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Abstract. Influences of specific sources of inorganic £  emissions, and changes to jlldmissions in regions domi-
on peak and ambient aerosol concentrations in the US araated by natural sources are disproportionately more effec-
evaluated using a combination of inverse modeling and sentive than regions dominated by anthropogenic sources, NO
sitivity analysis. First, sulfate and nitrate aerosol measure-controls are most effective in northern states in October; in
ments from the IMPROVE network are assimilated using January, SQcontrols may be counterproductive. When con-
the four-dimensional variational (4D-Var) method into the sidering ambient inorganic PM concentrations, interconti-
GEOS-Chem chemical transport model in order to constraimental influences are small, though transboundary influences
emissions estimates in four separate month-long inversiongithin North America are significant, with SCemissions
(one per season). Of the precursor emissions, these obsdrom surface sources in Mexico contributing almost a fourth
vations primarily constrain ammonia (NH While the net  of the total influence from this sector.
result is a decrease in estimated US \#hissions relative
to the original inventory, there is considerable variability in
adjustments made to Nfemissions in different locations,
seasons and source sectors, such as focused decreases inthe
midwest during July, broad decreases throughout the US iIT.
I
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emissions on representative PMair quality metrics within . . )
P Bb/air g Y eter less than 2.b6m (PM.5) exceed the National Ambient

the US. The resulting sensitivity maps display a wide range

of spatial, sectoral and seasonal variability in the susceptibil—Alr Quality Standards (NAAQS)EPA, 2002 2004. On av-

erage, about half of the mass of such aerosol is composed

ity of the air quality metrics to absolute emissions changes . : : :
and the effectiveness of incremental emissions controls of | (€ inorganic species sulfate ($9. nitrate (NG}) and

specific source sectors. Nigmissions near sources of sulfur 2mMmMonium ('_\”'D! which will be the focus of the present
oxides (SQ) are estimated to most influence peak inorganicWOrk- Formation of effective regulatory measures for control
PM, 5 levels in the East: thus, the most effective controls of ©f inorganic PM s requires both comprehensive estimates of
NH3hemissions are often disjoint from locations of peakd\NH existing inorganic aerosol distributions and also a means of
emissions. Controls of emissions from industrial sectors of2SS€ssing how emissions abatement would alter such distri-

SO, and NG, are estimated to be more effective than surfacePutions. Both of these tasks are made difficult by the fact
that inorganic PMs is generally not directly emitted; rather,

it is formed secondarily in the atmosphere via chemical and
Correspondence tdD. K. Henze thermodynamic transformations of gas-phase precursors that
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Existing studies of sources of secondary inorganic aerosolnd influential for aerosol formation and thus a critical fac-
within the continental US follow several approaches. De-tor for improving estimated distributions of nitrate aerosol
tailed field measurements combined with meteorologicalin the continental USRark et al. 2004 Yu et al, 2005
back trajectories and process analysis provide insight intdNowak et al, 2006 Park et al.2008§ Liao et al, 2007 Zhang
the nature of the governing chemical mechanisms and conet al, 2008 Wu et al, 2008 Stephen and Aneja2008.
tributing sources (e.gQuinn et al, 2006 Brock et al, 2008 Previous inverse modeling studies of $I-rh the US using
de Gouw et a].2008. Lagrangian chemical trajectory mod- a Discrete Kalman filterGilliland and Abbitt 2001) esti-
els are used to further assess the role of various physical anghated improved monthly emissions scaling factors for to-
chemical processes along specific source — receptor pathtal US NH; emissions using observations of ammonium wet
(Yu et al, 2008. Factor analysis of Pk concentrations deposition Gilliland et al, 2003 2006. In a separate ef-
is used to statistically estimate contributions from emissionsfort, Mendoza-Dominguez and Russ€200Q 2001 opti-
source sectors to a set of measuremeBtinkman et al, mized domain-wide emissions scaling factors for eight types
2008 Lee et al, 2008, typically on the scale of individ- of emissions (including SQ NOy and NH;) over the eastern
ual metropolitan areas. Eulerian chemical transport mod-US using observations of gas-phase inorganic and organic
els can reveal the influence of sources of inorganioPM  species and speciated fine particles. In these studies, the spa-
by comparing model simulations with and without emissionstial distributions of emissions were assumed to be known;
(toggling) from specific sectors or locations, such as transthe magnitude of the emissions were adjusted using domain-
boundary vs. local emission®4rk et al. 2004 Knipping wide scaling factors. For a sensitivity study@illiland et al.
et al, 2006 Chin et al, 2007. Direct decoupled sensitivity (2006, two separate scaling factors for Eastern and Western
analysis is a more efficient method than emissions togglingocations were considered. These studies provide valuable
for estimating the sensitivity of aerosol concentrations overconstraints on total emissions budgets and highlight the im-
the entire model domain with respect to a large number ofportance of improving estimates of inorganic Piprecur-
sources without perturbing the forward model stdtede-  sor emissions.
lenok et al, 2006. More directly, tracking sources of inor- The present works seeks to improve upon previous inverse
ganic PM s using emissions-labeled tracers is used to explic-modeling studies via application of the four-dimensional
itly apportion aerosol estimates by source on local to hemi-variational data assimilation technique (4D-VaRa(nay,
spheric scaleleeman and Cas200% Ying and Kleeman 2003 using the adjoint of the GEOS-Chem chemical trans-
2008 Ying et al, 2007 Liu et al, 2008. Additional ex- port model Henze et a].2007). The adjoint of the GEOS-
amples of these approaches to source analysis for secondaGhem model was developed specifically for inverse mod-
aerosols in studies throughout the Northern Hemisphere caeling of PMy 5 observations with explicit inclusion of gas-
be found inBenkovitz et al(2006. Ultimately, analysis of phase chemistry, heterogeneous chemistry, and treatment of
inorganic PM 5 sources on a continental scale is contingentthe thermodynamic couplings of the sulfate — ammonium
upon comprehensive knowledge of the aerosol distribution— nitrate — water aerosol system; it is thus uniquely capa-
However, observations are often incomplete in their spatialble of exploiting aerosol-phase measurements in novel ways.
or temporal coverage, and model estimates can be subjedthe adjoint model is used to calculate gradients of the error
to significant uncertainties. Hence, continued analysis of in-weighted squared difference between model predictions and
organic PM 5 sources comprises both further utilization of observations with respect to emissions. An adjoint model
aerosol measurements and improvement of forward modeks an efficient means of calculating the sensitivities of this
estimates. type of model response with respect to numeraDgl())

The approach to inorganic B source analysis taken in  model parameters simultaneously, affording optimization of
this work consists of two stages. The first stage is to constraiparameters on a resolution commensurate with that of the for-
model estimates of aerosol precursor emissions and the ravard model itself. This allows refinement of both the over-
sulting aerosol distributions by assimilating chemically spe-all magnitude and the spatial distributions of emissions, dis-
ciated measurements of aerosol concentrations. Data assirtinguishing between different emission source sectors, and
ilation techniques provide a framework for combining ob- quantification of the influence of other uncertain model pa-
servations and models to form an optimal estimate of therameters such as initial conditions and heterogeneous uptake
chemical state of the atmosphere. Methods based in pacoefficients. The feedbacks between the inorganic, PM
rameter optimization (as opposed to interpolation or nudg-species and their gas-phase precursors have been noted as
ing) can be used for inverse modeling, wherein observations hindrance to inverse modeling estimates ofsMirhissions
are used to constrain estimates of model parameters that atesing aerosol NE,j measurementP{nder et al.2006; here
both influential and uncertain (typically emissions). For in- these feedbacks are exploited by using surface measurements
organic PM s, the key emissions of gas-phase precursorsof sulfate and nitrate aerosol concentrations to constrain es-
are sulfur dioxide (S@ often considered collectively with timates of precursor emissions, particularly NH
sof; emissions as S, nitrogen oxides (N¢) and ammo- In addition to its utility in inverse modeling, an adjoint
nia (NHs). NHs is recognized as being both highly uncertain model itself is a novel tool for evaluating sources pertinent
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to air quality regulationsHakami et al. 2006. In the sec- phase, and, more importantly, byy®&, and G in clouds.
ond stage of this work (Sed), the adjoint of GEOS-Chem As H,SOq readily partitions into the particle phase, it is al-
is used to generate maps of the influence of inorganig £M ways treated as aerosol sulfate. Thermodynamic equilibrium
precursor emissions on representative air quality attainmentf aerosol NI—;{L and NQ; with their gas-phase counterparts
metrics. Emissions from various sectors and locations arédNH3 and HNQ) is calculated using the MARS-A routine
then ranked according to their influence on nonattainmentof Binkowski and Rosell¢2003, which allows for forma-
These results are contingent upon the best estimate of the préen of (NH4)2SO4 and, if excess Nhlis available, NHNOs,
cursor emissions themselves, and are thus presented follohough formation of aerosol NDcan be enhanced by cold
ing introduction of the forward model (Se@), description  or moist conditions. Additional couplings between gas and
of the adjoint method for calculating discrete model sensitiv-aerosol phases treated in the model include formation of
ities (Sect.3), and results of the inverse modeling (Seht. = HNO3 through heterogeneous reaction of®¢ with water,
While adjoint sensitivity analysis is not strictly a method for where the reaction probability is calculated as a function of
source apportionment, it does have several attractive aspecégrosol type, available surface area, temperature, and rela-
for estimating the incremental influence of specific sourcestive humidity Evans and Jacol2005. Uptake of NQ and

on air quality attainment. Unlike analysis of meteorolog- NO3 on aerosol surfaces is describedartin et al.(2003.

ical back trajectories or statistical factor analysis, this ap-The formation of HO, from heterogenous uptake of HO
proach accounts for chemical and physical processing an@Thornton and Abbat005 is also considered.

transport combined. The influence of emissions are readily Anthropogenic emissions of NGand SQ are taken from
obtained for each location and for all types at a computathe Global Emission Inventory Activity (GEIA) database for
tional expense of no more than three times that of a northe year 1985Benkovitz et al. 1996, scaled according to
mal forward model simulation. This is an advantage overfossil fuel usage for the year 199Bdy et al, 2001). NH3
emissions-labeling, Lagrangian modeling or emissions togemissions from anthropogenic sources (domesticated ani-
gling, each of which increases in computational expense agals, fertilizers, human bodies, industry, fossil fuels) and
the number of source regions/types/times is refined. Finallynatural sources (oceans, crops, soils, wild animals) are based
the analysis can be performed around the current model statgn data from the 1990 GEIA inventory &ouwman et al.
providing estimates of the immediate consequences of emis¢1997), with additional contributions owing to biomass burn-
sions changes, in contrast to estimates that rely in part ofhg and biofuel use from inventories Buncan et al(2003
non-physical emissions-free simulations, potentially trigger-and Yevich and Logan(2003. The total yearly source of
ing nonlinear model responsdsy et al,, 2008. NHj3 in the United States is scaled to match thaGdfiland

et al. (2003, while monthly variability is calculated accord-

ing to an exponential temperature scalirfgdéms et al.
2 Forward model description 1999. Dry deposition of all types of aerosol is calculated us-

) ) [ing a resistance-in-series mod#Vgsely 1989 Wang et al,
The GEOS-Chem chemical transport model is used to esti199g: wet removal is described ifacob et al(2000).

mate ambient concentrations of inorganic aerosol over the

US for the months of January 2001, through January 2002.

The model is driven using assimilated meteorology from the

Goddard Earth Observing System (GEOS-3) of the NASA3  Adjoint modeling

Global Modeling and Assimilation Office (GMAQO). GEOS-

3 data sets are down-sampled to a resolutiorfef5# to fa- Founded in optimal control theory and variational calcu-

cilitate detailed simulation of tropospheric gas-phase chemius, adjoint methods were initially suggested as approaches

istry, discussed fully in works such &y et al.(2001), Li to source analysis of atmospheric tracers several decades

et al.(2001) andMartin et al.(2002. The present study uses ago Lions, 1971, Marchuk 1974. By the late 1990s, the

model version 6-02-05, which includes an online secondarymethod was applied to chemical transport models of the

inorganic aerosol simulation introduced and described in destratosphereRisher and Lary1995 and troposphereH-

tail by Park et al(2004). Model estimates of inorganic P bern et al.1997. The method was used to constrain emis-

have been compared to surface measuremétaek (et al. sions in an Eulerian air quality model of chemically active

2004 2006 Liao et al, 2007 and measurements from air- species in the troposphere Ejbern et al.(2000. Subse-

craft campaignsHeald et al.2005 20068; here we reiterate  quent investigations of emissions have been explored with

key features of the inorganic aerosol simulation. adjoints of chemical transport models such as CHIMERE
Fine mode (aerodynamic diameter less thanu2rf in- (Vautard et al. 200Q Menut 2003 Schmidt and Martin

organic aerosol is calculated as the mass of aerosol-phas2003, Polair Quelo et al. 2005, the CIT model artien

SO}[, NHjlr and NG, that forms from the gas-phase pre- et al, 2006 Martien and Harley2006, STEM (Sandu et aJ.

cursors sulfuric acid (b504), NHz, and nitric acid (HNQ). 2005a Hakami et al. 2005, DRAIS (Nester and Panitz

H,SO, is formed from oxidation of S@by OH in the gas- 2006, CMAQ (Hakami et al. 2007, IMAGES (Muller and
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Stavrakou 2005 Stavrakou and Muller2006 Stavrakou ical species or locationgy, ke, and may include a term
et al, 2008, and GOCART Dubovik et al, 2004 2008. explicitly depending upon the parametefs(p),
While previous chemical transport adjoint models have fo- noan
cused largely on gas-phase processes and observations, the n;; JHE) + Tp (). (3)
focus of the present work is on aerosdtenze et al(2009 o
andSandu et al(2005 used the adjoint method for inverse ASSUMIng the parameters are constapi,p) does not have
modeling of aerosol distributions in box model simulations. & ime step index. In practice the definitionstafJ/" andJ,,
Hakami et al.(2009 used the adjoint of STEM for inverse aré very application-specific. For the foIIowmg _de”Vat'On
modeling of black carbon aerosol, treated as an inert tracet! 1S Simply assumed that the response domain includes all
The inverse modeling obubovik et al.(200§ focused on  SPecies at all times such that
constraining global estimates of g@nd primary aerosol N
emissions with MODIS observations using the adjoint of the 7 = Z J" (") + Jp(p). (4)
GOCART model; GOCART considers secondary formation n=0
of sulfate from SQ using prescribed oxidant fields, as well The purpose of the adjoint model is to calculate the sensi-
as carbonaceous, dust and sea salt aerGsh et al, 2000. tivity of the response with respect to the model parameters.
The GEOS-Chem aerosol simulation is based on the GOAs will become evident, it is first necessary to calculate the
CART model, particularly for wet scavenging, with updates sensitivity of the model response with respect to species con-
described byPark et al(2004. GEOS-Chem and its adjoint centrations at every time stepn the model,
also includes ammonium and nitrate aerosol, the thermody- r N AT
namics of the sufate-ammonium-nitrate-water aerosol sysy , 7_ <8~7> _ Z <8J ) (5)
tem, and detailed tropospheric gas-phase chemistry for on- dc" dc"
line calculation of oxidation of aerosol precursors. A full de- )
scription of the GEOS-Chem adjoint model is givetianze note'ﬂ _0forn < n)
et al. (2007, where the adjoint of each individual physical "ot ’
and chemical model operator is derived and validated, and . ] .
pseudo-observations are used to assess the potential inver§8€ Jacobian matrix of the model operator around any given
modeling performance. Subsequently, the GEOS-Chem adime step can be written as
joint model has been updated to include online calculationsyen+l g Fn(en) .
of the heterogenous reaction rates (and the correspondingy ..~ = ~ g = Fe (6)
adjoint), and sensitivities with respect to emissions ofyNO
from soil and lightning. The GEOS-Chem adjoint has also
been further developed for inverse modeling CO emissionsdc"t*  dF"(c")

n'=n

and similarly,

— En
using remote sensing observatiok®acz et al.2009. In ap  dp Fp- )
the remainder of this section, the general approach to adjoin@sing the chain rule, the sum on the right hand side of 8. (
sensitivity analysis is reviewed. is expanded

A chemical transport model can be viewed as a numerical -
operator,F, acting on a vector of initial concentrations, n\T ent T v (3N
. . vcnj = (FC) (FC ) ce (Fc )
and a vector of parameterp, to yield an estimate of the acN
evolved concentrations at a later tindé, N\ T
(aJ )
+

+ FOTEFHTFAT

CNZF(CO’ P)’ (1) ¢ 8CN_1
. . s\’
where ¢ is the vector of all K tracer concentrations, +< ) .
c"=[c],....c}, ..., %" attime stem. In practice F com- de”
prises many individual operators representing various physi- (8)

cal processes. For the moment, Kt represent a portion of  The sensitivity of the response with respect to the model pa-

the discrete forward model that advances the concentratiopameters (assumed here not to depend on the time: stem
vector from time step to stepn+1. then be written as

cn+l=Fn(cn, ), ) VpJ = (Fg_l)TVch

o _ o + FY T Vova T + ..
The adjoint model is used to calculate the sensitivity of a

T
scalar model response functiqfi, with respect to the model + (FO)TV T+ <%> )
parametersp. The response function may depend only upon L ap
atemporal subset of concentratiofs, or a subset of chem- 9)
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In this context, the adjoint method is essentially just an ap- GEOS-Chem NO3~ IMPROVE NO3~
proach to evaluating Eqs8) and Q) that is computation-

ally efficient when dinfic} and din{p}>dim{7} (Giering

and Kaminski 1998. The adjoint sensitivity variables are Apr
defined as\;=V,»J andi,=V,J, where the subscripts

and p indicate sensitivity with respect to and p, respec-

tively. Initializing Jul

VAR 37,\"
AWW=(—"%) andr,=(-2) ,

acN op
adjoint sensitivities are found by evaluating the following up-
date formulas iteratively from=n, .. ., 1,

Oct

9 yn-1 T Jan
-1 _ —1\T
A=l >x2+<acn_l) , (10)
—/ e —
)vp — (FZ_l)T)‘Z +)‘P’ (11) NA  0.00 2.33 4.67 7.00 [ug/m3]

The 22 terms are referred to as the adjoint forcings as theirFig. 1. Predicted (GEOS-Chem) and observed (IMPROVE)
role in the adjoint model is analogous to that of emissionsmonthly average surface NO

in the forward model (for further details, see the continuous

forward and adjoint model equations$andu et a).20053.

While calculation of adjoint values using this algorithm is Wherep is the prior parameter estimate.

straightforward, there are a few subtleties worth mention- The inverse problem seeksthat minimizes the cost func-
ing. First, evaluating sensitivities with respect to model pa-tion, J, given by

rameters requires having first calculated sensitivities with re-

spect to concentrations. Since evaluation of Bjji§ much J = > Z(Hc — cobe) Syp(He — cobs)

more computationally expensive than evaluation of Bj. ( ce

the overall computational cost is largely invariant to the num-
ber of parameters considered. Second, while solvingHy. (
iteratively along with Eq.10) is not necessary, it is computa- (12)
tionally preferable as values af andF’, need not be stored

for more than a single step.

1
+ v = 0.)7S; Y0 —0,),

wherec is the vector of species concentrations mapped to the
observation space b, cops is the vector of species obser-
vations, Sgps IS the observation error covariance matio,

4 Inverse modeling is the prior estimate of the parameter scaling factors (equal
to 0), S, is the error covariance estimate of the parameter
4.1 Cost function scaling factorsy; is a regularization parameter, afds the

o . domain (in time, space, and chemical species) over which
Inverse modeling is the process by which measurements argpservations and model predictions are available. Overall,
used to reduce the set of possible models from all that argne cost function is a specific model response, the minimum
consistent with prior information to a reduced set (the inverse5)ye of which balances the objectives of improving model
model solution) by rejecting those that do not likely representyerformance while ensuring the model itself remains within

the observationsTarantola2006. A range of modelsistyp- 3 reasonable range (as dictatecﬂg}}) of the initial model.
ically constructed using control parameters,

4.2 Observations

o=[o1,02,...,0u1",

which are used to adjust elements of the vector of model paModel predictions of sulfate and nitrate aerosol are com-
rametersp, via app”cation as sca]ing factécs pared to observations from the Interagency Monitoring of
p = pac’ ing order of magnitude changes pcare reflected as changes to the

absolute value of and are thus penalized equally in the cost func-

1The use of scaling factors to adjust the model parameters igion, values ofp are implicitly not allowed to change sign, and the
advantageous as it gives equal weight to all parameters, regardincertainty of the scaling factors can be represented as a normal
less of magnitude or unit. The use of log-normal scaling factorsdistribution about 0 (fop that are strictly positive, the normal dis-
(c=In(p/pa)) has several benefits over linear scaliag=(p/p,) tribution of o=p/p, about 1 is nonphysical as it allows a nonzero
for the current applicatiorifarantola2009. Increasing or decreas- probability thatp <0).

www.atmos-chem-phys.net/9/5877/2009/ Atmos. Chem. Phys., 9, 58032009
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tial in determining the cost function. FiguBsshows the sen-
sitivity of the cost function with respect to stack emissions of
SO, surface emissions of NQanthropogenic emissions of
NHs;, and natural emissions of NHor January. These sensi-
tivities are fully normalized values\,p,m:fp—?m’”?’”, shown

as a percent response ¢f to fractional changes in emis-
sions of sourcen in locationi. These, in addition to sur-
face emissions of SOand stack emissions of NOhave the
largest sensitivities of all the emissions sectors considered in
each of the months. Sensitivities of the discrepancy between
observed and modeled aerosol concentrations with respect
to sources of aerosol precursors outside North America are
shown in the top row of Fig4 for April, when transport of
pollution across the Pacific Ocean is most comniier{ger

et al, 2000. The largest influences are from stack emissions
of SO and surface emissions of NOthough with maxi-
mum sensitivities of less than 1% these sensitivities are gen-
Fig. 2. Predicted (GEOS-Chem) and observed (IMPROVE) €rally several orders of magnitude smaller than those from
monthly average surface %o_ within North America. Note that the sensitivity of the con-
centrations themselves (instead 6f with respect to distant
emissions can be more significant, see Seé.The second

Protected Visual Environments (IMPROVE) netwoltglm row of Fig. 4 shows sensitivities with respect to initial con-
et al, 1994 during the months of April, July and October ditions, displaying just the values at 933 hPa for sulfate and
2001, and January 2002. Mass concentrations of sulfate an@itrate, which exhibit the largest influence of the initial con-
nitrate are determined from analysis of fine aerosol (aeroditions of any tracer. Values peak in the 950-750 hPa range
dynamic diameter less than 2:8n) collected on teflon and (initial concentrations closer to the surface are less influen-
nylon filters, respectively, sampled over a 24 h period everytial owing to quick depositional losses), but are still one to
third day. Measurements from each of th&20 IMPROVE  two orders of magnitude smaller than emissions sensitivities

sites are averaged on the GEOS-Chem grid, and the resul@ver the course of the simulation, as the average aerosol life-
ing monthly average distributions are shown in Fig@nd time is much shorter than one month. Also considered are

2. The observation error covariance matrSyps, includes  the sensitivities of the cost function with respect to rates that

a contribution of the reported measurement error, typicallyaffect the lifetime of NQ, and are hence critical for esti-
5%-10% for sulfate and 5%—30% for nitrate. As the distri- mating HNG and NG; . For example, sensitivities with re-
bution of the observations within any given model grid cell is Spect to heterogeneous uptake ef§ over the course of the
not uniform, a representational error is also include8gg, ~ Month is found to occasionally be 35% as large as the sen-

Apr

Jul

Oct

Jan

— - .
NA  0.00 2.33 4.67 7.00 [ug/m?3]

here assumed to be 30%. sitivity with respect to N@ emissions. While this is likely
a critical parameter for further research in focused areas, the
4.3 Model parameters overall effect of NQ emissions was generally an order of

magnitude larger in the present study. In theory, all parame-

In general, the parameters of a chemical transport model inters could be optimized simultaneously, even those for which
clude emissions, boundary conditions, initial conditions, andthe uncertainty or sensitivity is relatively small. However, to
rate parameters for deposition and chemical reactions. Fogimplify the optimization process, the scaling factors for ini-
this study, the parameters initially considered are scaling factial conditions and rate parameters are not allowed to vary,
tors for the emissions of SONOy and NH; from the source  as, assuming all are equally uncertain, they are found to be
sectors listed in Tablé. Use of a global model means there much less critical than emissions parameters. Overall, the
are no additional boundary conditions to consider (neglectingset of variable model parameters comprises monthly scaling
stratospheric — tropospheric ozone exchange). Also considfactors in each grid cell for emissions of each species listed
ered are scaling factors for the initial concentrations of eachin Table1l.
tracer (initial conditions) and for several kinetic parameters,
such as the heterogeneous reaction probability for formation A key aspect of inverse modeling is specification of the
of HNOs from N2Os, which is an important@entener and  error covariance matrixg,, of the variable parameters. For
Crutzen 1993, yet still highly uncertain (e.gBrown et al, the base case inversion, the emissions of anthropogenjc NO
2006, mechanism for loss of NQ and SQ are assigned a standard error in each grid cell of

After a single evaluation of the adjoint model, the resulting 30% and 10%, respectively. The error for emissions from
sensitivities indicate which parameters are the most influenall other sectors is taken to be 100%. Additional inversions

Atmos. Chem. Phys., 9, 5873903 2009 www.atmos-chem-phys.net/9/5877/2009/
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Table 1. Emissions inventories treated as variable parameters.

Emitted species  Source sectors considered

SO surface (anthropogenic), stack (anthropogenic), ships, biomass burning, biofuel
NH3 anthropogenic, natural, biomass burning, biofuel
NOx surface (anthropogenic), stack (anthropogenic), lightning, soil

(a) Stack SOx (b) Surface NOx

D

(c) Natural NH3 (d) Anthropogenic NH3
D

Y

-10 -5 0 5 10 [%]

Fig. 3. Normalized sensitivities of the cost function in January with respect to emissions faystack SQ, (b) surface NQ, (c) natural
NH3, and(d) anthropogenic NH. Positive sensitivities indicate regions where a decrease in emissions would improve the overall agreement
between the model and the observatiaffi,(@nd conversely for negative sensitivities.

are also performed using 50% and 100% standard error fofunction and the gradient norm for successive function eval-
NOy, and 25% and 100% for SOhowever, unless otherwise uations. In this case (each parameter assumed a 100% error),
noted, results will be shown for the base case. In all caseghe cost function is reduced by 70%, and the norm of the
the errors are assumed to be uncorrelated between spatial Igradient (a measure of the size of the adjoint sensitivities)
cations and between emissions from different source sectorss reduced by more than two orders of magnitude after 14
henceS, is diagonal. While ultimately convenient, the as- function evaluations, at which point the minimization is con-
sumption that the errors are not correlated is in part justifiedsidered to have converged. Minimization of the cost function
in that the correlation length scale of the individual emissionin all cases is achieved in less than 20 function evaluations.
sources can be much less than the spatial resolution of the As mentioned previouslh§, is assumed to be diagonal.
model Stephen and Anej2008, and partly through use of The significance of the prior information is thus more of a
a regularization parameter to enforce a smooth solution, asmoothness constraint than a rigorous estimate of prior un-

discussed in the following section. certainty Rodgers2000. The regularization parametes,,
is used to balance the two terms of the cost function, which
4.4 Optimization can be written as:

: . . J=Jpredictiont ¥rJ|
Gradients of the cost function with respect to the parame- prediction 1" Vr /parameter

ter scaling factors calculated with the adjoint mode§; .7, These terms represent the total prediction error incurred
are supplied to an optimization routine (the quasi-Newton L-for departure of model predictions from the observations,
BFGS-B optimization routineByrd et al, 1995 Zhu et al, Jprediction and the penalty error incurred for departure from
1994) and the minimum of the cost function is sought iter- the prior parameter estimates beyond the range of prior un-
atively. At each iteration, improved estimates of the modelcertainty,Jparameter The consequence of changipgon con-
parameters are implemented and the forward model solutiowerged values of7 is shown in Fig.6 for several inverse

is recalculated. Figurgshows a typical evolution of the cost modeling tests using data from January. High valueg,of
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(a) Stack emissions of SOy (b) Surface emissions of NOy

-0.10 -0.05 0 0.05 0.10 [%]

Fig. 4. Normalized sensitivities of the cost function in April with respecfapstack SQ emissions(b) NOx surface emissionge¢) soﬁ—
initial conditions, andd) NHZ{ initial conditions. Note the scale is from0.1% to +0.1%.

10° ‘ ‘ for the first iteration), while the penalty error is normalized
to the value o/parametevheny,=0.01. The total error is the
sum of the normalized prediction error and the normalized
penalty error; the optimal value ¢f is that which minimizes
the total error. Based on combined analysis of bayand b,
the value ofy, is taken to be 50, conservatively preferring
to over-smooth the solution to the inverse problem. It is as-
sumed that a similar range of is optimal for the remaining
months, though a smaller value pf=10 is used in April,
July and October agpredictioniS more than twice as large in
January than in the other months.

10 % = J/J,(@h
AN

o J/J,(accepted) . - -
. Figurel shows the initial model predictions and observed
10, 5 10 15 monthly average aerosol nitrate, where model results are av-
Function evaluation number eraged over the 24 h time periods and locations for which

) ) ) there are observations-(0 each month inv45 locations).
Fig. 5.~ Convergence of cost function (red) and gradient norm ginjjar comparisons for sulfate are shown in Fiy. Es-
(green). The blue line shows function evaluations; open circles rEp't{mates of individual 24 h sulfate concentrations over the
resent accepted iterations. Quantities are normalized with respec
to their values at the initial iteration. Course of the year have a mean of LA, a root mean
square (RMS) error of 1.92g/m? (n=1832), and normalized
mean bias (NMB) of—0.08. The nitrate estimates have a
RMS error of 1.1Qug/m?3, which is more than twice as large
lead to over-smoothing of the solution with less improvementas the mean of 0.52g/m®, and a NMB of 0.41. Previous
to the prediction error term, while low valuesgfminimize  studies comparing GEOS-Chem simulations to IMPROVE
the error term at the cost of greatly increasing the parametemeasurements have also found better agreement for sulfate
penalty term. An optimal value can be identified at the cor-than nitrate Park et al. 2004 2006 Liao et al, 2007). A
ner near the origin of the so called L-curigdansen 1999, possible source of model error is uptake of HN@» mineral
panel (a). Another way of visualizing the balance betweendust, which is a source of nitrate aerosol not considered in
the two terms is shown in panel (b) of Fi§j.where the pre- the model, and thus a possible model bias for locally formed
diction error and the penalty error are shown as a function ofaerosol in the Southwest as well as long-range transport of
. In this plot the prediction error is normalized to the initial aerosol with dustNlalm et al, 2004 Liao et al, 2007 Fairlie

value of the cost functionfp=Jprediction 8S JparameterdS Z€ro et al, 2007. Formation of sulfate aerosol on sea salt is also
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(a) L-curve Nitrate forcing
v=0.01 Using prior emissions Using optimized emissions
r - <P — <7 -
5 Apr
3
2 4
S
& Jul
33
£
2 Oct
Y= 500
s 7 8
In(Uprediction) Jan
-28 ~.. 4304 -28 ~.. 499
(b) Total error minimization — . S |
- - 3
120; > Jprediction /] x 100% 200 100 0 100 200 [m%¥ ug]
e J /4, =0.01 . . . . :
100“ Xp1aorgg/7eter parameter(Yr ) Fig. 7. Adjoint forcing of nitrate (NQ') before and after opti-
o Total ° mization. Adjoint forcing is the sum of the discrepancy between

modeled and observed aerosol concentrations weighted by the in-
verse observational error covariance. Each row corresponds to the
month listed on the left. The numbers in the lower left and lower
right corners of each panel give the minimum and maximum values,
respectively.

80r

Error [%]
(e}
=)

40r
20r is reduced to 0.68g/m. The sulfate aerosol forcing (not
shown) is£30 ..g/m° both before and after the optimization.
0> = = The RMS error for sulfate decreases by only a few percent

10 107, 10 in April and October, by less than a percent in July, and does
' not change in January. That the sulfate simulation is not sig-

Fig. 6. The dependence of the inverse modeling solu- nificgr}tly _alterec_i is partly a consequence of the prior error
tion on the regularization parametey,. Tested values are SPecification being tighter for SGhan for NG and Nk
y»=0.01, 0.1, 1, 10, 20, 50, 100, 200, 500. (a) The L-curve; opti- emissions.
mal value ofy,=10-20. (b) Total error minimization: optimal Table2 shows the change in RMS error for two additional
value ofy,=20-50. inverse modeling solutions starting with different constraints
on anthropogenic emissions of g@nd NG.. The looser the
constraint is for these emissions, the more sulfate RMS error
not included in the model, which can impact sulfate aerosolis improved by the inversion, while the nitrate error is rel-
and HNG concentrations over the ocean and near coastlineatively unaffected. However, even when all emissions con-
(Alexander et a.2009. However, the largest differences be- straints are equal, the decrease in the RMS error for the sul-
tween the observed and modeled nitrate (in the central USJate simulation £8.6%) is relatively small compared to the
are not likely to be heavily influenced by such interactions. error decrease for the nitrate simulaticr43.5%).

Figure 7 shows the nitrate adjoint forcing in each month  The representational error that contribute§’g§s also af-
before and after minimization of the cost function. This ad- fects the optimization. The sulfate simulation is closer to
joint forcing is a distribution of the difference between pre- the observations on a fractional basis. Specification of the
dictions and observations of aerosol nitrate weighted by thaepresentational error iﬁ;blson a fractional basis causes the
certainty in the observationsgblg The +/—values in the cor- sulfate prediction error to contribute less to the cost function
ners of each panel give the forcing range. The cost functiorthan the nitrate prediction error, and hence the error in the
is reduced by 30% in April and July, 40% in October, and sulfate simulation is not as much of a driving force for the
63% in January, The reduction in forcing shows where theinversion. When assumed to be a uniform fraction of the ob-
nitrate simulation has improved, which is mainly in the cen- served value throughout the model, the representational er-
tral Midwest, the Northeast, and along the northern borderror only affects the balance betweégedictionand Jparameter
The total RMS error for nitrate over the course of the yearFor example, with 30% representational error g¥ell0, the
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Fig. 8. Anthropogenic NH emissions. The left column shows the prior inventory, the center the optimized inventory, and the right column
the logarithmic scaling factorg{.

Table 2. The effects of prior parameter error on inversion results. Changes in the total continental US emissions from all source sectors and
changes in the root mean squared error (RMSE) obtained using the inverse modeling solutions obtained starting from three different sets of
assumed standard errors for anthropogenic emissions gfad@® SQ. In each case, errors from all other source sectors have a 100% prior
error. Changes/) are reported as (optimized-prior)/priot 00%.

Initial assumed errors Total emissions changes Resulting error reduction
Sa,NOganth Sa,SQ.anth ANH3  ANOx  ASO; ARMSENG; ARMSE sG-
30% 10% —-253% —-1.4% —-2.5% —42.7% —-1.1%

50% 25% —-25.8% —-2.1% —-7.9% —43.0% —3.6%
100% 100% —22.0% -9.6% —5.3% —43.5% —8.6%

cost function in July reduces by 28%, and the nitrate RMS To explore the possibility that the local minimum found
error reduces from 0.67g/m? to 0.44ug/me. Using 10%  during the optimization is not the global minimum gt ad-
(50%) representational error, the cost function reduces byditional optimization tests can be performed starting with dif-
33% (26%), and the nitrate RMS error reduces to Q.g8n° ferent initial guesses for the emissions scaling factors. To
(0.45.9/m?). Repeating the regularization analysis and se-demonstrate, the optimization is repeated for July using a
lecting a larger (smaller), would thus likely resultin yearly  range of initial guesses for Nf-emissions. The results from
results quite similar to those presented for a 30% representahese tests are presented and analyzed in the following sec-
tional error. After optimization, the yearly NMB for nitrate tion.

is —0.32 and for sulfate is-0.10. An unintentional conse-

quence of specification of representational error as 30% oft.5 Analysis of optimized emissions

the measured value is that model overestimates contribute
more toJ than underestimates; as a result, the bias in the*

inverse modeling solutions is always less positive (or mor . . - .
negative) than the initial model bias. Perhaps a better es':ai:rhe prior and posterior (optimized) emissions of Airom

. . anthropogenic sources are shown in Fg.Scaling factors
mate of representational error for future analysis would befor emissions of NH from other source sectors are shown in
similar to the mean normalized factor biagi(et al, 2009,

wherein the error is considered to be 30%d if Hc<cops Fig. 9, thou_gh note the scale of the _plots IS ma_gnlf_|ed com-
; pared to Fig.8. The overall result is a reduction in NH
and 30% ofcgpsif He>cobs

emissions. The largest reductions occur sharply in the central

5.1 Ammonia
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Fig. 9. Logarithmic scaling factors for Nglemissions from biomass burning, biofuel and natural sources.

Midwest during July and October, with decreases during Jan- 2
uary and April in the southern Midwest and, more broadly,
throughout northern areas. There is also a small increase irg
anthropogenic NKlin California during spring, along east-
ern coastal areas in April, and in the Northeast during July. |
Emissions adjustments in individual locations cover a wide
range of values, effectively altering the spatial distribution
of NH3 emissions. That the control parameters are assumec
independent is an upper bound for this variability. The emis-
sions of NH; in any place is simply the sum of the emissions
from the individual source sectors. Given a spatially uniform
adjoint forcing, the result would be a collective rescaling of =
NH3 emissions that retains the original fractional distribu-
tion amongst the individual sectors. However, the adjoint
forcing is not uniform so the fractional contribution to total Fig. 10. Monthly emissions scaling factors for US emissions of
NHj3 from the individual sectors changes. For example, theNHz from all sources. Scaling is with respect to the NEI99 monthly
contribution to NH emissions in the US from biomass burn- value of 3.6 Tg N/yr. The initial GEOS-Chem simulation is shown
ing, biofuel, anthropogenic sources, and natural sources i dark blue, W|th the optlm_lzed mont_hly scallng fa_mtors comprised
April is 1%, 8%, 64% and 27% in the prior model. After of§eparate scaling facForsm each gr.|d cellqre in Ilght blue. Thered
optimization, the contributions are 2%, 10%, 59% and 29%.strlped bars show the inverse modeling estimateSitifand et al.

. AR ) (2006 (horizontal lines) and the process based estimat&smfer
Such reapportionment can be larger in individual locations., al. (200§ (diagonal lines). Note the modeling domain and prior

While the total emissions from each sector are decreased, thénissions inventories for the latter two works are different than that
NH3 emissions have been effectively redistributed amongsbf the present work.

the sectors. The degree to which the resulting scaling factors
for different sectors of the same chemical species are corre-
lated is addressed in Sedt5.3

=Gilliland et al. (2006)
Pinder et al. (2006)
W Prior

W Optimized

1.5

0.5

NHs Emissions Scaling Fact

October

January April

ing ascribed the largest prior uncertainty, as it is true even
That the most significant difference between prior and op-when each type of emission is assumed a prior uncertainty
timized emissions scaling factors for any species consideredf 100%, see Tabl2. Hence, additional discussion of NH
is for NH3 emissions is not an artifact of these emissions be-emissions estimates is warranted. Emissions o§ NHthe
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o, NH3 prior | NH3 opt _ In(op/prior)
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Fig. 11. Anthropogenic NH emissions optimized using a range of initial emissions. On the left is the initial (prior) emissions inventory and
its associated scaling facter,. In the center are the optimized inventories, and on the right are the optimized logarithmic scaling factors.

US have been analyzed in several recent studikilaénd In July, the present work estimated a value similar to that
et al, 2003 2006 Pinder et al. 2006 Stephen and Aneja  of the process-based estimate$’aider et al(2006, which
2008 and are cited as a significant source of model uncerdis again opposite the direction of adjustmentsGifiiland
tainty (Yu et al, 2005 Nowak et al, 2006 Zhang et al. et al. (2006. Overall, the seasonal cycle of the adjoint-
2008. The inverse modeling efforts @illiland et al.(2003 based inversion results matches thatPafrk et al.(2004),
2006 focused on imparting seasonality to the aseasonal Nafurther supporting emissions estimates in which totalsNH
tional Emissions Inventory (NEI) (EPA, 2001Rinder et al.  emissions peak in July rather than April, which is contrary to
(2006 used a process-based approach to develop bottom-une emissions estimates Binder et al(2006 andGilliland

NH3 emissions for the Eastern US. Based on conclusion®t al.(2006§. However,Pinder et al(2006 do note that the
from Gilliland et al. (2006 that the NEI99 NH inventory  process-based emissions inventory lead to overestimates of
was still too highPark et al (2006 kept NH; emissions the  NHy (NHXENH3+NHI) in April and underestimates NH
same as iPark et al(2004. in July compared to monthly average measurements in Pitts-

) ) burgh, which may further support a peak in pNEmissions
To compare with these previous works, results from thej, suymmer rather than spring.

adjoint model-based inversion have been summarized as to-

tal adjustments to US Nglemissions. The total monthly Figure 11 shows the optimization results for anthro-
values are shown in FidlO as a percentage of the NEI99 pogenic NH emissions during the month of July using a
constant monthly estimate of 3.6 Tg N/yr. Actual adjust- range of initial guesses for NHemissions. Results for the
ments in the inversion were made at the inventory specificstandard optimization (initiated witth,=0.0) are compared
model resolution level. The sum of all adjustments from theto results that begin with the following factors:,=0.69,
adjoint-based inversion results in a net reduction in totafNH 0.41 and—0.69, which correspond to doubling, increasing
emissions from the NEI99 monthly values. The results ofby 50% and halving the emissions, respectively. The re-
the present work (blue) are compared to those f@ittiland sults demonstrate consistency of certain features across each
et al. (2006 andPinder et al(2006 (red), noting that their  optimization test. Most visibly, the scaling factors in the
monthly scaling factors shown in Fifj0 have been adjusted south-central US are always1.0 or less. Scaling factors

to account for the fact that their basis is that of the NEI2001stretching from Michigan to New York are betweer0.5
inventory, which is 25% lower than the NEI99 inventory. For and —0.3, even when obtained by increasing emissions in
January, the aggregated inverse modeling results (light bluethose area from the test that began witi=—0.69. While

are consistent with those @lliland et al.(2006 (horizontal ~ certain cells are estimated to have a positive scaling factor in
stripes). The inversion d@dilliland et al.(2006 lead to anin-  some tests but negative scaling factors in other tests, the rank-
crease in April, while the present work estimates a decreasdng of emissions adjustments in these cells relative to other
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Fig. 12. The left column gives the standard error estimate of the optimized scaling factors for anthropoggreémissionssyp,. The
center column shows the correlation of the scaling factor for anthropogenicextissions with the least uncertainty (@)—With other
scaling factors for the same inventory. The right column shows the correlation of the scaling factors for the anthropogemissidns
with the least uncertainty (N}) with the scaling factors for surface emissions of,NO

areas within the same optimization test are mostly similar6.2 Tg N/yr). For the base case, the inverse modeling re-
regardless ob,. Exceptions are locations such as South- sults here indicate a small total change-¢f.4% from all

ern California, where emissions increased whgr0.0 and NOy sources over the course of the year, see Taplaost
0,=0.69 but not wherr,=0.41. The final cost function is of which comes from changes to anthropogenic emissions.
actually lowest for ther ,=—0.69 test, for which7=1366.  The tendency given looser constraints on,N€nissions is
The cost function fow,=0.0, 0.41 and 0.69 is 1469, 1615 greater reductions, as much a98.6%. Remote sensing as-
and 1789, respectively. For the latter two tests, the total optisessments of trends in N@missions over the Eastern US
mized US NH emissions are greater than or equaldh®.0 also indicate reductions in NGKim et al,, 2006 Stavrakou
emissions. For the,=—0.69 test, the optimized US NH et al, 2008 van der A. et al.2008 that may not be captured
emissions were 53% lower than the0.0 emissions. Given by the initial NQ; inventory, which at best represents NO
the cost function values, it is most likely that the optimiza- levels three to four years prior to the observations. While
tion results presented fer,=0.0 in July are an upper bound US sulfur emissions in the NEI99 inventory are 9Tg Slyr,
on total US NH emissions, which may be even lower, but compared to 8.3Tg S/yr in the current model, recent revi-
not likely higher. This is reasonable given that observed ni-sions of inventories over Canada and Mexico are lower, from
trate aerosol concentrations are typically very low during the2 and 1.9 down to 1.2 and 1.3Tg SAR&rk et al. 2006.
summer. Any exception to that would require much higherHere we find SQ inventories in the base case inversion es-
NH3 emissions, but any number of lower Nldmissions are  sentially unchanged«2.5 %). As mentioned in Sect.4,
plausible as long as the nitrate concentrations remain withirthis is partly a consequence of specifying tight constraints on

the range of model and instrument uncertainty. SO emissions. The results of additional inverse modeling
tests for different values of the assumed initial uncertainties
4.5.2 SQ and NOy in NOx and SQ emissions from anthropogenic sources are

given in Table2. When the constraints of the @missions
While the most substantial adjustments were made tg NH &€ relaxed, there is a more significant reduction in the total
emissions, NQ and SQ emissions were also adjusted. As yearly SQ emissions. Also, the month to.-month variations
noted inPark et al.(2006, the NEI99 inventory compared (not shown) for SQ become very large using the 100% un-
to the prior inventory in GEOS-Chem has a change in totalCertainty inversion: _the ad;ustments to total ,S&nissions
US anthropogenic N@emissions of-7.5% (from 6.7 from  fange from—32.7% in April to 32.1% in July. In contrast,

www.atmos-chem-phys.net/9/5877/2009/ Atmos. Chem. Phys., 9, 58032009



5890 D. K. Henze et al.: Inorganic P source analysis with the GEOS-Chem adjoint

when the initial uncertainty is 100%, adjustments to monthly from minimization of 7. Since this minimization proceeds
total emissions of NQ range from—3.6% in January to along the direction of the largest contributions to the model
—14.5% in October, and adjustments to total \N#nissions  prediction error, the estimate ¢fl does not contain much
range from—18.5% in July to—27.9% in January. Thus, the information on parameters whose influence @nis mini-
inversion of sulfate and nitrate observations gives the mostnal because they affected model concentrations that either
robust constraints on NdHand, to a lesser extent, N@mis- agreed with observations or did not coincide with any obser-

sions. vations. The full Hessian is required to completely determine
the power of the observations to resolve the model parame-
4.5.3 Estimated uncertainty of optimized emissions ters (Tziperman and Thacket989.

Also shown in Figl2are error correlations, which for two

As noted in works such abhacker(1989 andMdiller and scaling factors,,, ando,,, are computed as

Stavrakou(2009, the inverse Hessian of the cost function,
IH=Hesg.7)~%, is a linear estimate of the uncertainty of the I Hpyy oy
optimized control parameters. Calculation of the full inverse Pomom, = (IH IH )% :
Hessian {4 x M) itself being computationally prohibitive, LML M2, m2
low-rank estimates of the inverse Hessian can be generatefls the initial estimate 08, is diagonal, nonzero correlations
from gradient-based minimizations gt by tracking succes-  petween two scaling factors indicate that these factors are
sive changes from iterationto i+1 in the control param-  not independently constrained by the observations during the
eters,¢;=o;11—0;, and the gradients\,,;=Xs,,;,—As;- IN inversion. The correlation between most pairs of parame-
Muller and Stavrako2009), two different schemes for it-  ters is near zero, particularly for pairs of parameters whose
eratively approximatingH were assessed for a study using values were relatively unchanged during the optimization.
the adjoint of a chemical transport model. The DFP algo-However, definite correlations become evident for param-
rithm was found to give better estimatedidfthanthe BFGS  eters whose values were rescaled during the inversion. In
algorithm when compared b1 evaluated using finite dif-  poth the center and right columns of Fig, correlations are
ferences. Based on their conclusions, the DFP algorithm ishown with respect to the most certain parametgi iden-

implemented, whereifH is approximated as, tified from the minimum of the plot in the left column of each
TN T row. The 'panels in the cente'r column show the correlatipn

Hip1=IH; + “lT i_ ’T ditoi ' (13) of onp, YVIth tho_se of the scal_lng factors for anthropo_gemc
Xg,ﬁi igilHiig,- NH3 emissions in other locations. The error correlation of

) onne, With otheronn, usually has a strong negative correla-
wherelH o=S,. The square root of the diagonal b1 are  {jgn’hearby. This anti-correlation between neighboring grid
the estimated standard errors of the optimized scaling factorge|is is an indication that the mixing of Nf-emitted from
sgmz(IHm,m)% , Where here the index refers to elements the neighboring cells is collectively influencirgg in a non-
of the control vector and elementis m of the inverse Hes-  separable fashion.
sian matrix. The right column of Fig.12 shows correlation ofyy

The standard errors for the optimized emissions scale facwith scaling factors for surface emissions of N 0the3r
tors for the NH emissions in each month are shown in |ocations. In these locations in each month, the largest com-
Fig. 12. Starting from an assumed estimate of 100% error inponent of the adjoint forcing comes from overestimation of
the emissiori the error percent has decreased in IocationsNog_ In April and January, emissions of NGnd emis-
where the scaling is nonzero, to as little as 50%. In generakjons of NH; both favor formation of NQ@ in the form of
the largest error reductions occur where there is the most sigyH,NO3, hence their emissions are positively correlated.
nificant rescaling. For eXampIe, in July, the most SignificantHowever, co-located emissions of Nma\/e a Strong neg-
scaling occurs in the same place as the greatest error redugtive correlation withry,, in July and October. When NH
tion. However, the greatest error reduction is one grid cell tojg predominantly in the form ofNH,)»>S0y, and the amount
the east of the most significant scaling in October. The ref NO; is only from NFyNOs that forms when there is a sur-
duction in uncertainty appears similar from month-to-month, plus of NH; (as(NH4)»SO, formation takes precedence over
indicating that measurements of sulfate and nitrate may pronH,NO3 in warmer, dryer conditions), the consequence of
vide year-round constraints on Nlmissions. A subtle but NO, emissions can be to reduce the amount of surplug NH
crucial point in interpreting values of,, is that Eq. 13)is by increasing the amount of SO, thereby reducing the for-
an apprOXimation ttH that is limited to information gleaned mation of NHyNOs. Therefore, the Sca"ng factors for emis-

2Note, if parametep, has a prior fractional error of, then the sions of NG and NH; can be anti-correlated under certain

absolute parameter error i$,=xp,, and the error in the scaling COI’]dItIOﬂS: o ) o
factoro=In(p/pa) is so=sp, / pa=x. Hence, a fractional error in Correlations between emissions of different species in the
Ppa is the same as the absolute errosinand, conversely, the error  Same location are generally small, betwedh2 and 0.2, and

in the estimated parameters age=ps . vary between positive and negative values depending upon
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Fig. 13. CASTNet observations of monthly average surface IeveIl‘d:ldncentrations (averaged on the GEOS-Chem model grid) are shown

in the left column for each month. Also shown is the difference between these observations and the GEOS-Chem model estimates based ol
the original emissions inventories (center) and the optimized emissions inventories (right). The numbers in the corner of the difference plots
are coefficient;z, and R? for regression through the origin.

the local chemical conditions. However, the adjustments toPanels in the latter columns also contain the slopesrnd
the emissions of a given species are correlated to adjustmentalues of regressions through the origin. Using the optimized
of the same species from a different sector in the same locaemissions inventory brings the regression coefficients closer
tion. In general, such correlations are negative, range beto unity for all months and captures more of the variance
tween 0 and-0.5, and are strongest for NHrom anthro-  of the observations in all months except January. Overall,
pogenic sources with NgHfrom natural sources. The mag- changes in estimated I\]{Hfrom inversion of sulfate and ni-
nitude of the anti-correlations indicates the degree to whichtrate observations are in a direction consistent with indepen-
the observations have constrained totalg\#issions, but  dent CASTNet observations. Though total performance is
can not distinguish between source sectors. Hence, the invorstin October, improvement is shown in each month, indi-
verse modeling solution does not give entirely independentating the year-round potential of inverse modeling based on
estimates of the contributions from different source sectorssulfate and nitrate observations to constraingN&hd hence

for a given species. NH}).

4.6 Comparison to CASTNet NI—[{ In Park et al(2004), seasonally-averaged model estimates
are compared to CASTNet I\I{Husing nearly the same ver-
Inverse modeling using NH observations alone may not sion of GEOS-Chem as the prior estimates in the present
provide robust constraints on NHemissions Rinder et al. study, though at a finer resolution°(22.5°). In Park et al.
2006. However, as a check of the inverse model results us{2006, the model is again compared to CASTNet lill-ﬂhis
ing sulfate and nitrate observations, measurements q{f NH time using a nested®k 1° simulation with updated SCand
from the CASTNet networkBRaumgardner et gl2002 are NOy emissions, though Nilemissions are the same Rark
compared to model estimates using both the prior emissionst al.(2004 and the prior estimates of the present work. The
inventory and the optimized emission scaling factors fromoverall agreement between estimatedlehhd the CAST-
Sect.4.4. In Fig. 13, the left column displays the observa- Net observations is markedly improved betwétark et al.
tions, averaged onto the GEOS-Chem grid, while the cente(2004 andPark et al(2006. The prior and optimized mod-
and right columns show the difference between the modekls in the present work are not as good as the seasonally aver-
and the observations using the prior and optimized emissionaged comparisons iRark et al(2004 or Park et al(20086.
inventories. From a visual comparison, it is evident that esti-That Park et al (2004 considered seasonal averages, rather
mates of NI{ are largely improved throughout the Midwest, than monthly averages, likely contributes to better apparent
while the predictions are persistently high in the Northeast.agreement with CASTNet. Some of the discrepancy of the
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present work may also be owing to the coarse model resaerosol has not been included in the set of active species,
olution. As the number and distribution of subgrid obser- &, and the coarse model resolution is not expected to repre-
vations are not uniform, agreement is expected to improvesent the magnitude of localized maximums during acute pol-
using a finer resolution simulation. Comparing the resultslution episodes. To compensate, the metric is squared (i.e.,

using the prior emissions in the present work wetlrk et al. it is an L, norm) to emphasize episodes of peak concentra-
(2009, the estimated resolution error of 30% may be under-tions, which are of most concern for exceedences of daily air
estimated. quality standards.

The nonattainment metric is evaluated for each of the four
months considered, and the results are shown ingln
the left column is the average contribution to the nonattain-

In the second stage of this work, the observationally con-ment metric from each of the aerosol species. This is essen-

strained model is used to assess the influence of aerosd@!ly the adjoint forcing, where the forcing is divided in each
precursor emissions on P air quality metrics. Previous cell by the number of days for which concentrations in that

works have highlighted how P air quality attainment f:ell exceeded the threshold. These plots di§play the regiolns
may be complicated by the interactions between the inori" WhICh the 24 h average aerosol conc_entratlon a_t some point
ganic species. The nonlinear relationship between sulfat@uring the month was in the nonattainment regime-1).

and total PM 5 mass has been noted to reduce ef‘fectivenesérhrou‘-:’hoUt the year, _th? o.nly regions of nonattainment are
of SO control in colder season¥Vest et al, 1999 Vayenas in the Egstgrn usS. ThIS.IS likely owmg.to the mpdel rgsolu-
et al, 2005. Pinder et al(2007) examined the tradeoffs be- _t|on, which is not well suned'for assessing pollution eplspdes
tween SQ controls and NH controls in the Eastern US dur- N the Western US that are likely to be much more localized.

ing two weeks of 2002 though a matrix of simulations apply- FOr €ach month, the different rows in Fiigtshow the contri-
ing uniform changes throughout the model domain to tota|but|on_to nonattainment from the |nd|y|dual aerosol species.
emissions S@ NOy and NH;. Based on a combined analy- In April, July, and October, Sb dominates the peak con-
sis of chemical effectiveness and the cost ob®@issions centrations. NQ plays a significant role in October and Jan-
controls,Pinder et al(2007) demonstrated the effectiveness uary, while NH; contributes fairly consistently throughout
of abatement of S@emissions over Nklemissions in July the year.

and the reverse in January. In the present work, we use ad- Column (b) of Fig.14 shows emissions of SONOy and
joint sensitivities to explore the effectiveness of incrementalNH3, each given as a percent of the total emissions for each
changes to emissions from tens of thousands of individuakpecies in the US. This includes contributions from each
emissions locations and sectors on both peak concentratiorf the source sectors listed in Taldle Column (c) shows
and ambient levels of the modeled inorganic component othe semi-normalized sensitivities of the cost function with

5 Nonattainment influence maps

PMys. respect to emissions of each of these species, shown as a
) percent,aaif' Jix100%, wherep; is the total emissions of
5.1 Peak PMs episodes a chemical species in locatiagn These are referred to as

nonattainment susceptibilities, as they indicate the per-unit-
Emissions influence of emissions of a particular species on
nonattainment, regardless of the current value of the emis-
1 2 sions (except in the case that emissions are zero, for which
Ja = 2 Z Z 0(ai j)a ;. (14)  the sensitivities are not defined). Column (d) shows the fully
normalized sensitivities%%xlOO%, wherep; ,, is an

The model response is now defined as a representative metr
of nonattainment for peak aerosol concentrations,

ieUS day j

where emission from a specific source sectoin locationi. Here
we show only the normalized sensitivities for the sectors with
ai j= Zgi i | - k= {501217, NOj3, NHJ}, the greatest influence for each species. For small perturba-

rl tions, these normalized sensitivities give an estimate of the

k ) i .
o _ . percent change in the cost function per fractional change
with ik being the 24 h average model estimated aerosoj, emissions, 27/Jax100% T s these sensitivities are

~ A i,m/ Pi,m
concentration of specidsin location: on day;, and¢ isthe first order approii’m/gt'ions of the effectiveness of specific
following simple function, emissions changes on affecting nonattainment. The nonat-
04 <0 tainment sensitivities in (d) are likely valid over a modest
0(a)= { 1420 range of emissions perturbations commensurate with typical

emissions abatement strategies (10-30%). Over this range,
The air quality threshold i€,, taken to have a value of the most significant sensitivities for the aerosol species con-
10ugm~3. Although this threshold is much lower than sidered here have been shown to be robtiinge et al.
the actual 24h NAAQS of 3agm~2, here carbonaceous 2007 Koo et al, 2007). For the following discussion, it is
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(a) Nonattainment (b) Emissions (c) Susceptibility (d) Control effectiveness
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Fig. 14. Peak aerosol nonattainment analysis show@)@verage contribution from each aerosol species to the nonattainment nigtric,

(b) emissions of aerosol precursors normalized with respect to total US emigsithe susceptibility of the nonattainment with respect to

emissions of aerosol precursoys, (i.e., semi-normalized sensitivitie :Zf‘ Ji x 100%), andd) the effectiveness of incremental controls
1 a

of emissions from specific sectorgs;, ,,, on reducing nonattainment (i.e., normalized sensitivit&g‘,‘—’}—"” x 100%). Model simulations
] nm a
use the optimized emissions estimates from Skdt.

important to note the variations in the scale of the nonattain-decision making concerning emissions abatemEelatkami

ment sensitivity plots. Also note the magnitudes of NNO et al, 2006. The distribution of nonattainment, column (a),

SO and NH; emissions are typically in the range of'$9 shows locations that will benefit from implementation of

102 molec/cnd/s. emissions regulations that enforce air quality attainment. The
The combination of the four plots in each row of Figl distribution of the emissions, column (b), shows the areas

maps the influence of inorganic BN precursor emissions that would be most heavily burdened by any simple emis-

on attainment in a manner that is well suited for informing sions abatement strategy based on absolute emissions caps,
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(d) Control effectiveness
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Fig. 14. Continued.

while the nonattainment sensitivities in column (d) show lo- ern US that ultimately most substantially influence nonat-
cations where reducing existing emissions would actually beainment. Sources of N¢Hn the latter regions are co-located
the most effective towards achieving air quality attainment.with sources of SQ leading to more aerosol formation per
The maps in column (c) indicate regions where nonattain-emitted NH. Additionally, the nonattainment is most sus-
ment is most susceptible to total emissions changes, indicatceptible to emissions in the Southeast. In October and Jan-
ing areas where introduction of new sources (e.g., owing tauary, the effectiveness of anthropogenic Nebntrols are
land use changes) would have the largest consequence evagain linked to the locations of the $@®missions, with peak

if current emissions are small. The disparity between theeffectiveness and susceptibilities consistently east of peak
maximums in these types of plots concisely depicts the chalemissions. In general, it is evident from the spatial dispar-
lenges in designing regulation measures to control long-livedties noted between maximums in columns (b) and (d) that
secondary pollutants. For example, consider the results foregulating emissions near the largest sources can sometimes
the month of July. While the bulk of the NHs emitted  have only minimal benefits for air quality attainment.

in the northern Midwest, it is sources of NHh the East-

Atmos. Chem. Phys., 9, 5873903 2009 www.atmos-chem-phys.net/9/5877/2009/



D. K. Henze et al.: Inorganic P4 source analysis with the GEOS-Chem adjoint 5895

For each month, it is also interesting to compare the ef'TabIe 3. Precent by which changes to emissions of a given species

fectiveness of reductions in one emitted species vs anothef;om particular sectors are more effective for reducing nonattain-
In April, nonattainment is 20 times more susceptible togNH ment than changes to emissions of that species from all sectors
emissions than stack S@missions, and peak anthropogenic (Eq. 15).

NH3 emissions are by far the most effective targets for con-

trol. In July, controls of stack SQOare more effective than Emission sector January April July October
control of anthropogenic N1 In October, although nonat-

tainment is nearly 10 times more susceptible tosNghis- SO surface -1 14 11 12
sions, anthropogenic NHcontrols are more effective than g& :thailgging _15 _127 _123 _13
stack SQ controls in some locations, and vice versa in oth- NHz anthropogenic 10 -11  -16  —23
ers, owing to the magnitude of the emissions from these sec- NH3 natural 9 11 12 14
tors. The effect of surface NQontrols is much weaker than NH3 biomass burning  —18 9 -3 0
either anthropogenic Ngor stack SQ controls in April, NH3 biofuel 18 9 8 10
and much weaker than stack g€ontrols in July. Despite NOx surface -2 —4 0 -6
the susceptibility to N@ emissions being about five times NOy stack 13 11 26 14
less than that of anthropogenic Nidontrols in July, effec- NOx lightning —6 -5 -19 —6
tiveness of their controls are similar in magnitude. In Octo-  NOx soil —4 -2 -8 —2

ber, surface NQcontrols are more effective than either stack
SO controls or anthropogenic Nftontrols in northern lo-
cations. The susceptibility to NOemissions is also much  gjgnificant component of this sector-to-sector difference is

more focused in October as opposed to January, where thgying to the difference in magnitudes of the emissions from

NOx susceptibility is much more diffuse, even though the ifferent sectors. To distinguish between these effects, the
non-attainment is highly focused. This may indicate the dif- following statistic is calculated,

ference between immediate formation of N®om NO vs

a more delayed and diffuse influence following N&eques- .
tration as peroxyacetyl nitrate (PAN). Xm:< 1 22 Apin _ >i Pim ) « 100% (15)
. . i m b i m Di
In January, anthropogenic NHcontrols dominate by a | i Ppinl Lt Pim

factor of 10, and susceptibility to missions is nearl . L . .
200 times larger than fOF; S@i/ NOL\?_Eeducing SQ andy where here is the spatial index and: is the index of a

hence sulfate, is rendered ineffective owing to rapid replace-Spec'fIC source sector. For the summations, the range of

ment of scj— by NG, formation of the latter being favored the spatial index is the physical range over which_emis-
by colder temperatures. This effect is so extreme that dur>'°"S from gectom have at Ieas_t a0.001% effect on(i.e.,

ing the winter, the nonattainment sensitivity of S@mis- X pim |>_10_ ): Th.e Sum overn 1S for "5?" the source sectors
sions has a value near the nonattainment region that is actlj‘—)r a given chemical species, I|_sted in the rows °f.Ta¢"e
ally negative. If removal of sulfate aerosol in the presence ofThe values fory, are presented in Tabge Qverall,xm indi- .
fixed total ammonia and nitric acid concentrations cause on&at€S the net rellat|ve |mportange ofan emission from apartic-
mole of (NH4)2S0, (molecular weight=132) to be replaced ular sector relative to f[he magnitude ofthe emission from that
by two moles offNH4)NO3 (molecular weight=80), then the sector. For exanjpk_a, in July, stack hi@missions are 23% .Of.
total PM, 5 concentration would be enhanced by decreases “Jih_e total NG emissions from al! Sources, and the senS|_t|_V|ty
SOy emissions. Also, N@controls can potentially be coun- with respect to stack NPemissions is 43% of the sensitiv-

terproductive in April (the mechanisms for such a feedback'éy Wgh respect to_l\lz(go/emlsr?lo;s from all sr?urces. Frof‘“
is given in Sect4.5.3, though the overall magnitude of the Ed- ¢ S)f KI(NO;»StaCK__d °'_V‘|/ Ic mea_nszgof ange t?f emis-
latter effect is small. The existence of such feedbacks haveé'°"S O Q from Industrial sources Is 26% more effective
been noted previousiNapelenok et al2006 Henze et al. in reducing nonattainment than in reducing the total amount

2007); here the explicit consequences for air quality attain—mc NOx emitted. T.he.refore, abat.ement strategies targeting
ment are quantified. NO’S from stack emissions are estlmate'd tp be much more ef-
fective than strategies that target N&missions as a whole.

So far the influences of emitted species have been considsych findings are generally robust over the course of the year,

ered Ol’l|y for the most influential source sector. The fu"y nor- as the Signs of tth are consistent from month to month.

malized SenSitiVitieﬁpi,m=%p§—f, estimate how changes OQverall, emissions of SQand NQ, from industrial stacks

to emissions from secton in locationi will influence the  are much more critical than emissions from the transport sec-

air quality metric. Since the spatial distributions of emis- tor. Emissions of NH from natural and biofuel sources are

sions in different sectors are not the same, the consequencgrore important than anthropogenic Blldmissions. Emis-

of changing all emissions for a given species by a certainsions such as NOfrom lightning and soil, SQ from ship-

amount will be different from sector to sector. Naturally, a ping and Nk from biomass burning are not as influential for
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Table 4. The influence of specific emissions sectors on daily av- Model re.sp(.)r?ses should also be cons@ered that separately
erage inorganic PMs concentrations. The total integrated percent 2ddress individual Pl components, which may have dif-
influence is presented (Total) along with a breakdown of this totalferent consequences for public healfRe(ss et al.2007).

into contributions from spatial regions (ROW=rest of world). These are important topics for future consideration.

Emission sector Total Percent from each region 5.2 Long-range influences
US Canada Mexico ROW . . .

s " 11 578 62 30 o1 Episodes of pollution transport from East Asia have been re-
sg ztjarcice 201 w1 167 i .5  Ppeatedly observed to contribute to Pbconcentrations in
SOk shipping 20 679 69 64 19.9 the Western US (e.gJaffe et al. 2003. Several modeling
SOy biomass burning 0.2 16.2 1.1 77.3 5.4 studies of have been performed to provide further charac-
SOy biofuel 0.03 2.9 25.4 36.1 35.6 terization of such influences, using methods such as tagged
NH3 anthropogenic 196 90.0 6.0 2.3 17 tracers Benkovitz et al. 2006 Liu et al, 2009 or emis-
NH3 natural 92 894 84 01 13 sions toggling Park et al, 2004 Heald et al. 2006a Chin
NH3 biomass burning 0.6  60.1 2.3 33.3 3.1 I 2007. R | . Iv sh h hil L
NH; biofuel 35 954 3.9 04 0.2 et al, 7. esults consistently show that while emissions
NOy surface 6.7 84.4 5.3 8.3 2.0 from East Asia are not likely affecting P\ NAAQS at-
NOy stack 27 977 1.1 0.4 0.8 tainment, there is a noticeable intercontinental contribution
NOx lightning 01 683 11 24.3 6.2 (~1ug/m3) on background concentrations, particularly in
NOx sail 07 653 41 288 17 the Western US. This has implications for attainment of re-

gional haze rulesRark et al. 2004 2006, and interconti-
nental influences may be more important at higher altitudes

nonattainment owing to their spatial and temporal distribu-0wing to their climate impactsQhin et al, 2007). There is
tions. also evidence that the mortality response with respect to sur-

While the present work considers only the contribution of face level PMs concentrations persists well below current
inorganic species to P4, it is important to keep in mind the & quality thresholds§chwartz et a].2002 2008, so such
role of additional species. When excessNBipresent, the influence may yet be of concern for public health.
sensitivity of HNQ with crustal mineral species can be rel- The classes of source regions conS|de_red in modeling stud-
atively low, at times an order of magnitude less than the seni€S Of long-range transport are often quite broad, such as all
sitivity of nitrate aerosol to NK (Fountoukis et a).2009. emissions from all sectors, tagged according to a continental
However, in areas where NHevels are lower and min- scale region. In contrast to previous work, the adjoint model-
eral concentrations higher, the importance of g\ gov- ing approach use_d here distinguishes the effect_s from differ—_
erning nitrate formation may be diminished. Hence, the non-€nt emitted species, sources, and source locations. In addi-
attainment sensitivities with respect to Nidmissions may  tion to the long-range influence of S@missions on sulfate,
be exaggerated in the Southwest owing to local dust sourcelere the influence of Nifand NG on the total mass of the
or in the western US owing to transpacific dust transport inSulfate- ammonlum-mtrate aerosol are also considered using
the springtime. Still, most of the sensitivities for the presentthe following model response,
study were located in the central and eastern US. Primar¥7 _ Z a (16)
and secondary organic aerosol are also important for deter=“> e
mining total levels of PMs. While SOA formation in the
winter is not as significant as other seasons, the potentialvhereq; ; is defined as in Eq1d), except nowz,=0. Thus,
for sulfate to enhance SOA formation (e.§urratt et al.  sensitivities with respect t9; oo show which emissions in-
2007 may increase the effectiveness of,fntrols for total ~ fluence 24 h aerosol concentrations in the United States.
PMgy 5 in other seasons. Observed dependence of secondary Results from the single adjoint model run are summarized
organic aerosol on aerosol water contdreiinigan et aJ.  in Table4, where the adjoint sensitivities are integrated over
2008 2009 Volkamer et al. 2009 suggest additional path- the following four regions: contiguous US, Canada, Mexico
ways by which deliquesced inorganic aerosol could affect to-and Central America, and the rest of the world (ROW). The
tal particulate mass. Internal mixing of aerosols can also leadargest influence for each of the sectors shown here is from
to a relationship between primary carbonaceous aerosol anthe local (i.e., US) emissions. Other sectors (such as biomass
sulfate by altering the lifetime of the agglomerated particlesburning and biofuel), have a major influence from abroad,
with respect to wet scavengintier et al, 2006. Finally, but the overall magnitudes are much smaller. The emissions
it is again noted that the nonattainment modeled here is onlyector with the largest transboundary influence is that of sur-
representative given the current model resolution and excluface emissions of SQlargely because local emissions from
sion of carbon aerosol. Detail assessment of nonattainmerthis source within the US domain are relatively small. The
regions will require high resolution nesting, or coupling of sensitivities with respect t¢, -, are shown in Figl5. The
the global adjoint model with regional scale adjoint models. plot scales are purposefully capped at low values to highlight

ieUs,day j
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Fig. 15. Long-range nonattainment analysis showfapthe 24 h average inorganic P concentrationsg(b) anthropogenic emissions of
SO and NQ,, (c) the semi-normalized sensitiviti{?j#,Oo i) with respect to emissions in locatiomnd(d) the normalized sensitivities

(%‘Zm f; M ) with respect to emissions in locatiefirom sectonn.
m aoco

contributions from outside the US. The only intercontinental and heterogeneous uptake coefficients. Anthropogenic emis-
emissions that the daily average concentrations are susceptions of NH are found to be most influential, followed by
ble to are those of SQhence only the control effectiveness natural emissions of N§ anthropogenic stack emission of
of the SQ emissions are shown. Sensitivity with respect to SOy, and surface emissions of NO This finding is con-
NOy emissions may be underestimated as the model does naistent with recent studies that indicate Nemissions are
account for aerosol nitrate associated with transpacific dushighly influential in determining the total concentration of in-
transport Malm et al, 2004 Fairlie et al, 2007). From these  organic PM 5 and are themselves highly uncertaifu et al,
figures is evident that the main contribution to ROW comes2005 Gilliland et al, 2006 Pinder et al.2006 Nowak et al,

from eastern China, with some contribution from emission in2006 Zhang et al.2008 Wu et al, 2008 Beer et al.2009.

the Middle East.
Inverse modeling of sulfate and nitrate using the adjoint

model affords optimization of the emissions at a resolution
6 Conclusions commensurate with that of the forward model itself. Over-

all, the optimized emissions inventories are adjusted most
The adjoint of the chemical transport model GEOS-Chemsignificantly for NH; emissions, which are largely reduced
(Henze et al.2007) is applied to evaluate sources of sec- in the East and Midwest. There is considerable variabil-
ondary inorganic aerosol throughout the US. Using the 4Dty in the rescaling of emissions from different source sec-
Var framework, the forward model parameters are con-tors in different locations, which effectively changes the spa-
strained using measurements of sulfate {SCand nitrate  tial distribution of the emissions, and also the distribution of
(NO3) aerosol from the IMPROVE network of monitoring emissions amongst individual emissions sectors. For exam-
stations Malm et al, 1994 during the months of April, ple, while the total US Nkl emissions from each sector are
July and October of 2001, and January of 2002. Signifi-reduced, the resulting fraction of NHemissions from an-
cant discrepancies exist for initial model estimates of;NO thropogenic sources throughout the US is 5% less than in
compared to the observations. The adjoint model is used tehe initial inventory, with changes as large as 20% in indi-
select variable model parameters that most significantly invidual locations. The consequence of using the constrained
fluence this discrepancy. Parameters initially considered inemissions inventories is a significant improvement to the ni-
clude scaling factors for emissions of gQNOy, and NH; trate simulation, reducing the root mean squared error by
from several source sectors, initial conditions of all tracers,43%. The absolute normalize mean bias is reduced by 20%,
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though underestimation of nitrate aerosol persists throughourNHZ simulation incurred by assimilating observations of sul-
the West in April, July and October. The resulting magnitudefate and nitrate are overall in the right direction throughout
of the total NH; inventory is similar to that found iGilliland the year, and the model shows some improvement in the cap-
et al. (2009 for January, but much lower in April, July and turing the observed variance, particularly in Juilliland
August. The total NH emissions agree witRinder et al. et al. (2006 concluded that observations of wet ﬁ]l-(i.e.,
(2006 in July, while overall, the seasonal cycle is that of dissolved NH and aerosol NEﬂ) are required to constrain
Park et al(2004), with NHz emissions peaking in July rather NH3 emissions unless the sulfate and nitrate budgets were
than April. verified. Similarly, Pinder et al.(2006 found that obser-

Inverse modeling tests are conducted for a range of asvations of aerosol NEI alone can not sufficiently constrain
sumptions concerning the prior uncertainty of the emissionsNHs emissions throughout mgch of the year. Here we han?,
The anthropogenic emissions of N@nd SQ are initially ~ in €ssence, taken the opposite approach by applying an in-
assumed to be much more certain than emissions of, NH verse modeling tool explicitly capable of exploiting the de-
hence, the inverse modeling estimates of emissions gf NOPendancy between the inorganic Pdonstituents, thus uti-
and SQ are more tightly constrained to the initial inventory. lizing measurements of sulfate and nitrate to provide con-
As these constraints are loosened, the nitrate simulation restraints on estimates of Nfémissions. A benefit of this ap-
mains largely unaffected. When all emissions are assume@foach is that sulfate and nitrate aerosol measurements may
to be equally uncertain, the solution for the .S@missions ~ be more readily available then those of Nér precipitated
exhibits large month-to-month fluctuations, while the total @mmonium. _ S _
yearly changes to SOand NG are still not as significant Adjoint models can provide detailed insight into the influ-
as the NH changes. Changes in anthropogenic,Ngnis- ~ ence of emissions on model estimates of air quality nonat-
sions of —1% to —10% (for assumed uncertainty in NO tainment of inorganic Pls. Previous works have high-
emissions of 30% to 100%, respectively) from the original lighted the fundamental difficulties in controlling inorganic
inventory based on 1998 activity levels are consistent withPMzs arising from the interactions of inorganic aerosol com-
recent revisions to the anthropogenic Ni@ventory used by ~ Ponents \(Vest et al. 1999 Vayenas et al.2009 and for the
GEOS-Chem 0f-7.5% Park et al, 2006 and with remotely ~ importance of NH cpntrols, particularly in winter Taka-
observed decreases in N@missions in the eastern US over hama et al. 2004 Pinder et al. 2007, and SQ controls
the last decadeKam et a|_’ 2006 van der A. et al2008 In summer Plndel’ et al,. ZOOD The pl’esent work demon-
Stavrakou et a).2008. Inverse modeling estimates of NH ~ Strates how the effectiveness of emissions control strategies
emissions are found to be relatively invariant to assumed unfor eémissions changes in all model locations and source sec-
certainties of NQ and SQ emissions. Overall, the inversion tors are readily addressed using sensitivities calculated with
results for the NH and, to a lesser extent, N@missions are  the adjoint model. An attainment metric is considered that
fairly robust with respect to the inverse modeling assump-represents the peak inorganic Pdiconcentrations th«’# are
tions. of concern for NAAQS. The disparity between locations of

. — . L . peak emissions, regions of nonattainment and locations of
The uncertainty of the emissions after the inversion is estj-PeAK EMISSIONS, regions of honattainment a d locations o

. ) the nonattainment sensitivities, highlights the importance of

mated to decrease most strongly in locations where observa- : o :
. . L9 - " Tfransport, chemistry and thermodynamics in the formation of
tional constraints are most significant (up to 50% reduction,, .
. ; . N . .. this type of aerosol from gas-phase precursors, and the com-
in uncertainty). The resulting emissions estimates show lit-_ .~ ~. . L

L0 . .. plications that thus arise when devising local control strate-
tle correlation in space, though nearest neighbor emissions. : : ;

. . . . gies for air quality attainment of secondary pollutants. Con-
can be anti-correlated, and for a single emitted species, co: L . L

. . oo trols of NHz emissions are estimated to be most effective in
located emissions estimates from individual sectors are mod:-

. : : . “locations where their emissions contribute to peak concen-
erately anti-correlated. These anti-correlations are an indi-

cation that the amount of observations, in addition to thetratlons of inorganic PMs. In July, October and January,

. . o .. this is near r f her than k Nglemissions.
coarse model resolution, are not entirely sufficient to dlstln-t $ Is near sources of SQather than peak Nglemissions

. ; o ... As such, this analysis shows that the emissions abatement at
guish such sources. Hence, estimated redistributions within . o :
.locations of the largest NdHemissions may in some seasons

a sector are not entirely independent. Between species, emig-; . . S

. . : e inconsequential, particularly when compared to emissions
sions of NH; can become either correlated or anti-correlated .

. . . . abatement elsewhere. N©ontrols are estimated to be most
with emissions of N, depending upon the local environ- L .

) effective in October, and even more effective than, 30
ment, though such correlations were generally small. ) - .
_ _ NHs3 controls in northern areas. In January, it is estimated
Independent observations of IjHrom CASTNet stations  that conditions could be such that reduction of,3€ads to

are used as an additional assessment of the Optimized emiﬁ'lcreases in the PMs concentrations. Nglcontrols are es-
sions. The comparison of the model [fikwith the CAST-  timated to be more effective in January and April, and SO

Net observations generally shows a reduction in model biagontrols more effective in July, consistent with the findings
after the inversion. The model still overestimatesNiHthe  of pinder et al(2007).

Northeast by as much asu@/m?®; however, changes to the
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