
International Journal of CAD/CAM Vol. 1, No. 1, pp. 23~32 (2002)

)
F.

n

ut
l
e’s
o-
ce.
nt
trol
trol
ut
on
ut

s.
es

ical
 5
des
ns.

g

ct
,
ld
)
d.
ic
ch
rs,
ing

the
ite
ol
ce
Space Deformation of Parametric Surface Based on Extension Function

Xiaoping Wang*, Zhenglin Ye, Yaqin Meng and Hongda Li
Department of Mathematics and Information Science, Northwestern Polytechnical University Xi' an P.R.China

Abstract − − − − In this paper, a new technique of space deformation for parametric surfaces with so-called extension function (EF
is presented. Firstly, a special extension function is introduced. Then an operator matrix is constructed on the basis of E
Finally the deformation of a surface is achieved through multiplying the equation of the surface by an operator matrix or
adding the multiplication of some vector and the operator matrix to the equation. Interactively modifying control parameters,
ideal deformation effect can be got. The implementation shows that the method is simple, intuitive and easy to control. It ca
be used in such fields as geometric modeling and computer animation.

Keywords: parametric surface, space or free-form deformation, extension function

1. Introduction

In the field of geometric modeling, the advent of
non-uniform rational B-splines brought us a nearly
perfect approach for mathematical description of free-
form shape. However the interactive technique (changing
weight factor or knot vector, moving control points)
accompanying it for shape modification is limited.
Therefore, to generate complex shape, people have to
draw support from others high-level techniques for shape
modification free-form or space deformation. So far,
considerable achievements have been reached in research
on those deformations and diversified methods of
deformation have been playing an important role in
practice. Some of them have become the core of certain
commercial CAD/CAM softwares. Nevertheless finding
new, effective and intuitive deformation approaches is
still one increasingly significant research field in computer
graphics.

Certainly we already have so many deformation
methods. However, On the whole, those and other
methods concerned still have room for improvement in
such aspects as exact control of deformation region,
quantitative control of modification extent and guarantee
of continuity between deformed and undeformed region
in local deformation or shape modification. Especially
the existing techniques for shape modification among
them direct only to NURBS [30]. So people can’t help
to ask whether there are some techniques that are more
simple, easy to control and fit for deformation or shape
modification of general parametric surfaces.

In answer to above question, we develop the technique
of deformation based extension function for parametric

surface. It can not only carry on shape modification b
also yield relatively arbitrary shape. Unlike traditiona
methods, its main thoughts are acting on a surfac
equation with the operator matrix constructed by s
called extension function to alter the shape of the surfa
As we introduce control parameters with a differe
attribute, the method avoids oneness of the con
means in traditional ways and increases the con
precision to some extent. It is fit for any surfaces b
those expressed by implicit form. Concrete manipulati
is very simple and easy due to its application witho
any auxiliary tool.

The rest of the paper is structured in 5 section
Secton 2 reviews existing methods. Section 3 provid
the definition of EF. Section 4 describes the mathemat
model and others key details of our method. Section
shows some performance examples. Section 6 conclu
the paper with comparison and further research directio

2. Previous Work

Global and local deformation [1] is the first modelin
technique of deformation introduced into CAD/CAM
field. This method and its improvement [2] can condu
regular deformation (for example, twisting, tapping
bending, rotating and scaling), but it is not easy to yie
arbitrary shape with them. Free-form deformation (FFD
[3] overcomes the shortcoming of the above metho
As is known to all, the central thoughts of geometr
modeling are choosing regular shape information (su
as point, line, plane etc.) and special weight facto
taking the weighted average of them and thus express
a complex shape. In fact, FFD also make use of 
ideas: firstly express a complex shape formed by infin
points through weighted average of relatively few contr
points and then move those control points to indu
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deformation of that complex shape while the local
coordinates of object points are deemed to remain
unchanged (the topological structure of deformation
object is fixed) [5]. FFD is one of the most versatile
and powerful deformation tools, but there yet are some
unideal aspects in implementation. With this method it
is not easy for deformation to reach anticipated effect
exactly. Exact placement of object points is also hard to
achieve. Literatures [6, 7, 8, 9, 10] improved FFD in
shape of space embedded and basis function and used
their results in human body animation and dynamic
flexible deformation, but their basic principles accord
with FFD. Those approaches increase control flexibility
and meanwhile bring new troubles. Always they need
to solve complex nonlinear equations with numerical
method. Moreover the problem of continuity between
adjoining deformation regions in different lattices arises.
And extended free-form deformation (EFFD) is based
on the same mathematic formula as FFD [4], but its
auxiliary tool is a complex lattice formed by several
lattices with arbitrary shape. In local deformation,
however, it is not easy to determine the number of
subdivision of the initial lattice and thus build the
appropriate lattice. By introducing constraint points Hsu
proposed direct manipulation of free-form deformation
[14] that is an improvement of FFD. Though by it
deformation can satisfy the layout of object points
exactly, its implementation involves finding the best
solution, in the least squares sense, to the system of
complex equations. All those methods improve FFD in
varying degrees, increase control flexibility and can
achieve a variety of deformations. However, on the whole,
as existing techniques of deformation adopt weight
factors or points with parallel status as control elements
they have some shortcomings that the properties of
their control means are unitary. We think the unitary
property is one of the reasons why their controllability
is unideal and deformation effects are stiff. Recently
another rather better improvement of FFD has been
published [31]. Unlike above methods, axial deformation
[11] takes a curve as control means. The method is good
to generate deformation such as stretching, scaling,
bending, twisting and so on. However, as its degree of
freedom for control is limited, so is the effect of the
deformation. It would be not easy to yield an arbitrary
shaped bump by AxDf, for instance. Wires [12], a
generalization of AxDf, can be used in creating wrinkled
surface and stitching geometry together. Literature [13]
presented an approach with the degree of freedom
between FFD’s and AxDf’s of which the control tools
are two parametric surfaces. Moreover, without any
auxiliary tool, space deformation technique [15] uses
specified points and displacements corresponding to
them (called constraint) to control the deformation. And
expectant shape can be achieved by choosing the
solution satisfying the constraint. Whereas as the shape
of deformation around a constraint point depends on so-

called extrusion function, the last results of deformati
don’t closely correlate with the constraints. Besides t
literature [16] provided a complementary method f
deformation modeling, but it is short of intuitive an
interactive control means. Due to introducing constra
points and radius the literature [17] presented a go
technique of local deformation, which was improved 
well by literature [18] that it can not only conduc
deformation of points constraints but also lines, surfac
or volumes constraints. Léon et al. [21, 20, 19] linked
the control polyhedron of a surface with the mechani
equilibrium of a bar network using the force densi
concept Surface deformations are achieved by adjus
mechanical parameters according to the criterion 
equilibrium (i.e., all kind of parameters satisfy a line
equation). Though its effect of the deformation aboun
in aesthetic felling, sophisticated results often nee
solving high-order system of linear equations.

Above methods belong to the category of spa
deformation. Besides physics-based deformations [
22, 24] consider mechanical principles such as kineti
elasticity, inelasticity and attributes such as mass, frictio
internal force, so its effects of deformation are ev
more close to actual life. Although the techniques on
were celebrated for a while, they generally need a la
amount of computation and lack interactive contr
means, which limits their application in practice.

And there are several representative approaches
shape modification that fall into the deformation catego
Piegl proposed a method modifying the shape of ratio
B-spline surface [27], in which the control points an
their weight factors are recomputed directly from th
definition of NURBS. It is intuitive and comprehensibl
in actual application. However, more often than not,
requires knot insertion even to achieve even sim
effect. Using a perspective function transformation 
arbitrary origin O Sánches-Reyes developed another w
called a simple technique for NURBS shape modificati
[28]. User input for the modification amounts only t
choosing origin O and displacing a control point alon
the radial direction through O. As the technique depen
on surface equation, it is fit for carrying on globa
modification. The literatures [32, 29] also put forwar
two methods of shape modification.

3. Extension Function and Its Properties

Definition  1 Let C: ϕ (u, v)=0 be a simple closed
curve in (u, v) planethe function ϕ(u, v) be continuous
and have continuous partial derivatives with n-1-ord
over the curve. Once again let U={( u, v) |ϕ(u, v)� 0}
represent a region enclosed by the curve. Then 
composite function

E u v,( ) E u v h n, , ,( ) eh ϕ u v,( )( )n

ϕ u v,( ) 0≤
1 ϕ u v,( ) 0>







= =
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is called extension function, where positive integer n� 2
real number h�R. And curve C is called bound curve,
n index and U support region.

Extension function has following properties:

1) 

3) E(u,v) possesses extremal case similar to ϕ(u,v)
in the support region.

4. Mathematical Model of Deformation

4.1. The deformation using arbitrary point O� as
its extension or contraction center

Let p(u, v)=(x(u, v), y(u, v), z(u, v))T be a Cr surface
defined on the domain Ω , where Ω�R2; Eij (u, v)
=E(u, v, hij, n) extension functions whose the support
regions belong to Ω, where n� r , i , j=1, 2, 3; and l1,
l2, l3 unit vectors of linear independence.

Write 

called operator matrix and take εij =±1, i� j, then after
the deformation with  as its center and l1, l2, l3 as its
extension or contraction directions, the deformed surface
pd(u, v) and the original one p(u, v) have following
relation:

(1)

Where ,

[ l1 l2 l3] denotes mixed product and (l1l2l3) is a matrix
constructed by the vectors l1, l2, l3  in column form.

4.2. The geometric meaning of the deformation
technique

Set matrix A=(aij )3� 3, column vector X=x1l1+x2l2
+x3l3=(l1 l2 l3) X,

where X=(x1x2x3)
T.

Again let = , then

.

Especially,

1) when A=I , aij =δ ij , i , j=1,2,3. X= , due
to X ’s arbitrariness, =I, i.e.,

    (2) holds;

2) when A=D(u, v)=(dij)3�3, i.e., =F(u, v), If we write

, (2) can be expressed a

   

From this formula we can easily find the geometr
meanings of the deformation defined by (1) is conducti
an affine transformation on the coordinates (p1 p2p3)

T

of the vector P(u, v)-  in affine coordinate system
[ ], at every point P(u, v) on original surface
within support region Ω. And transform matrix is the
operator matrix D(u, v)

The displacement of the deformation satisfies P(u, v)
=Pd(u, v)-P(u, v)

=[Pd(u,v)- ]-[ P(u,v)- ]

=(l1l2l3)D(p1p2p3)
T- (l1l2l3) I (p1p2p3)

T

=(l1l2l3) (D-I )(p1p2p3)
T

=

4.3. The control means of the deformation model
Solving the problem of deformation not only lies i

giving out deformation method itself, but what is mo
important is to bring forth some interactive control mea
accompanying the method. Generally speaking, it 
hard for us to succeed only at one stroke, so we seld
get the anticipated effects through manipulating on
once. In any case, shapes generated by computer sy
are rarely immediately acceptable and subsequ
modifications are necessary, so when creating a met
of deformation we bestow some degree of freedom 
it, i.e., set up a number of parameters for shape con
Then we adjust these parameters so that the resu
deformation approximates or reaches the anticipa
effects at last. Let’s review existing means of deformati
and shape modification. Though they all have certa
degree of freedom and can carry out interactive cont
they can control deformation only to some exte
quantitatively. Often we get these under the conditi
of losing those so that some side effects are yield
Thereupon, it is not easy to control the deformati
qualitatively. For example, in local deformation, usin
the methods such as literatures [2-15, 19-21] it is 

E u v,( ) C 1.2
∂ i E u v,( )

∂uk∂vl
---------------------

C

0= = 0 i≤ k l+ k l n 1–≤, ,=,

D

E11 ε12 E12 1–( ) ε13 E13 1–( )
ε21 E21 1–( ) E22 ε23 E23 1–( )
ε31 E31 1–( ) ε32 E32 1–( ) E33 

 
 
 
 

=

O'

pd u v,( ) F u v,( ) p u v,( ) O'–( ) O'+ u v,( ) Ω∈,=

F u v,( ) 1
l1l2l3[ ]

--------------- l1l2l3( )D l2 l3×( ) l3 l1×( ) l1 l2×( )( )T
=

1
l1l2l3[ ]

--------------- l1l2l3( )A l2 l3×( ) l3 l1×( ) l1 l2×( )( )T

X 1
l1l2l3[ ]

--------------- l1l2l3( ) aij( )3 3× l2 l3×( ) l3 l1×( ) l1 l2×( )( )T l1l2l3( )X=

=
1

l1l2l3[ ]
--------------- l1l2l3( ) aij( )3 3× l1l2l3[ ]IX l1l2l3( ) aij( )3 3× x1x2x3( )T

=

= aij
i j 1=,

3

∑ xjl i

xil i X=
i 1=

3

∑

P u v,( ) O'– p1l1 p2l2 p3l3+ +=

Pd u v,( ) dij

i j 1=,

3

∑ pjli O' dij pj
j 1=

3

∑
 
 
 

i 1=

3

∑ l i=+=

= l1l2l3( )D p1p2p3( )T O'+

O'
O' l1 l2 l3, , ,

O' O'

l1l2l3( ) D I–( )
p2

p2

p3 
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easy to keep the region beyond the deformation remain
unaffected. And method in literature [27, 28, 29, 30, 21,
20, 19] direct only to B-spline, NURBS surface. Even
for these surface controlling its deformation region also
requires degree elevation or knot insertion, which greatly
increases the computational costs. Besides shape control
for deformation in literature [3] needs moving the control
points of parallelepiped lattice while traditional shape
modification needs changing the vertex position of
control polygon or its weight factors, but it is not clear
that which points or its weight factors are best ones to
be altered.

Our method can control the region over which
deformation takes place exactly. In addition, with it we
can adjust the shape qualitatively. Its control parameters
consist of hij , εij  (i� j ; i , j=1,2,3), n and bound curve
C. In addition, extension or contraction center  and
vectors l1, l2, l3 also can be used to control the deformation.
They all have obvious geometric meaning. Curve C
controls the deformation region, vectors l1, l2, l3 the
principal directions, hij the magnitude of deformation,
εij( i� j ) certain symmetric effects, n the continuity of
deformed surface on the bound curve and  the center
of extension or contraction.

In process of deformation, we control deformation
through the following means:

1) Change hij . See Figure 4-12
2) Change εij , which can create some symmetrical

effect,
3) Change n, which can alter the sooth degree of the

deformed surface over bound curve. For example,
increasing n can make the deformed surface press
close to the original surface near the bound curve.
See Figure 2, 3 and 9.

4) Change bound curve, which can alter the region
over that the deformation takes place. See Figure
3-4.

5) Change l1, l2, l3. See Figure 15-16.
6) Change the position vector . See Figure 10 and

Figure 14.

Remark 4.1: Theoretically we can choose any curve
like those described in the definition 1 as bound curve,
But in actual application if we do so the infinite
information of that kind of bound curve will make the
interactive manipulation difficult. We must change infinite
information into finite one. For example if we adopt circle
as bound curve, we can easily control the deformation by
adjusting only three parameters instead of whole curve.

4.4. The smooth degree of deformed surface on
bound curve

Lemma If l1, l2, l3 are unit vectors of linear
independence, (l1 l2 l3) is a matrix constructed by the
vectors l1, l2, l3 in their column form and I is a 3-order
unit matrixthen it follows that

(2)

proof See section 3.4
Theorem Through the deformation (1), the deforme

surface possesses n-1-order continuity on bound cu
proof Write D(u,v)=D, { / }= Dkl

(m) ,  to
which pkl

(m) or (pd)kl
(m) is similar, then from the properties

of extension function it follows that

where (3)

Looking on the factors or the terms of (1) as matr
function and taking the mixed partial derivative of 
with respect to u and v we get 

(4)

Evaluating the two sides of (4) on curve C and using
(3) and the lemma yields

,

where  and . OED.

3.5. The continuous transition of deformation
over the intersection of two support regions

Let Di be operator matrix corresponding to suppo
regions Ui enclosed by Ci, ni corresponding index of Di,
where i=1,2.

If U1 I U2� Φ, then the equation of transition surfac
for deformation over it is

(5)

The deformed surface possesses n1-1-order and n2-1-
order continuity respectively on C1 and C2 segment of
C1YC2, where C1YC2 denotes U1IU2’s boundary. See
Figure 13, 22, 23.

In fact, taking the mixed partial derivative of (5) with
respect to u and v we obtain

(6)

O'

O'

O'

1
l1l2l3[ ]

--------------- l1l2l3( ) l2 l3×( ) l3 l1×( ) l1 l2×( )( )T I=

∂ mD ∂uk∂vl

D00
0( )

C D C I Dkl
m( )

C, O= = =

0 k≤ l n 1–≤ m k 1+= m 1= 2 Λ n 1–, ,, , , ,

pd( )kl
k l+( ) Cl

jCk
i 1

l1l2l3[ ]
--------------- l1l2l3( )Dij

i j+( )

j 0=

l

∑
i 0=

k

∑=

l2 l3×( ) l3 l1×( ) l1 l2×( )( )Tp k i–( ) l j–( ),
k l i j––+( )

pd( )kl
k l+( )

C p
kl
k l+( )

C=

0 k≤ l n 1–≤, 0 k l n 1–≤+≤

p̃d u v,( ) 1
l1l2l3[ ]

--------------- l1l2l3( )D1D2 l2 l3×( ) l3 l1×( ) l1 l2×( )( )T
=

p u v,( ) O'–( ) O' u v,( ) U1IU2∈+

p̃d( )kl
k l+( ) Cl

jCk
i 1

l1l2l3[ ]
--------------- l1l2l3( ) D1D2( )ij

i j+( )

j 0=

l

∑
i 0=

k

∑=

l2 l3×( ) l3 l1×( ) l1 l2×( )( )Tp k i–( ) l j–( ),
k l i j––+( )

= Ci
pCj

qCl
jCk

i

q 0=

j

∑
p 0=

i

∑
j 0=

l

∑
i 0=

k

∑ 1
l1l2l3[ ]

--------------- l1l2l3( ) D1( )pq
p q+( )

D2( )i p– j q–,
i j p q––+( ) l2 l3×( ) l3 l1×( ) l1 l2×( )( )T

p k i–( ) l j–( ),
k l i j––+( )
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Moreover, from the properties of extension function
we get

Substituting it into (6) yields 

In a similar way we have

Generally, let Di be operator matrix corresponding to

support regions Ui enclosed by Ci, ni corresponding

index of Di, where i=1,2, ; m. If Ui� Φ  then the

equation of transition surface for deformation over it is

which has ni−1-order continuity respectively on Ci

segment of where i=1,2, ; m and denotes

the boundary of Then a uniform equation of

deformation can be written as

where ki=0 or 1, Di
0= I, Di

1=Di, Ui
0=Ω-Ui , Ui

1=Ui ,

and obviously

Remark 4.2: If we want to adopt different principal
directions over different support regions, the deformation
should be carried out in turn. Here the deformation can
be formulated in a recurrence form according to certain
sequence.

4.6. The deformation of extension or contraction
along radial direction with O� as center

Generally, with Oi as centers Ei as extension function
defined over the same or disjoint support regions 
deformation equation is

4.7. The deformation of extension or contraction
along a vector field 

Let p(u,v)=(x(u,v), y(u,v), z(u,v))T be a Cr surface
defined on the domain Ω, where Ω�R2; Eij(u,v)
=E(u,v,hij ,n) extension functions whose the suppo
regions belong to Ω, where n� r , i , j=1,2,3; and
s(u,v) a unit vectors field.

Set , then the deformed

surface pd(u,v) and the original one p(u,v) have
following relation

Similar to the section 4.1, now the control paramete
involve index n, curve C and hij . In order to achieve
some special effect such as symmetry, we can s
multiply the elements of the matrix D by “−1” and
increase the control flexibility. 

In following special situations, we take h11=h22=h33,
hij =0, i� j .

1) When s (u,v) is a constant vector, the deformatio
is extension or contraction along a fixed directio

2) When s(u,v) is a tangent vector field of a surface
the deformation is extension or contraction alon
a tangent line at every points.

3) When s (u,v) is a normal vector field of a surface
the deformation is extension or contraction alon
a normal line at every points. 

4.8. Major thought of the deformation
Motivated by the mould principle of foundry and

manufacture industry, in this paper, we develop a n
deformation model based on so-called extension functi
The extension function and the operator matrix ma
of it correspond to mould. Adjusting every contro
parameter corresponds to changing the shape of 
mould to achieve object expected. The operator matr
acting on surface corresponds to extrusion or pouri
Its mathematical essentiality is that within certain ran
the coordinate space contracts or extends along cer
directions with a certain point as its center while th
magnitude of contraction and extension are varia
depending on extension functions. If we adopt differe
extension functions in different direction, we can obta
rich deformation results. And coordinates beyond t

D2( )00
0( )

C1YC2( )IC2
D2 C1YC2( )IC2

I D2( )st
r( )

C1YC2( )IC2
= =

O 1, r≤ s t+ s t n2 1–≤, ,= =

p̃d( )kl
k l+( )

C1YC2( )IC2
Cl

j

j 0=

l

∑
i 0=

k

∑ Ck
i 1

l1l2l3[ ]
--------------- l1l2l3( ) D1( )ij

i j+( )=

l2 l3×( ) l3 l1×( ) l1 l2×( )( )Tp k i–( ) l j–( ),
k l i j––+( )

C1YC2( )IC2

= pd( )kl
k l+( )

C1YC2( )IC2
, 0 k l+ k l n1 1–≤, ,≤

p̃d( )kl
k l+( )

C1YC2( )IC1
pd( )kl

k l+( )
C1YC2( )IC1

= 0 k 1+ k l n2 1–≤, ,≤,

I
i 1=

m

p̃d u v,( ) 1
l1l2l3[ ]

--------------- l1l2l3( ) Di

i 1=

m

∏ l2 l3×( ) l3 l1×( ) l1 l2×( )( )T
=

p u v,( ) O'–( ) O', u v,( ) I
i 1=

m
Ui∈+

Y
i 1=

m
Ci , Y

i 1=

m
Ci

I
i 1=

m
Ui .

p̃d u v,( ) 1
l1l2l3[ ]

--------------- l1l2l3( ) Di
ki

i 1=

m

∏ l2 l3×( ) l3 l1×( ) l1 l2×( )( )T
=

p u v,( ) O'–( ) O', u v,( ) I
i 1=

m
Ui

ki∈+

Y
k1k2Λkm( )

I
i 1=

m
Ui

ki( )=Ω.

pd u v,( ) p u v,( ) O'–( )E O' u v,( ) Ω∈,+=

pd u v,( ) Ei 1–( ) p u v,( ) Oi–( )
i 1=

n

∑ p u v,( ) u v,( ) Ω∈,+=

D

E11 1– E12 1– E13 1–

E21 1– E22 1– E23 1–

E31 1– E32 1– E33 1– 
 
 
 
 

=

pd u v,( ) p u v,( ) Ds u v,( ) u v,( ) Ω∈+=
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range remain to be unchangeable. Compared with
existing methods, the thought is simple can easily be
understood by user without advanced mathematical
foundation.

5. Experimental Results

For the sake of simplicity, we only apply our method
to a biquadratic Bézier surface and a plane to demonstrate
it mainly in orthogonal coordinate system. We also
adapt circle, ellipse and so on as the bound curve of
deformation and let hij =0 (i� j). Fig. 1 shows an
undeformed biquadratic Bézier surface with control points
(-4, -4, 2), (0, -5, 2.5), (4, -4, 2), (-4, 0, 2.5), (0, 1, 4.5),
(4, 0, 2.5), (-4, 4, 2), (0, 5, 2), (4, 4, 2). Fig. 2 is the

deformed surface by taking a circle as bound curve, 
point =(0, 0, 2.2) as the center of contraction, 3 
the index and h11=h22=h33<0. With 4 as the index and
other control parameters similar to Fig. 2, Fig. 3 sho
how the index influences the effect of the deformatio
Figs. 4-12 reveal how the change of h11, h22 and h33

affects the effect of the deformation, with =(0, 0, 0
as the center of contraction. Fig. 13 displays a deforma
with two intersecting support regions. Comparing wi
Fig. 10, Fig. 14 has the same control parameters w
Fig. 10 but =(0, 0, 1.5). Figs. 15-16 display th
difference of deformation due to taking respectively l3
= , l3= , mean

O'

O'

O'

1 3⁄ 1 3⁄ 1 3⁄, ,( ) 1 3⁄– 1 3⁄– 1 3⁄, ,( )

Fig. 3. The index n=4, h11=h22=h33<0.

Fig. 1. The original surface.

Fig. 2. The index n=3, h11=h22=h33<0.

Fig. 5. The deformation with h33>0, h11=h22<0.

Fig. 6. The deformation with h11<0, h22, h33>0.

Fig. 7. The deformation with h11, h33>0, h22<0.

Fig. 8. The deformation with h33<0, h11=h22>0.Fig. 4. The deformation with h33<0, h11=h22<0.
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rve.

while keeping l1=(1,0,0) and l2=(0,1,0). Fig. 17 shows
that we can create a ring-like shape if we choose such

bound curve as 1-cos (π(u2+v2)/4)=0. In actual ap-
plication, we can choose unclosed curve as bound cu

Fig. 9. The center of bound circle is (3/4, 3/4) with radius 1/18.

Fig. 10. The deformation with O'=(0, 0, 0).

Fig. 11. The deformation with h11, h22, h33>0, and h33<<h22=h11.

Fig. 12. The deformation with h11, h33<0, h22>0.

Fig. 13. The centers of two bound circles are respectively (3/4, 1/
2), (1/2, 3/4).

Fig. 14. The deformation with O '=(0, 0, 1.5).

Fig. 15. The deformation with l3=(-1/ , -1/ , 1/ ) l1=
(1, 0, 0), l2=(0, 1, 0).

3 3 3

Fig. 16. The deformation with l3=(-1/ , -1/ , 1/ ) l1=
(1, 0, 0), l2=(0, 1, 0).

3 3 3

Fig. 17. The deformation with h33>0, h11=h22=0, and bound
curve 1-cos (π(u2+v2)/4)=0.

Fig. 18. The deformation with h33>0, h11=h22=0, and bound
curve 1+cos (π(u-v))=0.
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For example, Fig. 18 is the deformed plane through
using 1+cos (π(u-v))=0 as bound curve and multiplying

h33 by exp ((-u2-v2)/2)). Figs. 19-20 displays that we ca
use unclosed curve (1-cos (2π(u2+v))=0, 1+cos (π(u2-
v2)/2)=0) as bound curve for some particular purpos
Fig. 21 tells that we can simulate ripple if we use t
curve 1-cos (3π(u2/3+v2/5))=0 as bound curve and
multiply h33 by the factor exp (-u2-v2). Fig. 22 is achieved
by taking 1+cos (π(u±v)/3)=0 as bound curve. Fig. 23
shows that our method can generates a complex sh
as “multi-peak surface” and once again demonstra
the continuous transition of the deformation over t
intersection of several support regions (the smooth deg
on every bounding curve can be adjusted by chang
its corresponding index).

Remark 5.1 In certain special case, self-intersectio
may take place. For example, in the deformati
illustrated by Fig. 5 if we increase h11, h22 too much the
deformed surface might intersects itself.

6. Comparison with Existing Methods

According to Barr’s way [1] the deformation of surfac
is conducted mainly through following steps. Firs
convert the surface into a vector field by differentiatin
it. Then transform the vector field into another on
according to a certain transformation rule for tange
vector. Finally integrate the new tangent vectors field
obtain the new position vectors equation of deform
surface. Obviously, by the method the deformatio
achieves figuration at one stroke. It is short of mea
for interactive control and not easy to generate arbitr
shape. The major reason for this lies in that we c
foreknow the relation between the transformation mat
and the shape of new surface. Moreover, in comp
case quadrature itself is not easy. However, our met
need not first differentiate the surface and then integra
In addition, it has good controllability. As regards th
techniques [3, 4], there are two troubled things. Fir
embed the object into lattices (convert the coordina
of object into the ones relative to the lattices) after t
control points are determined according to the defo
mation region of the object. Then adjust the position
the control points concerned to deform the lattices su
that the deformation of the lattices is passed to 
inner object (i.e., compute the new global coordina
of object points in the deformed lattices correspondi
to the same ones relative to the lattices). Thus an arbit
shape is created. However, in those methods calcula
concerned is completed with Bernstein or NURB
polynomial. Though the computation can be carried o
through transforming the polynomial into the ones wi
power basis, the amount of computation is still very larg
Moreover, in order to get an arbitrary shape, genera
a lot of control points must be chosen, which induc
new trouble. For example, people always can not ma
sure which control points should be moved. Even
they know to move which ones, the last effect 

Fig. 19. The deformation with h33>0, h11=h22=0, and bound
curve 1-cos (π(u2-v2)/2)=0.

Fig. 20. The deformation with h33>0, h11=h22=0, bound curve 1-
cos (2π(u2+v))=0 and a special support region.

Fig. 21. The deformation with h33>0, h11=h22=0 and bound
curve 1-cos (3π(u2/3+v2/5)=0.

Fig. 22. The deformation with bound curve 1+cos (π(u±v)/3)=0.

Fig. 23. The deformation with five intersecting support regions,
three positive h33 and two negative h33, all h11, h22 being zero, and
all indexes being 3 and five circles respectively being bound curves.
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deformation is difficult to predicate. Especially in actual
application overmany points result in screen clutter,
which is disadvantageous to manipulation. Compared
with FFD, RFFD [7] endows every control point with a
weight factor so as to increase degree of freedom for
deformation. The change of the effect of deformation
induced by adjusting the weight factors is difficult to
predicate too, which greatly limits the use of the
technique by the common user not knowing spline theory.
And the implementation of AXDf [11] must adopt a
curve as the axis on which a local frame field (axial
coordinate systems) is defined and convert their local
coordinates into the ones of axial coordinate system. Then
the shape of the axis is changed with traditional curve-
editing techniques while the coordinates of object points
relative to axial coordinate system keeps unchangeable.
Lastly, the global coordinates of object points are
computed. However the effect of deformation made by
the method is dull. And it involves a large amount of
computation in conversion between two kinds of
coordinate. In contrast with above methods our one
doesn’t involve higher-degree polynomial and need no
conversion between two kinds of coordinates in em-
bedding or after deformation of auxiliary tool. So using
it there is no too large computing cost. Though it has
few control parameters, due to its very simple process of
use, rich effect of deformation can be got by continuous
implementations. Moreover it can quantitatively foresee
or control the effect of deformation. What is more
important is that the method need not draw support
from any auxiliary tool for deformation.

As for existing techniques modifying the shape of
surface, the one given by literature [27] is carried on by
following way: knot insertion, moving control points,
adjusting weight factors. Nevertheless, using it to modify
a certain shape and facing too many degree of freedom,
user always can not determine whether to move points
or to change weight factors. Depending on geometric
terms such as point, displacement, literature [28] in-
troduced a perspective functional transformation of
arbitrary center O with which the shape of surface
modified is easy to expect. However it is still difficult
to control the region of modification exactly or at will.
In addition, another one introduced by the literature
[28] can control position, 1-order or 2-order derivative
through the control points of B-spline. However, for
more constraint conditions it often need recur to knot
insertion. When our method is used in shape modification
of surface, its prominent advantage is that it possesses
universality. It is fit for not only BézierB-SplineNURBS
[30] surfaces but also any ones except those expressed
by implicit function unlike the methods in literatures
[27, 28] that directs only to BézierB-SplineNURBS
surfaces. Furthermore, our method still has the following
features:

1) It can control deformation region exactly and make

sure the undeformed region remain unaffected.
2) Used it in local deformation, the smooth degree 

surface on bound curve can be chosen artificial
3) Due to its simple mathematical background, us

without advanced mathematical knowledge ca
operate it.

4) It combines shape modification and deformation
5) Applied over different regions continuously o

simultaneously it can create rich effect of defo
mation.

We think further research should aims at constructi
better extension function, locating the bound curv
building a database of extension function and analyz
the geometric information included in the deforme
surface of the original surface. As for the situation 
space curve, we discuss through other articles.
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