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Abstract — Given a set of three generator circles in a plane, we want to find a circumcircle of these generators. This problem
is a part of well-known Apollonius’ 10" Problem and is frequently encountered in various geometric computations such as the
Voronoi diagram for circles. It turns out that this seemingly trivial problem is not at all easy to solve in a general setting
addition, there can be several degenerate configurations of the generators. For example, there may not exist any circumcircle,
or there could be one or two circumcircle(s) depending on the generator configuration. Sometimes, a circumcircle itself may
degenerate to a line. We show that the problem can be reduced to a point location problem among the regions bounded by
two lines and two transformed circles via Mdbius transformations in a complex space. The presented algorithm is simple and
the required computation is negligible. In addition, several degenerate cases are all incorporated into a unified framework.
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1. Introduction between two bisectors, which are hyperbolic arcs, of
pairs of circles. It turns out that this involves the solution
Suppose that a set of three circles is given in a plane process of a quartic equation that can be solved by
where the radii of the circles are not necessarily equaleither the Ferrari formula or a numerical process [10].
and where the circles are possibly intersecting one Since the formula involves square root operations, it is
another. A circle, however, is not allowed to entirely relatively expensive and inevitably contains truncation
internal to another one. Given this circle set, we want to errors. In addition, this approach can be applied only
compute the circumcircle of these circles. A circumcircle after the number of circumcircles of the generators is
is a circle tangent to the given circles and places themdetermined. Otherwise, we may either not find all
outside of itself. This problem is frequently encountered circumcircles or waste computing time. On the other
in various geometric computations such as the Voronoi hand, the solution may be symbolically generated via
diagram for circles. In particular, the computation of tools like Mathematica. It turns out, however, that the
the Voronoi diagram of circles requires this problem cost of such symbolic generation for the equation of
solved [9, 11, 15, 17, 20]. the center of the circumcircle can be quite high. For
The problem was first considered by Apollonius example, we generated the equation using Mathematica,
around 200 B.C., and has been known as Apollonius’ where the problem is formulated as an intersection
10" problem [2, 4,5, 8, 13]. Ever since, there have between two hyperbolic arcs, and it took approximately
been several efforts to solve the problem using various73,000 lines of C code and 2.99 MB of data in ASCII
approaches [1, 3, 16, 19]. Recently, Rokne reported aformat.
noble approach based on Mébius transformation, which Even though the problem is quite complicated in
is in fact an inversion, in the complex plane [18]. Using Euclidean space, it turns out that it can be rather easily
the fact that Mdbius transformation in a complex plane solved in a complex system. Using Mobius transformation,
maps circles to lines and vice versa, he suggested tdbased on Rokne’s suggestion, we reduce the given
compute a tangent line of two circles in a mapped spaceproblem into the problem of finding appropriate tangent
in order to back-transform into a circumcircle. Most lines of two circles in a mapped space.
recently, Gavrilova reported an analytic solution which We have found out that there are six possible
involves trigonometric functions [6]. configurations of circumcircles to a set of three circles.
Solutions to the problem can be approached in Proposed in this paper is an algorithm to identify what
various ways. One straightforward approach could be the case of three given circles is out of the six cases. By
computing the center of a circumcircle as an intersectionlocating a region, based on a point location problem,
among six mutually exclusive regions bounded by lines
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circumcircle. In addition, it turns out that all of the internal to each circle while two generators are external,
degenerate configurations of generators can be handledhree circles where two generators are internal while
in a unified way within the framework of the proposed one generator is external, and the case where all three
algorithm. The proposed algorithm is also easy to generators are internal to a circle, respectively.
program, numerically robust, and computationally very  Among these tangent circles, we want to find the first
efficient. one which is a circumcircle of three generator circles.
In Section 2, we provide more descriptive explanations Depending on the configuration of the three generators,
of the problem. In Section 3, the properties of Mdbius however, there may be either no, one, or two circumcircles,
transformation in a complex plane are provided so thatas shown in Fig. 2. We want to determine which case a
the problem can be transformed to an easier one. Basediven generator set is and find such circumcircles with
on the transformation, we present in Section 4 the coreas little computation as possible if they exist.
part of the algorithm that parses the cases of configuration

of generators using a point location problem in the 3. Mbbius transformation
transformed space. Section 5 contains the conclusions
of the research. Let a plane be complex. Then, a poixty) in the
Euclidean plane is treated as a complex nurabg#
2. Tangent circles iy. Also, letc=(z, r;)), i=1, 2, and 3, be the generator

circles with a centerx{, y)) and a radius, > r,=>r;=>0
Apollonius considered a number of problems to as shown in Fig. 3. Therg 2z(r;-r;) transforms
construct circles simultaneously tangent to a set ofgenerator circleg;, ¢, andc; to shrunken circle€; ,
three objects, each of which can be either a point, line, €; and Cgespectively. Note that ¢; degenerates to a
or circle in a plane. Among ten possible combinations, point z;. Then, if we can find a circl€  passing
Apollonius’ 10" Problem is to construct the circles throughz=¢ and tangentto both abd , we can
simultaneously tangent to three circles. easily find a circle which is simultaneously tangent to
Given three circles called generators, there are at most;,, ¢, andc; by simply subtracting; from the radius of
eight circles simultaneously tangent to the generators, astc.
shown in Fig. 1. In the figure, the black circles are the
generators and the white ones are the tangent circles. Let W=W(2)=u(x, y)+iv(X, y) be an analytic function.
Fig. 1(a),(b),(c), and (d) illustrate the cases of one Then,W(2) is a conformal map except at critical points
circumcircle, three circles where one generator is where the derivativéV'(2) is zero [14]. A conformal

(@ (b) (c) (d

Fig. 1. Apollonius’ 10" Problem : the circles tangent to three circles.

.,,.@@

(a) (&) ©
Fig. 2. Cases of circumcircles. (a) no circumcircle, (b) one circumcircle, and (c) two circumcircles.
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Fig. 3. Circumcircle and the inflated circumcircle. (a) generators and the desired circumcircle, (b) shrunken generators anddecircumci
passing throughs.

mapping is known to preserve angles between anyplane to circles in th&-plane. Suppose that a line is

oriented curves both in magnitudes and in orientations.given asau+bv+1=0 in theW-plane. Then, its inverse

Among various conformal mappings, consider Mobius in the Z-plane is a circlec=(z,r,) , wherg=(-a/2+

transformation defined a&/(z)=(az+b)/(cz+d), where X, b/2+y;) and r,=,/a’+b%2 . Now we can get the

ad-bcz0, anda, b, c andd are either complex or real  circumcirclec=(z, ro-r;). Note that if the circumcircle

numbers. Note thal(2) is analytic so that the mapping has negative radius, then cirdeloes not exist in the

W(2) is everywhere conformal and maps circles and original plane. In this case, the three circles are intersect

straight lines in theZ-plane onto circles and straight each other.

lines in theWtplane. Among others, we note a particular

linear mappingM(2)=1/(z-z,) as was suggested by [7,18]. 4. Point location problem in theW-plane

The following lemma is provided without a proof. For

the details of the properties ¥(2), the readers are Let W, andW, be two circles with radir, andR; in

recommended to refer to material on the subject suchthe W-plane, respectively. Suppose tHRtR,>0, as

as [14]. shown in Fig. 4(a). Then, there could be at most four

distinct lines simultaneously tangent to b&th and

Lemma 1. Mobius transformatiofV(2)=1/(z-z,) has W,. Suppose that the black dot in Fig. 4(a) is the origin

the following properties. O of the coordinate system in th&plane. Then, the
® [t transforms lines and circles passing through  line L; maps to the circumcirclér”  in tieplane, as
in the Z-plane to straight lines in th& plane. shown in Fig. 4(b), by the inverse-mapp#(®) because
® |t transforms lines and circles not passing through the circlesW; and W, as well as the origirD are
7z, in theZ-plane to circles in thé\plane. located on the same side with respecttoNote that
® [t transforms a point at infinity in th&-plane to the originO of the Wplane corresponds to infinity in
the origin of theWplane. the Z-plane, andZ(w) is conformal. Similarlyl, maps
to the inscribing circlez”  since the circldg andW,
Therefore, the mapping{(2) =1/(z-z) transformsc, are on the opposite side & which corresponds to
and ¢in the Z-plane to circledV, andW,; in the W infinity in the Z-plane. The cases bf andL, correspond

plane, ifz is not on¢; and, . Then, the desired circle to ¢@nd , reppectively. Therefore, the line L
C, tangent to circleg; anch in theZ-plane, will be which corresponds to a circumcircle in the Z-plane is
mapped to a lind., tangent tow, and W, in the W either one or both of thexterior tangent lined_; and/
plane byW(2). It can be shown thal(2) maps circles or L,. BetweenL, andL,, the one containingV;, W,

Gi=(z, ri-r3) into circlesW=(w, R) defined asw= and the origirO on the same side of the line will map
((X-%3)/Dy,-(Yi-y3)/D;) andR=(r;-r3)/D; whereD;=(x- to the desired circumcircle(s). Remember that zero, one
X3)2+(Yi-Ya)?-(ri-r5)?, i=1 and 2. Similarly, it can be also or both exterior tangent lines may be the correct result
shown that the inverse transformatidfi’(2)=2(w)=1/ depending on the configuration of the initially given

w+2z; is also another conformal mapping, and hence, generator circles. From now on, we will drop the word
maps lines not passing through the origin of e exterior from the term for the convenience of presentation,
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(a)

unless otherwise needed.

Lemma 2.If z,00€, and z,0J¢; , thenOO(W,0W,) .
Proof. The originO of the Wplane corresponds to

()]
Fig. 4. Inverse-mappin§V-3(z)=Z(w)={1/w}+ z; which maps from thétplane to theZ-plane. (a) th&\tplane, (b) the-plane.

(or four, if W, andW, intersect each other. This case
occurs wherc;and ¢; intersect each other. However,
this case does not make the theory any different.). Once
theWplane is decomposed into such regions, the problem

infinity in the Z-plane. Since the generator circles in the of computing a circumcircle(s) now further reduces to a
Z-plane are assumed to be finite, the shrunken circlespoint location problem among the regions. Since this

are also finite. Therefor€ cannot lie oW, or W,.

O0O(W,0W,) means that the origi® of the W-plane
cannot lie on or interior to the circl&¥, andW..

4.1. R;>R,>0 : General case

SupposaV, andW, are given as shown in Fig. 5(a).

particular point location problem is obvious, the details
are not elaborated here. Transforming the problem into
a point location problem yields the following theorem.
Note that, in Fig. 5, the shaded circles are shrunken
circles, and black dots are the shrunken circles with
zero radii and thus degenerate to a point in the Z-plane.
In addition, a circumcircle is shown in a solid curve

LetL, andL, be the tangent lines to both circles. In this while an inscribing circle is shown in a broken curve.

general caseRk;>R,>0 and therefore an intersection

between_; andL, exists. Let us define “+” operator as

follows: L is the half-space, defined hy containing

W, as well asW,. Similarly, L; means the opposite
side ofL;" . Note that the boundary of the half-space,

which is the linel; itself, is excluded from both half-
spaces.

Definition 1. Wrplane consists of six mutually exclusive

regions as follows.
a=(LinLy)d(LinL3)
B=Linl,
y= (L1 n L3)—(W, O W)
o=L;nL,
e=(L,nL;)0(LinL,)
{=(LnLH)O(LInLy)

As shown in the figure, the regian consists of two

subregions and the regigrtonsists of three subregions

Theorem 3.If R>R,>0, there are six cases as follows.

® Casea: If OOa, one tangent line maps to a
circumcircle while the other tangent line maps to
an inscribing circle. (Fig. 5(kj)

® Case B: If OOpB, both tangent lines map to
inscribing circles. (Fig. 5(bj)

® Case y: If OOy, both tangent lines map to
circumcircles. (Fig. 5(b)3

® Cased: If O=9, both tangent lines map to lines
intersecting at a point. (Fig. 5(1)

® Casec: If OOg, a tangent line on whick lies
maps to a line, while the other tangent line maps
to an inscribing circle. (Fig. 5(ke)

® Case(: If OOZ, the tangent line on whicB lies
maps to a line, while the other tangent line maps
to a circumcircle. (Fig. 5(bJ)

Proof.

® Casea: Suppose thair;=(L;nL}) and,=
(LinLy). Without loss of generality we can
assume thaOOa; . Theh, in the Wplane is
inverse-mapped to a circE&"  inscribidg and
C, in theZ-plane, as illustrated by a dotted curve
in Fig. 5(b)a. This is becausk; placesO on the
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Fig. 5. Ri=R,>0. (a) theWplane, (b) theZ-plane.

opposite side oW, andW,. Note that¢; and;
are the inverse-maps ®f, andW,. On the other
hand,L, is inverse-mapped to a circumcirdg"
tangent to¢,and am the  Z-plane, and is
illustrated as a solid curve. This is becalise
placesw;, W, andO on the same side. Since two
tangent lines in thé\‘plane intersect each other at
d, the inverse-mapped circles, regardless whether
they are circumcircles or inscribing circles, always
intersect each other &/~%(J) computed by Eq.
(4) shown as a black rectangle in fhplane.

® Casef3: When Obibh W, andW, are on the
opposite side ofO with respect to both tangent
linesL, andL,. Therefore, both.,; andL, should
be mapped to inscribing circles, and hence, no
circumcircle will result as shown in Fig. 5(B)-

® Casey: When Oy, bothW, andW, are on the
same side 0O with respect to both tangent lines
L, andL,. Hence, both., andL, should be mapped
to circumcircles only. In this case, two different
situations may occur. Note that the regyaronsists

of three subreigons. The case in Fig. 3¢bdccurs
when O lies in-between two circle®V, and W,,

and the case af, in Fig. 5(b)y, occurs wherD

lies in the other subregions pf

Cased: When O=¢ , the inverse-mapping to the
Z-plane yields results similar to what is shown in
the Wiplane. Since the tangent lines in theplane
pass through the origiD, the (supposedly) inverse-
mapped circles should pass through infinity. This
means that the radii of the inverse-mapped circles
are infinite. Therefore, the mapping results in lines
in the Z-plane as shown in Fig. 5(B)-Note that
they only intersect at; .

Casee: WhenOll¢ ,O lies precisely on a ray
starting fromd. In this case, the corresponding
tangent line on whick® lies is inverse-mapped to

a line in theZ-plane, as was explained above. Then,
O should be located on the opposite side of the
other tangent line with respect W, and W,,
meaning that there is an inscribing circle as shown
in Fig. 5(b)«.
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® Casel: WhenO[OZ ,O lies precisely on a ra¥, degenerate into lines in cas&se and {. In this case,
which is also a ray starting fro@ In this case, the desired tangent circles to the generators can be
the corresponding tangent line inverse-maps to obtained by translating the degenerate lines to the
another line in th&-plane similarly to the above opposite direction of the shrunken circles.
cases. In this case, howeveras well asw, and Slightly changing the configuration of generator circles,
W, should be located on the same side of the various types of degeneracy may occur. It turns out that
other tangent line. This means that the tangent the degeneracy is mainly due to the radgfandW.,.
line inverse-maps to a circumcircle in tAelane
as shown in Fig. 5(bJ- 4.2. Ri>R,=0
R,=0 means that\, degenerates to a point. This case
Corollary 3.1. In all cases except Cadgtwo circles occurs when two smaller generator cirag@ndc; in
tangent to two shrunken circles agg intersect the Z-plane have identical radii. Some observations
each other at two poin®/™(d) as well&s . In Case follow.
0, the intersection occurs only &
Proof. Proved in Theorem 3. Lemma 4. If two smaller generators in th&plane
have identical radii (i.er,=r3), R,=0.
Note that some tangent circles to the shrunken circles Proof. If r,=r3, Gand ¢shrink to points in the Z-

- ~ Ve N

7 N / \

/ \ \
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l /\ /)\
\ | -
\ \ /
// \ /

o B Y

(b)
Fig. 6. Ri>R,=0 (a) theWplane, (b) theZ-plane.
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plane simultaneously. Applying the mappiWg2) to
¢, now vyields also a poiW, in the Wplane.

Lemma 5. If ry=r3, W,=9.

Proof. Since the lines tangent W, should be also
tangent toW,, both tangent lines should pass through
the point simultaneously. Therefol, should be the
intersection poind between two tangent lines as shown
in Fig. 6(a).

Corollary 5.1. If r,=r;, the regiony consists of two
subregions.
Proof. Obvious.

Corollary 5.2. Cased does not occur.

Proof. Qdy(WemMvg) 1. Therefore,
cannot lie onWyehdch is the intersection between
L, andL,.

O

Theorem 6. If r,=r; then there are five cases as
follows.
® Caseaq: If OOa, one tangent line maps to a
circumcircle while the other tangent line maps to
an inscribing circle. (Fig. 6(b)

Unifying Method for Computing the Circumcircles of Three Circléd

® Case B: If OO, both tangent lines map to
inscribing circles. (Fig. 6(bj)

® Case y: If OOy, both tangent lines map to
circumcircles. (Fig. 6(b)3

® Casec: If OOg, a tangent line on whickb lies
maps to a line, while the other tangent line maps
to an inscribing circle. (Fig. 6(ke)

® Case(: If OOZ, the tangent line on whicB lies
maps to a line while the other tangent line maps
to a circumcircle. (Fig. 6(bJ)

Proof. (identical to the proof of Theorem 1.)

Corollary 6.1. The inscribing circle and the
circumcircle of the shrunken generators in the Z-plane
intersect at bottt, as well asCs .

Proof. Obvious.

Note that the line segment connecting two dots intersect
or are tangent t@ for Cas@sande, while the line
segment connecting two dots does not intergect
Casesyandd.

for

4.3. R1=R2>O
This is the case in whicW,; andW, have identical

(@

(b)
Fig. 7. Ri=R,>0 (a) theWplane, (b) theZ-plane.
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non-zero radii, as shown in Fig. 7(a). Note fRatR,, circumcircle while the other tangent line maps to
in general, does not guaranteer,. In other words, an inscribing circle. (Fig. 7(b
even though two generator circles in #wplane have ® Case y: If OOy, both tangent lines map to
identical radii, the radii of mapped circles in tié circumcircles. (Fig. 7(b))
plane are not necessarily identical, and vice versa. Note ® Case(: If OO/, the tangent line on whicB lies
that two exterior tangent lines in tiéplane are parallel maps to a line while the other tangent line maps
in this case. The following observations hold. to a circumcircle. (Fig. 7(bJ)

Lemma 7. If R=R,>0, the regionsB, J, and & Corollary 8.1. The inverse-mapped tangent circles
disappear. in theZ-plane intersect only once at

Proof. Obvious. Proof. Sinced vanishes in this configuration, there is

only one intersection between the inverse-mapped
Therefore, the cases left are Casesy, and ¢ and circles, which isCz .
are illustrated in Fig. 7(b) y, and{. Since detailed
descriptions for the cases are similar to the above- In addition, both tangent circles are always tangent to
mentioned cases, they are not further elaborated heregach other at,.
but stated as a theorem without a proof.

4.4, R1=R2=O
Theorem 8. If R,=R,>0, there are three cases as This is the case in which boilv, andW, have zero
follows. radii, and thereforé,=L, . This case occurs only when

® Caseaq: If OOa, one tangent line maps to a all generator circles in thé-plane have identical radii.

(b)

(©)
Fig. 8. Ri=R,=0, (a) theWplane, (b) theZ-plane: shrunken circles, (c) tAeplane: generator circles.
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Lemma 9. If ry=r,=r;, Rj=R,=0. diagram for circles. It turns out that this seemingly trivial
Proof. Since the radii of all generators are identical, problem is not at all easy to solve in a general setting.
all shrunken circlest; &, and Csimultaneously In addition, there can be several degenerate configurations

degenerate to points, z, andz;, respectively, in th&- of the generators.
plane. SinceM?) is conformal,c; and; as well as Even though the problem is quite complicated in
Cs are all mapped to points in thNéplane. Euclidean space, it turns out that it can be rather easily
solved by employing a complex system. Following
Corollary 9.1. If ry=ry=rs, L,=L,. Rokne’'s approach, we have adopted Mébius trans-
Proof. Since bothW, andW, degenerate to points, formation to reduce the given problem into the problem
bothL, andL, should reduce to an identical line. of finding tangent lines of two circles in a mapped
space. Then, we formulate a point location problem so
Lemma 10. If ry,=r,=r3 the regionsa and { only that all of the degenerate configurations of generators
remain. can be handled in a unified way.
Proof. Since L,=L, , the regiong3, y, o and ¢ It turns out that the proposed approach incorporates
become simultaneously null. all variations of degeneracies in a single framework, is

easy to program, numerically robust, and computationally
The interpretations of the remaining regions stay the very efficient.
same as before, and therefore the following theorem
holds. Note that the black circles are generators, not Acknowledgements
shrunken circles, in Fig. 8.
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