alternative that 
traditional taxonomy may be wrong (e.g., Ammerman 
& Hillis, 1992; Van Den Bussche et al., 1998). The 
two long branches may in fact be sister taxa, or may 
be brought together by LBA. To distinguish these 
hypotheses, one technique is to prune each 
long-branched taxon successively from the analysis, 
and observe whether the topology changes (Bergsten, 
2005). Presumably, if the position of a long-branched 
taxon changes dependent upon the inclusion of other 
long-branched taxa, LBA may be implicated. Unfor-
tunately, this test is not definitive, because other 
characteristics of the excluded taxa could be affecting 
the topology as a whole. 

Simulated data generated under different hy-
potheses could be analyzed to compare possible 
topologies and get a sense of potential error rates in 
the analysis (Van Den Bussche et al., 1998; Sanderson 
et al., 2000). In this parametric bootstrapping ap-
proach, data are simulated under each hypothesis 
using model parameters estimated from the biological 
sequence data. For example, one could identify the 
alternative hypothesis by running a phylogenetic 
analysis constrained to find the best tree which does 
not place two suspect taxa as sister groups. If analyses 
of replicate data sets simulated on this tree tend to 
bring the two suspect taxa together more often than 
expected by chance, then one cannot reject the possi-
bility that the two taxa are grouped due to systematic 
error or bias. However, as with all parametric ap-
proaches, investigators should consider the adequacy 
of the simulation model. Under-parameterized models 
may underestimate the potential for LBA. 

2.3  Outgroup sampling 
Outgroup taxa tend to be on long branches, either 

because of the processes of cladogenesis, because of 
extinction events between the outgroup and the in-
group, or because of inappropriate selection of out-
group taxa. When the outgroup is distantly related to 
the ingroup, long branches in the ingroup can be 
drawn toward the base of the tree by LBA, affecting 
ingroup relationships (Hillis, 1998; Rannala et al., 
1998) or misplacing the root of the tree (Holland et al., 
2003). Holland et al. (2003) used simulated data to 
demonstrate this effect not just for parsimony, but for 
maximum likelihood and distance analyses as well. 
Graybeal (1998) suggested that error could be reduced 
through the use of multiple outgroup taxa separated by 
short internal branches. 

One method to examine whether outgroup choice 
is affecting the topology of the ingroup is to run the 
analysis using the ingroup taxa only (Holland et al., 
2003; Bergsten, 2005). If the ingroup topology is 
influenced by the long branch leading to the outgroup, 
the unrooted topology with and without the outgroup 
will change. This technique will not allow the re-
searcher to distinguish whether the rooting of the tree 
(placement of the outgroup) is correct; only whether 
the outgroup is influencing the ingroup topology. A 
second method to evaluate outgroup choice is to 
simulate a number of random sequences which are 
each used to root the tree (Sullivan & Swofford, 
1997). This can indicate the relative probabilities for 
rooting positions when no historical signal is present 
in the data for the outgroup. In both cases, if use of a 
particular outgroup leads to LBA problems, sampling 
more outgroup taxa may assist in detecting homoplasy 
and reducing the effects of the long outgroup branch. 
2.4  Ingroup sampling 

If LBA is detected within the ingroup, long- 
branch subdivision by addition of taxa could mitigate 
this effect (Fig. 4; Hendy & Penny, 1989; Hillis, 
1996). The strategy of long-branch subdivision has 
been examined using both simulated (e.g., Graybeal, 
1998; Poe & Swofford, 1999; Poe, 2003) and biologi-
cal (e.g., Poe, 1998a; Baurain et al., 2007) data. In 
parsimony analyses, there are cases in which the 
addition of one taxon can actually cause LBA; this has 
been demonstrated using simulated data in the 
four-taxon case when the new taxon introduces a new 
long branch (Rannala et al., 1998; Poe & Swofford, 
1999), or when there are three long branches, and 
breaking one causes the remaining two to become 
drawn together (Fig. 4; Poe & Swofford, 1999; Poe, 
2003). In this case the new taxon introduces an 
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Fig. 4.  Effects of long-branch subdivision on accuracy in four-taxon trees, based on simulated data.  For each tree, branch lengths of long branches 
are 0.5, of short terminal branches 0.1, and of internal branches 0.05. Dots indicate when a long branch was broken at length 0.1 from the internal 
node. Poe (2003) evaluated 6 different reconstruction methods, 3 are summarized in this figure: unweighted maximum parsimony (MP), maximum 
likelihood with an under-parameterized model of substitution (MLU), and maximum likelihood with the true model of substitution (MLT). The 
numbers are the percentage of time the true, four-taxon tree was recovered in 100 replicate simulations. The arrows indicate increased ( ) or de-
creased ( ) accuracy as a result of the added taxa, and no arrow indicates that the accuracy was unaffected. Adapted from Poe (2003; fig. 3).  
 

 
asymmetrical pattern of homoplasy and long-branch 
attraction results in an incorrect reconstruction. In 
addition, adding only one taxon may not be sufficient 
to alleviate LBA if the branch is sufficiently long 
(Poe, 2003; Hedtke et al., 2006) or if the added taxon 
is placed towards the tip (Graybeal, 1998). However, 
both these effects are diminished if enough taxa are 
added along long branches (Poe, 1998a; Anderson & 
Swofford, 2004; Hedtke et al., 2006). For example, in 
the Hedtke et al. (2006) simulation study, adding taxa 
increased accuracy for a particular bipartition only 
when the added taxa divided a long branch that was 
causing long-branch attraction. 
2.5   Adding taxa with missing data 

Adding taxa with incomplete character informa-
tion to a supermatrix has primarily been evaluated in 
parsimony-based morphological analyses in reference 
to fossil data. Incomplete fossil data are not always 
beneficial, as they may reduce support for some nodes 

(Wiens, 2003; Wiens, 2005; Cobbett et al., 2007). 
However, it appears that well-chosen fossil data can 
be helpful in breaking long branches, even if incom-
plete, as these morphological characters can be infor-
mative about character reconstruction at branching 
nodes (Donoghue et al., 1989; Huelsenbeck, 1991). 
The effect of missing character data on sequence 
analysis is still being debated, with some researchers 
arguing that adding taxonomic data is beneficial even 
if the resulting supermatrix has a large proportion of 
missing data (e.g., 25%: Philippe et al., 2004; 75%: 
Wiens & Reeder, 1995; 95%: McMahon & Sanderson, 
2006). However, Lemmon et al. (in press) used simu-
lated data to demonstrate that missing sequence data 
can positively mislead model-based methods. This 
depends in part on the relative rates of evolution for 
sites with and without missing data, and the topologi-
cal position of those taxa with missing data. This is an 
area of active research, and caution should be used 
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when combining taxa with missing data until this 
issue has been more completely explored using both 
simulated and biological data sets. 
2.6  Alternatives to increased taxon sampling 

Several other techniques of combating method 
inconsistency have been suggested. Because inconsis-
tency or bias results from violation of model assump-
tions (e.g., not accurately modeling multiple substitu-
tions), finding a better-fitting model could solve the 
problem (Olsen, 1987; Whelan & Goldman, 2001; 
Lartillot & Philippe, 2004; Anderson & Swofford, 
2004; Delsuc et al., 2005; Baurain et al., 2007; Lartil-
lot et al., 2007). To reduce inconsistency due to LBA, 
it has been suggested that either eliminating 
fast-evolving sites from the analysis (Delsuc et al., 
2002; Delsuc et al., 2005; Rodriguez-Ezpeleta et al., 
2007) or coding all the data to represent only less 
frequent transversions (“RY” coding: Phillips et al., 
2004; Delsuc et al., 2005) would reduce saturation and 
compositional bias in the data set, and thus reduce 
LBA. Using amino acid data (with models which take 
into account site heterogeneity, e.g., Lartillot & 
Philippe, 2004) may be another alternative to using 
raw sequence data. However, the actual effect of 
saturated sequences on phylogenetic analyses has been 
incompletely explored. Hillis (1998) simulated se-
quence data on a tree with such long branch lengths 
that the sequences would not be recognizable as 
homologous, but phylogenetic methods were still able 
to reconstruct the correct tree when taxon sampling 
was sufficient. Exclusion of data (whether by exclud-
ing sites or reducing their information) may be useful 
in eliminating the problem of a particular set of long 
branches, but this may be at the expense of resolution 
in other regions of the tree.  

3  Taxon sampling affects parameter esti-
mation 

Many advances in phylogenetic analysis over the 
past two decades have involved model-based ap-
proaches, such as maximum likelihood and Bayesian 
analyses (Swofford et al., 1996; Ronquist & Huelsen-
beck, 2003; Felsenstein, 2004). In general, these 
parametric methods outperform nonparametric meth-
ods in both simulations and experimental studies 
(Hillis et al., 1994a; Huelsenbeck, 1995; Cunningham 
et al., 1997). However, accurate phylogenetic results 
from model-based studies depend, at least in part, on 
reasonably accurate parameter estimates for the 
models of evolution (Goldman, 1993; Hillis et al., 

1994b; Cunningham et al., 1998; Lemmon & 
Moriarty, 2004; Brown & Lemmon, 2007). One of the 
reasons that increased taxon sampling results in more 
accurate phylogenetic estimation for these model- 
based methods is that sampling additional taxa also 
improves parameter estimation (Pollock et al., 1999; 
Sullivan et al., 1999; Pollock & Bruno, 2000; Pollock 
et al., 2002). In addition, as branch lengths are short-
ened, there are fewer unobserved changes that need to 
be inferred, so the accuracy of the inference becomes 
less dependent on the model of evolution. 

In addition to their effect on phylogenetic analy-
ses, the parameters of evolutionary models are them-
selves of interest to biologists. These parameters are 
often gene-specific, so collecting genomic-scale data 
from many genes across only a few taxa does little to 
improve our estimates of the details of evolutionary 
models. Instead, a thorough taxon-sampling approach 
is needed for each gene. Of course, the evolutionary 
processes may not be static across the Tree of Life for 
any given gene, so models that account for non- 
stationarity in these processes can provide better 
descriptions of evolutionary history (Yang & Roberts, 
1995; Galtier & Gouy, 1998; Foster, 2004; Blanquart 
& Lartillot, 2006; Boussau & Gouy, 2006; Gowri- 
Shankar & Rattray, 2007; Blanquart & Lartillot, 2008; 
Kolaczkowski & Thornton, 2008). These models relax 
the assumption of time-homogeneity and can be used 
to detect signatures of complex evolutionary proc-
esses, such as compositional heterogeneity or hetero-
tachy (branch-length heterogeneity), that are known to 
exist in biological data (Lockhart et al., 1992; Foster 
et al., 1997; Mooers & Holmes, 2000; Lopez et al., 
2002; Jermiin et al., 2004; Ane et al., 2005). Non- 
stationary models can greatly increase the need for 
even more thorough taxon sampling, because the 
model parameters may need to be estimated multiple 
times across the tree, rather than once for all taxa. It is 
important to note, however, that under non-stationary 
models, the number of parameters can increase as 
more sequences are added, thus increasing the com-
putational difficulty of phylogenetic reconstruction 
from large data sets. Nonetheless, this obstacle may be 
mitigated by the use of carefully constructed priors in 
a Bayesian MCMC framework (Yang, 2006) and with 
the development of computational methods for calcu-
lating likelihoods from non-reversible models (Bous-
sau & Gouy, 2006). 

Some of the parameters that have been shown to 
be important for phylogenetic estimation include 
site-specific rates of evolutionary change; rates of 
change across first, second, and third positions of 
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codons; rates of change relative to changes in func-
tional groups of amino-acid residues; relative rates of 
the various classes of transitions and transversions 
between nucleotide states; branch-specific rates of 
evolutionary change; and taxon-specific differences in 
base composition (Olsen, 1987; Steel et al., 1993; 
Hasegawa & Hashimoto, 1993; Hillis et al., 1993; 
Leipe et al., 1993; Goldman & Yang, 1994; Steel, 
1994; Swofford et al., 1996). The number of taxa that 
are needed to effectively estimate these parameters 
differ greatly across the parameters, but all of the 
estimates are improved by more thorough taxon 
sampling. For instance, Pollock and Bruno (2000) 
noted significant improvement in parameter estima-
tion (and in turn, phylogenetic estimation) as their 
taxon samples increased from 4 to 8 to 16 to 24 taxa. 
They concluded that both phylogenetic reconstruction 
and estimation of unknown evolutionary processes 
show greater improvement through increasing taxon 
sampling than by increasing sequence length. In some 
cases, reasonable parameter estimates may be ob-
tained from external data sources, such as the HIV 
database, and then applied to a more limited set of 
taxa in the phylogenetic analysis (Hillis, 1999). How-
ever, for most taxa, the appropriate comparative data 
must be obtained by the investigator for a specific 
group of species under study.  

4  Dense taxon sampling improves infer-
ences of evolutionary processes 

Beyond simply broadening our understanding of 
species relationships, phylogenetic trees are essential 
tools used in many areas of biology. Phylogenies are 
often used to explain broad evolutionary patterns and 
processes such as the evolution of adaptive traits, 
ancestral character states, the timing of species diver-
gences, and variation in evolutionary rates. Many of 
the applications developed for these types of analyses 
require robust and accurate estimates of phylogeny 
(topology, branch lengths, and root position). This is 
an important consideration in and of itself; however, 
post-tree reconstruction applications are sensitive to 
reduced levels of data sampling, even when provided 
with an accurate phylogenetic tree. 
4.1  Comparative methods 

Comparative analyses are a fundamental compo-
nent in the fields of evolutionary biology, behavior, 
and ecology. The development of statistical methods 
that incorporate phylogenetic trees (Felsenstein, 1985) 
have allowed for robust and reliable tests of the 

evolution of adaptive traits and the processes that 
might drive diversification. For example, these meth-
ods have been used to reveal patterns in the biodiver-
sity of marine teleost fishes (Alfaro et al., 2007) and 
to show that independent origins of dietary specializa-
tion have been a major factor in the evolution of 
defensive mechanisms in neotropical poison frogs 
(Darst et al., 2005). Comparative analyses of character 
evolution using phylogenetic comparative methods 
require attention to adequate sampling at many levels. 
At the intraspecific level, poor sampling of organismal 
attributes can lead to measurement error, which may 
result in an underestimation of the variance of con-
trasts between sister taxa (Ricklefs & Starck, 1996). 
Generation of a robust phylogeny is extremely impor-
tant since different comparative methods have differ-
ent ways of dealing with topological uncertainty 
(Purvis et al., 1994). In addition, fewer taxa (and thus 
fewer internal nodes for calculating contrasts) can lead 
to increased variance and uncertainty in the results. 
Ackerly (2000) used simulated data to show that the 
statistical power of several comparative tests de-
creased as the sample size of taxa decreased, and that 
careful attention should be paid to how species are 
sampled for these analyses. Biased taxon sampling, 
particularly with respect to the characters of interest, 
can lead to systematic biases in the calculation of 
statistical correlations between characters. The results 
presented by Ackerly (2000) indicate that uniform, 
random sampling of taxa does not introduce error in 
phylogenetic comparative methods.  
4.2  Ancestral character states 

An integral component of phylogenetic compara-
tive analyses and other evolutionary applications is the 
reconstruction of ancestral character states. These 
methods use phylogenetic trees and branch lengths to 
infer the states of discrete or continuous characters at 
ancestral nodes, and have been used to reconstruct 
such diverse ancestral characters as the advertisement 
calls of frogs in the genus Physalaemus (Ryan & 
Rand, 1995, 1998), the fruiting-body forms of homo-
basidiomycetes (Hibbett, 2004), and ancient bacterial 
protein sequences (Gaucher et al., 2003). Dense taxon 
sampling is also an important consideration for ances-
tral-state reconstruction methods. Salisbury and Kim’s 
(2001) analyses of simulated data and trees indicated 
that the accuracy of parsimony ancestral-state estima-
tion decreases with reduced taxon sampling and 
increased rates of character evolution (Fig. 5). Be-
cause parsimony methods do not account for unob-
served changes, they usually underestimate the num-
ber of changes along a branch (Fitch & Bruschi, 1987;  
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Fig. 5.  The mean probabilities, Pr (Correct), of correctly estimating 
the root state of a binary character evolving at 3 different rates (r) on 
subsamples of 512-taxon, pure-birth model tree topologies.  Each 
point is the mean for a sample of 100 trees and the error bars represent 
the ± 1 standard deviation. Adapted from Salisbury and Kim (2001; fig. 
1). 
 
 
Fitch & Beintema, 1990; Huelsenbeck & Lander, 
2003). Dense taxon sampling can reduce this effect 
and improve the accuracy of parsimony ancestral-state 
estimates. Maximum likelihood and Bayesian meth-
ods for reconstructing ancestral states have also been 
developed (Pagel, 1994; Schluter et al., 1997; Pagel, 
1999; Huelsenbeck & Bollback, 2001; Pagel et al., 
2004). These parametric ancestral-state reconstruction 
methods are also sensitive to high rates of character 
evolution. However, Schluter et al. (1997) showed 
that parsimony ancestral-state reconstruction methods 
often fail to identify ambiguous-node state estimates. 
Conversely, maximum likelihood and Bayesian 
methods are less likely to provide misleading results 
because these methods incorporate branch-length 
information and explicit models of character evolution 
and quantify uncertainty in ancestral-state estimates 
(provided that the model assumptions are adequate). 
Bayesian approaches, in particular, use Markov chain 
Monte Carlo sampling to accommodate and quantify 
uncertainty in the tree topology, branch lengths, 
ancestral states, and model parameters (Huelsenbeck 
& Bollback, 2001; Pagel et al., 2004). Denser taxon 
sampling reduces the number of unobserved evolu-

tionary events, and so is also expected to simplify and 
improve the reconstruction of ancestral states in 
model-based analyses. 
4.3  Divergence time estimation 

A primary field of research in evolutionary biol-
ogy involves estimation of the timing and rate of 
evolutionary processes. In these applications, phy-
logenetic trees are used to date speciation events and 
infer lineage-specific substitution rates. Reliable 
estimates of species divergence times are fundamental 
components for understanding historical biogeogra-
phy, testing hypotheses of adaptive character evolu-
tion, and estimating speciation and extinction rates. 
However, divergence time estimation is hindered by 
the fact that the rate of evolution and time are intrin-
sically linked when inferring genetic distances be-
tween lineages. Several methods test for variation in 
the rates of molecular evolution or tease apart the rate 
of substitution and time by applying models for 
estimating lineage-specific substitution rates. These 
methods include strict molecular clock models (Zuck-
erkandl & Pauling, 1962; Langley & Fitch, 1974), 
local molecular clocks (Kishino & Hasegawa, 1990; 
Rambaut & Bromham, 1998; Yoder & Yang, 2000; 
Yang & Yoder, 2003), non-parametric and semi- 
parametric methods for estimating autocorrelated 
substitution rates (Sanderson, 1997, 2002), and 
Bayesian methods for estimating autocorrelated and 
uncorrelated rates (Thorne et al., 1998; Huelsenbeck 
et al., 2000; Kishino et al., 2001; Thorne & Kishino, 
2002; Drummond et al., 2006; Lepage et al., 2006). 
These various approaches have been applied to a 
number of biological data sets (e.g., Yang & Yoder, 
2003; Smith et al., 2006; Bell, 2007; Hugall et al., 
2007; Roelants et al., 2007; Zhou & Holmes, 2007). 
Current implementations of most of these methods 
require a fixed tree topology and sometimes fixed 
branch lengths (Thorne & Kishino, 2002; Sanderson, 
2003; Lepage et al., 2007; for exceptions see Drum-
mond et al., 2006). Because of their reliance on phy-
logenetic data, these methods can be sensitive to taxon 
sampling density. Robinson et al. (1998) evaluated the 
effect of reduced taxon sampling on the performance 
of the relative-rates test. The relative-rates test (Sarich 
& Wilson, 1973; Wu & Li, 1985) is used to compare 
the substitution rates between two species and has 
been extended for analyzing larger phylogenetic trees 
to detect rate variation (Li & Bousquet, 1992; 
Takezaki et al., 1995). The simulation study of Rob-
inson et al. (1998) showed that increased proportions 
of taxon sampling improved the accuracy of the 
relative-rates test.  
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Most of the work exploring the accuracy of mo-
lecular dating methods has revealed that these meth-
ods are very sensitive to the fossil calibrations used 
and little is known about the impact of taxon sampling 
on divergence time estimates (Yang & Rannala, 2006; 
Rutschmann et al., 2007; Hugall et al., 2007). A recent 
study by Hug and Roger (2007) used two biological 
data sets with low levels of taxon sampling (30 meta-
zoan taxa with two outgroup species, and a 36 taxon 
data set that spanned all eukaryotes) and concluded 
that, for these data sets, reduced taxon sampling was 
not an important factor in the estimation of node 
times. However, their analyses showed that the choice 
and application of fossil calibration points resulted in 
a significant impact on the estimates of node ages. 
From their results, Hug and Roger (2007) recom-
mended that biologists should focus on improving the 
number and quality of their fossil calibrations and not 
on increasing taxon sampling, provided there are 
enough taxa to obtain a reliable estimate of phylog-
eny. However, because of the sparsely sampled data 
sets used in this study and the demonstrated extreme 
sensitivity of these data to fossil constraints, Hug and 
Roger’s (2007) results may not apply to a more gen-
eral set of conditions and the importance of dense 
taxon sampling for estimating species divergence 
times is still an open question.  

Node-density effects, as a result of uneven taxon 
sampling, may adversely affect molecular dating 
analyses (Hugall & Lee, 2007). Based on the studies 
demonstrating the sensitivity of divergence time 
estimation methods to fossil calibration choice (Near 
& Sanderson, 2004; Near et al., 2005; Roger & Hug, 
2006; Yang & Rannala, 2006; Ho, 2007; Hugall et al., 
2007; Rutschmann et al., 2007), together with studies 
emphasizing the importance of increased taxon sam-
pling on phylogenetic reconstruction methods and the 
estimation of evolutionary parameters (Lecointre et 
al., 1993; Hillis, 1996, 1998; Graybeal, 1998; Rannala 
et al., 1998; Pollock & Bruno, 2000; Zwickl & Hillis, 
2002; Pollock et al., 2002; Poe, 2003; DeBry, 2005; 
Hedtke et al., 2006), we recommend increased collec-
tion of fossils and improved taxon sampling density 
for these types of analyses, whenever possible. Maxi-
mizing the number of fossil calibration points goes 
hand-in-hand with increasing taxon sampling because 
densely sampled trees provide a greater number of 
internal nodes on which an investigator can place a 
fossil calibration. Moreover, investigators are far more 
restricted by the availability of fossils and other types 
of information for calibrating divergences than by the 
availability of extant taxa. Further investigation using 

simulations and well-sampled data sets of living and 
fossil taxa should help shed light on this issue. Be-
cause extensive taxon sampling (especially of fossil 
taxa) is sometimes impractical, Bayesian methods for 
divergence time estimation present promising oppor-
tunities to account for uncertainty in phylogenies by 
simultaneously estimating the tree topology and 
branching times (Drummond et al., 2006). These 
methods can also incorporate information on taxon 
sampling density in the form of priors on the distribu-
tion of divergence times (Yang & Rannala, 1997, 
2006).  
4.4  Evaluating diversification rates 

Phylogenetic trees are fundamental for under-
standing variation in species diversity. Methods for 
elucidating patterns of speciation and extinction 
measure the shape of phylogenies to detect shifts in 
diversification rates or to estimate global net diversi-
fication rates. Phylogenetic tree shape can be meas-
ured by quantifying how node ages are distributed 
over time or by calculating the degree of asymmetry 
among lineages in the tree. Measures of tree shape can 
be compared to a null model that assumes all lineages 
have experienced the same rate of diversification 
(Shao & Sokal, 1990; Kirkpatrick & Slatkin, 1993; 
Nee et al., 1994b; Pybus & Harvey, 2000; Agapow & 
Purvis, 2002). Analyses of the temporal distribution of 
diversification events use branch lengths obtained 
from time-adjusted phylogenies to estimate and detect 
large shifts in speciation and extinction rates (Nee et 
al., 1994b; Pybus & Harvey, 2000). For example, 
Becerra (2005) applied these methods to investigate 
temporal and biogeographic processes that may have 
shaped the diversity of the plant genus Bursera. The 
results of this study indicate that the radiation of this 
group is associated with the establishment of tropical 
dry forest habitat in Mexico. However, inadequate 
taxon sampling has a significant impact on these 
methods (Nee et al., 1994a). Nee et al. (1994a) used 
lineages-by-time plots to show that incomplete taxon 
sampling can result in an apparent reduction in the 
rate of diversification over time, even when the tree 
evolved under constant rates of speciation and extinc-
tion.  

Analyses based on topology measure asymmetry 
in the distribution of lineages over a tree to test for 
changes in diversification rates. These methods evalu-
ate the balance either at a single node or over the 
entire tree (Shao & Sokal, 1990; Kirkpatrick & Slat-
kin, 1993; Agapow & Purvis, 2002) and are often used 
to detect patterns characteristic of rapid radiations in 
phylogenetic trees (Guyer & Slowinski, 1993; Chan & 
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Moore, 1999, 2002). The degree of taxon sampling is 
an important consideration when conducting these 
analyses. Several studies have shown that published 
phylogenies are (on average) much more imbalanced 
than expected under a model assuming constant 
diversification rates (Guyer & Slowinski, 1991; 
Heard, 1992; Mooers, 1995; Purvis & Agapow, 2002; 
Holman, 2005; Blum & François, 2006; Heath et al., 
2008). Mooers (1995) compared the level of tree 
imbalance in a collection of published phylogenies 
and found that incomplete trees are more imbalanced 
than completely sampled phylogenies. Another study 
by Heath et al. (2008) examined the effect of random 
taxon sampling on empirical trees and on phylogenies 
simulated under different models of cladogenesis. 
They found that reduced taxon sampling of empirical 
trees and trees simulated under variable and autocor-
related speciation and extinction rates causes an 
increase in node imbalance. These results suggest that 
poor taxon sampling leads to an increase in the ap-
parent rate variation because of the overrepresentation 
of older nodes. The bias caused by incomplete species 
sampling must be considered when using phylogenies 
to test hypotheses about species diversity. 

5  Innovations in reconstruction algorithms 
and the analysis of large data sets 

Until recently, computational constraints on 
phylogenetic analyses made inclusion of large num-
bers of taxa impractical for many biologists. However, 
developments in computational power, parallel com-
putation, and phylogenetic algorithms have greatly 
decreased computational constraints for phylogenetic 
analyses of many taxa, even for the most computa-
tionally demanding parametric approaches (e.g., 
Brauer at al., 2002; Lemmon & Milinkovitch, 2002; 
Guindon & Gascuel, 2003; Ronquist & Huelsenbeck, 
2003; Stamatakis, 2006; Minh et al., 2005; Zwickl, 
2006). Quick but imprecise clustering techniques, 
such as the widely used neighbor-joining algorithm 
(Saitou & Nei, 1987), are rapidly being replaced by 
methods that more thoroughly explore solution space 
using a clearly defined model of evolution (imple-
mented in such programs as RAXML, GARLI, 
PhyML, IQPNNI, MRBAYES, and PAUP*; see http: 
//evolution.genetics.washington.edu/phylip/software. 
html for more information). Analyses of hundreds to 
thousands of taxa have become routine for parsimony, 
maximum likelihood, and Bayesian approaches, and 
analyses of tens-of-thousands of taxa are now feasible, 
even for parametric methods. Therefore, computa-

tional constraints can no longer be viewed as a serious 
impediment to thorough taxon sampling. Instead, the 
limitations of taxon sampling have now shifted to 
problems of taxon availability and the constraints of 
specimen and data collection. Given the many benefits 
of thorough taxon sampling summarized in this paper, 
we advise biologists to carefully consider taxon 
sampling design in planning, conducting, and inter-
preting phylogenetic analyses. In many cases, in-
creasing taxon sampling is one of the most practical 
and beneficial approaches to increasing the accuracy 
of phylogenetic estimates and the biological infer-
ences that are derived from phylogenetic trees. 
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