
International Journal of CAD/CAM Vol. 2, No. 1, pp. 23~28 (2002)

p-

en

e

al
he
lf-
llel
d-
ed.
ual
al
s of
al

s
he
n

ep-

and
lf-

ive
ther
A Sweep-Line Algorithm and Its Application to Spiral Pocketing

Tawfik T. EL-Midany 1, Ahmed Elkeran1 and Hamdy Tawfik2*
1Prod. Eng. & Mechanical Design Dept. Mansoura University, Mansoura, Egypt
2Technology Development Dept. Workers’ University, Mansoura, Egypt

Abstract − − − − This paper presents an efficient line-offset algorithm for general polygonal shapes with islands. A developed swee
line algorithm (SL) is introduced to find all self-intersection points accurately and quickly. The previous work is limited to
handle polygons that having no line-segments in parallel to sweep-line directions. The proposed algorithm has be
implemented in Visual C++ and applied to offset point sequence curves, which contain several islands.

Keywords: Monotone chain, sweep-line, self-intersection, spiral pocketing, line-offset

1. Introduction

In order to machine complex pockets on milling
machines, it is necessary to fill 2D areas with a back
and forth sweeping motions of the cutting tool. There
are two sweeping motions, spiral offset and zigzagging
paths. The spiral offset is defined as a locus of the
points, which are at constant distance d along the normal
from the generator curve. Spiral offsets are widely used
in various applications, such as tool path generation
for 2.5-D pocket machining [3, 9, 14, 15, 20], 3D NC
machining, and access space representations in robotics.
Spiral milling is an important operation in CAD/CAM,
and the problem has been widely studied, mostly, as a
pocket-machining problem through three approaches.
Line-offset (pair-wise) [8, 13, 17], Voronoi diagram [10],
and pixel-based approach [4]. Voronoi diagram needs a
very careful implementation to avoid numerical com-
putational error [10]. Pixel-based approach would require
a large amount of memory and an excessive computation
time to achieve an adequate level of precision [5]. Line-
offset approach is more stable, not prone to computational
errors, and would not require a large amount of memory
[5]. Self-intersection is one of the main problems in
line-offset so, it is an essential task for practical
applications to detect all polygons of the self-intersection
points correctly and generate valid polygons. The
literature survey on offset curve and self-intersection
polygons prior to 1992 was conducted by Pham [18]
and after 1992 by Takashi [22]. The self-intersection
polygons can be handled through two approaches, line-
segments intersections [7, 18] and sweep-line [1, 11, 12].
Sweep-line is more efficient than line-segments inter-
sections [21]. Bentley and Ottmann 1979 [1] introduced a

sweep-line algorithm to find all k intersections among n
line-segments with an O((n+k).log n) time complexity.
Chazelle et al. [2] and Mehlhorn et al. [16] developed
Bentley et al. algorithm [1], but their algorithm is more
complicated to implement [17]. Park et al. 98, developed
a sweep-line algorithm to find all intersections k among
polygonal chain which has m monotone and n line-
segments with an O((n+k).log m) time complexity, but
it is only restricted for polygons which contain lin
segments nonparallel to sweep-line direction.

In this paper, a sweep-line algorithm, for gener
polygonal shapes with islands, is developed. T
developed algorithm can be applied to find se
intersection points, even if the sweep-line was para
to one or more line-segment in the polygon. Also, invali
loops detection and removing algorithm are propos
The proposed algorithm has been implemented in Vis
C++, and extensively tested for several polygon
shapes. The results show robustness, and quicknes
the developed algorithm for offsetting general polygon
shapes with islands.

2. Definitions and Terminology

This section contains some preliminary definition
and terms that are used throughout this paper. T
following definition of a monotone chain is based o
those of Preparata et al. [19] and Park et al. [17]. To
handle the chains with line-segments parallel to swe
line, parallel monotone is suggested in this paper.

2.1. Definition of Chain
Chain is a connected sequence of line segments,

a polygon is a chain that is closed and non se
intersecting [17]. It is assumed that a consecut
collinear sequence of line-segments is merged toge
into a single line segment.

*Corresponding author:
E-mail : tawfikhtm@yahoo.com

�� International Journal of CAD/CAM Vol. 2, No. 1, pp. 23~28

1
2

ft

d

ed
-
nd
me
ain
left
t
rting
-
ne
 of
 It
the
ns
ne
n

m
ies
ns
 a

on
2.2. Definition of Monotone Chain
A chain C in Fig. 1 is a monotone with respect to a

line ZL, if C has at most one intersection point with a
line L perpendicular to ZL [17]. The line ZL is called
the monotone direction, and the line L becomes a sweep
line. It is assumed that ZL-line has an x-axis direction.
There are two types of monotone: non-parallel monotone
(which contains no parallel line-segment to sweep-line
direction), and parallel monotone (which is only one
line segment parallel to sweep-line direction).

2.3. Definition of Parallel Monotone Chain (PMC)
The Monotone is parallel, if it has at most one line-

segment whose direction is parallel to sweep-line Fig.
2. It has also two vertices (P1, P2) i.e. two sweep-lines
L1 and L2 at P1 and P2 respectively. The two sweep-
lines are overlapped. It is assumed that the sweep-line
L1 intersects the PMC at point P1 and sweep-line L2

intersects the PMC at point P2. While traversing a
chain, each of the locals “extreme” points (with respect
to their x-values) are marked either as a left or right-
extreme point and up or down-extreme point as follows:

2.4. Definition of Extreme Point
A point in a chain is called a left-extreme and/or

right-extreme point, if its x-value is locally minimum
or maximum. The monotone contains right & left extreme

point [17]. PMC contains two points: the first point (P
Fig. 2) is an up-extreme point and the last point (P
Fig. 2) is a down-extreme point, like right and le
extreme points in general chain (non parallel chain).

2.5. Definition of Sweep Step (SS) & Monotone
Sweep Value (MSV)

Sweep-step (SS) is the x-coordinate of SL, and
intersection of SL with certain monotone is calle
monotone sweep value (MSV)

2.6. Monotone Chains & Extreme Points
Shown in Fig. 3 are local extreme points of a clos

polygonal chain consisting of 7 points (or 7 line
segments): There are two left-extreme points, P0 a
P3, two right-extreme points, P2 and P4, one up-extre
point, P3, and one down-extreme point, P2. The ch
can easily be divided into monotone chains. Since
& right-extreme points, up & down-extreme poin
alternate, each sequence of the line-segments sta
from left to right-extreme point or from up-to down
extreme point (or vise versa) is identified as a monoto
chain. The sweep-line steps are defined at vertices
polygonal chain and sorted by a quick-sort algorithm.
is assumed that a vertical sweep-line is used in
developed algorithm. There is no problem, if the chai
contain line-segments in parallel with the sweep-li
through using of PMC, i.e. the fundamental limitatio
of the Park et al. [17] sweep-line method is removed.

3. Sweep-line Algorithm (SL)

The proposed polygonal-chain intersection algorith
mainly works on a set of monotone chains. The propert
of a monotone chain are: (1) it has no self-intersectio
among its line segments, and (2) its points are in
sequence order of x-values allowing an efficient use of
the sweep-line method. The following is the explanati
of sweep-line algorithm.

//Sweep Line Algorithm
SweepLine (Array of Points [n])

Fig. 1. Monotone chain w.r.t line L.

Fig. 2. Parallel Monotone Chain (PMC).

Fig. 3. Monotone & extreme points.

Tawfik T. EL-Midany, et al. A Sweep-Line Algorithm and Its Application to Spiral Pocketing��

j
 i

;

t

{
Polygon�Convert points data to lines /* n-lines *
/ and store them in a polygon;
Polygon�Filter;
/ * Remove collinear and close this polygon if not
closed */
Calculate extreme point (Polygon);
/* Left or right and up or down for parallel
monotone */
PolygonToMonotones�Convert polygon data to
m Monotones;
SweepLineArray�Find sweep-lines array;
for i�0 until n do

for j�0 until m do
if monotone=PMC and sweep-line is 1st

sweep then
take 1st of PMC as intersection points;

else if monotone=PMC and sweep-line is
2nd sweep then

take 2nd of PMC as intersection points;
else if monotone j intersects sweep-line i
then

Find y-intersection between sweep-
line i and Monotone j and store them in

SLV[i][j];
for i�0 until m-1 do

for j� i+1 until j<i do
for k�0 until n do

for kk�k+1 until kk<k do

{
if (sweep-line k intersects monotone i,
and sweep-line kk intersects monotone j,
respectively) then

Find intersection point;
/* Call intersection function */

else
continue; /* There is no intersection
found */

}
}
PolygonToMonotones (Array of Points [n])
{

Make min. left extreme is the first point of polygon
for i�0 until n do
{

if (Line[i].DX>0) then
Define increasing monotone;

else if (Line[i].DX<0) then
Define decreasing monotone;

else
Define PMC;

}
}
SweepLineArray(Array of Points [n])
{

for i�0 until n do
Define sweep-line as a line through this poin
with length=SWEEP_LENGTH;

Fig. 4. Data flow through sweep-line algorithm.

�� International Journal of CAD/CAM Vol. 2, No. 1, pp. 23~28

he
et
re
e
r
st
er
II,

set

ing
 is
st
/* where SWEEP_LENGTH is the length of sweep-
line */
Use quick-sort algorithm to sort sweep-lines based
on x-coordinates;

}
Where: n is the No. of points or line, m: is the No. of

monotones; Line.DX=X2-X1 where X2, X1 is the x-
coordinates of line end points.

4. Information Flow through the
Sweep-line algorithm

The point data are exported from CAD system in
DXF format and imported to data filter, Fig. 4. In this
step collinear points are removed, and stored in
monotones. These monotones are stored in monotone
chain. The sweep-line values are sorted and stored in
sweep chain. And then, monotone-intersection module
will find self-intersection points.

5. Island Making Algorithm (IM)

The IM algorithm is proposed to handle the island
during pocketing, Fig. 5. The algorithm contains the
following steps:

Step 1: Detect boundary and island polygons, make
boundary CCW, and island CW direction.

Step 2: Make one outward offset for island and
inward offset until it meets for boundary up
to meet island offset. Store the generated
offset of boundary and island in temporary
polygons.

Step 3: Use SL to find self-intersection points for
the temporary polygon, and call detection
valid polygons [23] (DVP) to find all valid

polygons.

6. Applications

This section contains two parts: Part I, shows t
execution time for three-sample examples vs. offs
distance for full offset. These sample examples a
performed on PIII-800 MHz PC, the execution tim
calculated through a built-in Visual C++ function (refe
to Fig. 6). It is assumed that the offset in the fir
generated polygon=50% from a cutting tool diamet
and 90% for the remaining generated offset. Part
shows the relationship between the number of off
and the execution time.

6.1. Part (I) Execution Time for Full Offset
As shown in Table 1, the execution time is decreas

while the offset distance is increasing. This variation
more significant for small offset distance, and almo

Fig. 6. Proposed system sample example.

Fig. 5. Island making.

Tawfik T. EL-Midany, et al. A Sweep-Line Algorithm and Its Application to Spiral Pocketing��

ant
es

o,
ng
is
pe

m
ed
f-
ed
us
s
ne
gh

r

al
”,
y

e
n”,
 in

t

 J.

e

linearly with large values of offset distance. These results
are plotted on a line-chart shown in Fig. 7 for three-
sample examples (bearing holder, deer, and magician).

6.2. Part (II) Effect of Repeated Offset
The relationship between the number of offset and

the execution time for the three-sample example is given
in Fig. 8.

This figure shows that the execution time is increasing
linearly for small values of offset and becomes almost

constant for large values of repeating offset. This const
variation occurs when the repeating offset value becom
closer to the full offset values of the application. Als
the figure shows that Magician starts with increasi
rather sharply than Bearing Holder and Deer. Th
sharp variation depends on the complexity of the sha
and the number of islands.

7. Conclusion

Presented in this paper an efficient line-offset algorith
for general polygonal shapes with islands. A develop
sweep-line algorithm (SL) is introduced to find all sel
intersection points accurately and quickly. The develop
algorithm is a considerable improvement over previo
work algorithms which were limited to handle polygon
that having no line-segments in parallel to sweep-li
directions. The proposed algorithms are tested throu
several application examples.

References

[1] Bentley, J. L. and Ottmann, T. A. (1979), “Algorithms fo
reporting and counting geometric intersections”, IEEE
Transactions on Computers, 643-647.

[2] Chazelle, B. and Edelsbrunner, H. (1992), “An Optim
algorithm for intersecting line segments in the plane
Journal of the Association for computing machiner,
39(1), 1-54.

[3] Chen, Y.J. and Ravani B. (1987), “Offset surfac
generation and contouring in computer-aided desig
Journal of Mechanisms, Transmissions and Automation
Design: ASME Transactions, 109(3), 133-142.

[4] Choi, B.K. and Kim, B.H. (1997), “Die-cavity pocketing
via cutting simulation”, Computer Aided Design, 29(12),
837-846.

[5] Choi, B.K. and Park, S.C. (1999), “A pair-wise offse
algorithm for 2D point-sequence curve”, Computer-Aided
Design-31, 735-745.

[6] Dobkin, D., Guibas, L., Hershberger, J. and Snoeyink,
(1988), “An Efficient algorithm for finding the CSG
representation of a simple polygon”, Computer Graphics,
31-40.

[7] Gavrilova, M. and Rokne J.G. (2000), “Reliable lin
segment intersection testing”, Computer Aided Design,
737-745.

Table 1. Sample example execution time vs. offset distance

Offset
(mm)

Bearing Holder
ms

Deer
ms

Magician
ms

1 1128 522 2685
7 202 127 555

10 132 127 438
15 106 93 473
20 90 85 305
25 75 82 285

Fig. 7. Execution Time vs. offset (for Full offset).

Fig. 8. Execution time vs. No. of offset.

Table 2. Execution time vs. No of offset

No. of Offset Bearing Holder Deer Magician

1 11 75 215
3 24 138 345
6 51 201 600

10 70 294 787
15 114 303 1235
20 152 344 1390
30 198 359 1541
50 241 359 1674

100 241 359 1674

�� International Journal of CAD/CAM Vol. 2, No. 1, pp. 23~28

n
nt

e
s

ief

nal

l

n”.
d

t

s,
[8] Hansen, A. and Arbab, F. (1992), “An algorithm for
generating NC tool paths for arbitrarily shaped pockets
with islands”, ACM Transactions on Graphics, 11(2),
152-182.

[9] Held, M. (1991), On the computational geometry of
pocket machining, Berlin, Germany: Springer-Verlag.

[10] Held, M. (2001), “VRONI: An Engineering Approach to
the Reliable and Efficient Computation of Voronoi
Diagrams of Points and Line Segments”, CGTA.

[11] Internet web-site (IWS-1), “Algorithms for Intersecting
Segments” <http://www.cs.jhu.edu/~goodrich/teach/geom/>
and <http://www.cs.jhu.edu/~goodrich/teach/geom/notes/
intersection.ps>

[12] Internet web-site (IWS-2), “An efficient algorithm for
calculating red and blue line segment intersections” -site.
<http://www.cs.unc.edu/~mantler/258/prop_slides.html>.

[13] Kalmanovichf, G. and Nisnevich, G. (1998), “Swift and
stable polygon growth and broken line offset”, Computer-
Aided Design, 30(11), 847-852.

[14] Kuragano, T., Sasaki, N., and Kikuchi, A. (1988), “The
FRESDAM system for designing and manufacturing
freeform objects”, In: Martin R, editor. USA-Japan Cross
Bridge. Flexible Automation, 93-100.

[15] Li, H., Dong Z., and Vickers, G. W. (1998), “Optimal
Tool Path Generation for 2½-D Milling of Dies and

Molds”, SSM'98 Sculptured Surface Machining
Conference.

[16] Mehlhorn, K. and Naher, S. (1994), “An Implementatio
of a sweep line algorithm for the straight line segme
intersection problem”, Technical Report No. MPI-I-94-
160. Max-Planck-Institut fur Informatik.

[17] Park, S.C., Shin H., and Choi B.K. (1998), “A sweep lin
algorithm for polygonal chain intersection and it
applications”, Proceedings of IFIP WG5.2 GEO-6
Conference in Tokyo University, 187-195.

[18] Pham, B. (1992), “Offset curves and surfaces: a br
survey”, Computer Aided Design, 24(4), 223-231.

[19] Preparata, F.P. and Shamos, M.I. (1985), “Computatio
geometry-An introduction”, Springer Verlag, New York.

[20] Rohmfeld, R.F. (1998), “IGB-offset curves-loop remova
by scanning of interval sequences”, Computer Aided
Geometric Design, 15(3), 339-375.

[21] Schrder, P. (CS138A 1999), “Line Segment Inter-sectio
[22] Takashi, M. (1999), “An overview of offset curves an

surfaces”, Computer Aided Design, 165-173.
[23] Yang, S.N. and Huang, M.L. (1993), “A new offse

algorithm based on tracing technique”,' Second ACM/
IEEE Symposium on Solid Modeling and Application
Montreal, Canada, 201-210.

	A Sweep-Line Algorithm and Its Application to Spiral Pocketing
	Tawfik T. EL-Midany1, Ahmed Elkeran1 and Hamdy Tawfik2*
	1Prod. Eng. & Mechanical Design Dept. Mansoura University, Mansoura, Egypt 2Technology Developmen...
	Abstract - This paper presents an efficient line-offset algorithm for general polygonal shapes wi...
	Keywords:�Monotone chain, sweep-line, self-intersection, spiral pocketing, line-offset
	1.�Introduction
	2. Definitions and Terminology
	3. Sweep-line Algorithm (SL)
	4. Information Flow through the Sweep-line algorithm
	5. Island Making Algorithm (IM)
	6. Applications
	7. Conclusion
	References

