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Abstract 

 
In this paper, an integration framework of Geometric Constraint Solving Engine and AutoCAD is 

presented, and a dynamic geometric constraint system is introduced. According to inherent orientation 
features of geometric entities and various Object Snap results of AutoCAD, the proposed system can 
automatically construct an under-constrained geometric constraint model during interactive drawing. And 
then the directed constraint graph in a geometric constraint model is real-time modified in order to 
produce an optimal constraint solving sequence.  

Due to the open object-oriented characteristics of AutoCAD, a set of user-defined entities 
including basic geometric elements and graphics constraint relations are defined through derivation. And 
the custom-made Object Reactor and Command Reactor are also constructed. Several powerful 
characteristics are achieved based on these user-defined entities and reactors, including synchronously 
processing geometric constraint information while saving and opening DWG files, visual constraint 
relations, and full adaptability to Undo/Redo operations. These characteristics of the proposed system can 
help the designers more easily manage geometric entities and constraint relations between them.  
 
Key Words: Geometric constraint solving, Constraint relation decomposition, Geometric constraint 
graph, Object Snap, Constraint display 
 

1. Introduction 
 

The traditional CAD systems such as AutoCAD have few powerful capabilities in representing 

and processing constraint relations between geometric entities. Most systems are actually drafting-boards, 

and lack of efficient product design functions for the designers. The abilities to represent, solve and 

maintain geometric constraints have become a distinct characteristic to distinguish modern and traditional 

CAD systems [23]. Despite all that, these traditional CAD systems have been applied widely in industry 

community. Therefore, it is very important to extend constraint solving abilities to traditional CAD 

systems. 

Geometric Constraint Solving (GCS) is one of the key technologies of parametric CAD systems, 

which enables the designers to make modifications to existing designs by changing parametric values. 

Many practical problems in engineering design fields can be regarded as Geometric Constraint 
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Satisfaction Problem (GCSP), including parametric design and drawing, automatic assembly, planar or 

spatial mechanism analysis, layout problem and so on. 

There are four major approaches to geometric constraint solving: the numerical solving 

approach [14, 19], the symbolic computing approach [6, 12], the graph-based analyzing approach [7, 8, 9, 

15, 21], and the rule-based reasoning approach [1, 5, 10, 13, 16]. These methods have their own 

advantages and drawbacks about applied scope and solving speed, therefore, they are often combined to 

obtain the best results [2, 4, 11, 17, 18]. 

Nowadays, the 2D geometric constraint solving technology used in existing CAD systems has 

been developed perfectly, and applied successfully. However, in 3D geometric design fields, due to their 

own diversity and complexity, many problems about constraint solving have been not settled well. In fact, 

the underlying essence of geometric constraint problems in 2D and 3D fields are consistent, and the 

differences between them consist in that whether the constraint solvers are easy to be achieved. Moreover, 

for the multi-body system analysis problems in engineering design fields, they actually have the same 

geometric characteristics with those of geometric constraint systems. 

Over the past years, most researches about geometric constraint satisfaction problems have been 

processed separately according to their own spaces and problem types. For instance, the solution to planar 

drafting is much different from that to spatial assembly. Essentially, all these applications are concerned 

with constraint matching, constraint sorting and constraint decomposing, which are regarded as common 

problems of constraint solving. 
Based on above considerations, we have carried out the researches on general geometric 

constraint solving engine. The major goal is to construct an efficient and united geometric constraint 

solver, called Constraint Broadcasting Automation (CBA) [22]. It is hoped that CBA can be applied to 

matching, sorting and decomposing of 2D/3D constraints, and furthermore to mechanism kinematics and 

dynamics analysis. Moreover, CBA should have enough platform-independent compatibility and 

transplantability. 

This work follows our previous researches on general geometric constraint solving engine. 

Using the existing open CAD system as a geometric engine, we try to study the integration framework of 

CBA and the geometric engine, and develop a new application system. In the existing parametric systems 

based on AutoCAD [2, 23, 24], following drawbacks should be attended. 
1. Due to excessive dependence of geometric constraint systems on the given CAD platform, 

the transplantability of constraint solver was restricted. 
2. Most systems often used separate data files to store geometric constraint information. As a 

result, the geometric constraint models would possibly be inconsistent with engineering drawings. 

3. Various Object Snap results were simply discarded. Therefore, the descriptive geometric 

constraint models could not be automatically constructed during interactive drawing. 

4. Invisible constraint information would possibly result in complex actions in managing and 

maintaining constraints. 

5. Undo/Redo operations were not adapted well all along. 



 
 

The thinking and relevant algorithms about geometric constraint solving will not be detailed in 

this paper. Instead, we present a new 2D computer-aided drafting system based on geometric constraint 

solving, called CBAbench. The proposed system demonstrates a seamless integration framework of 

independent geometric constraint solving engine and AutoCAD, and those problems will be solved well 

in this system. 

The rest of this paper is organized as follows. In Section 2, we state the notations and 

conventions used in this paper, and give the software architecture of CBA. Next, in Section 3, the 

integration framework of the proposed system is presented. And, Section 4 detailed explains the 

implementation methods of major functions, followed by several illustrative examples in Section 5. 

Finally, we offer some conclusions and discuss future works in Section 6. 

 

2. CBA overview 
 

2.1 Decomposition of constraint relation 

 

Generally, the geometric constraints in a plane fall into two groups: structural constraints and 

dimension constraints. The structural constraints can be implicit or explicit. The implicit structural 

constraints describe the inherent orientation features of geometric entities, such as Point-On-Line, 

horizontality and verticality. The explicit structural constraints describe the relative positional and 

connective relations between geometric elements, such as parallelism, perpendicularity and tangency. 

And, the dimension constraints are made through dimensioning, including distance and angle. 

From the viewpoint of granularity, the geometric constraints can be also classified into two 

types. One is the macro-definition for end users, called Constraint Relation, and the other is the micro-

definition used in internal solving, called Constraint Component. Each constraint relation is equivalent to 

one or more constraint components. For example, the constraint relation produced by a distance 

dimension between two parallel lines can be decomposed into two constraint components, that is, Line-

Line parallelism and Line-Line distance. 

The two important notions, that is, Degree of Freedom (DOF) and Degree of Constraint (DOC), 

are often used to quantify geometric entities and constraint relations between them. DOF is defined by the 

number of independent movement variables of geometric entities, denoted by , and  is a 

given entity. The DOF of points, straight lines of infinite length, circles of variable radius in a plane is 

equal to 2, 2, 3 respectively. 

)(eDOF e

DOC is defined by the reduced number of the DOF of geometric entities due to geometric 

constraints placed on them, denoted by , and  is a given constraint relation. A constraint 

relation is actually equivalent to a group of independent algebraic constraint equations, which are 

quadratic in the coordinates of the geometries [21]. Due to various constraints placed on them, the 

movements of geometric entities are restricted, and their DOF reduces consequently [1]. 
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According to above explanations, the DOC of a constraint relation should be equal to the 

number of relevant constraint components, and to the number of equivalent independent algebraic 

constraint equations. The constraint relations whose DOC is greater than 1 should be decomposed, 

therefore, the constraint solver can consistently maintain the decomposed constraint components whose 

DOC is always equal to 1. Table 1 shows several general constraint relations the DOC of which is greater 

than or equal to 1. 

 

Table 1. Constraint relations and relevant constraint components 
Constraint Relation DOC Constraint Component(s) 

Point-fixed 2 
X-coordinate-fixed 

Y-coordinate-fixed 

Point-Point coincidence 2 
X-coordinate-equal 

Y-coordinate-equal 

Point-Line symmetry 2 
Line-Line perpendicularity 

Point-Line equidistance 

Line-Line coincidence 2 
Line-Line parallelism 

Line-Line distance = 0 

Distance dimension between 

two parallel lines 
2 

Line-Line parallelism 

Line-Line distance 

Line-Line perpendicularity 1 Perpendicularity between two lines 

 

It can be seen from the following segments that the decomposition of constraint relations is 

helpful for representation and solving of geometric constraint models. And the persistent storage of 

constraint relations is more easily achieved. 

From now on, we will not distinguish constraint relations from constraint components, and call 

them constraints instead, provided that no mistake arises. 

 

2.2 Representation of geometric constraint model 

 
In this work, Geometric Constraint Graph (GCG) is introduced to describe geometric constraint 

models. In a directed constraint graph, ),( AVGGCG = ,  is a set of vertices denoted by , 

where  is denoted by a geometric element;  is a set of directed arcs denoted by , where  is 

denoted by a constraint component between two geometric elements. 

V }{v
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The directed arc  is made with the following steps. Let constraint  be matched with 

vertex ;  and  represent the head and tail of a directed arc respectively. If  is matched with 

,  is created by using  to represent its tail vertex and  to denote its head vertex. The other 

a c

v hv tv c
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definitions concerning the structural properties of the constraint graph are provided in Ref. [17]. 

 (a)                                      (b) 
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Fig. 1. A geometric constraint model and its optimized GCG. (a) a geometric constraint model, 

and (b) the optimized geometric constraint directed graph. 

 

The work in Ref. [3] provides more detailed algorithms about how to construct, match and 

optimize a directed constraint graph. As an example, the GCG in Fig.1(b) is constructed through 

recognizing the constraint relations in the geometric drawing in Fig.1(a), and it has been dynamically 

optimized in order to decrease the constraint solving scale (explained below). As shown in Fig.1(b), the 

GCG clearly represents geometric entities and constraint relations between them in the geometric 

constraint model. 

Practically，the vertex  can be classified into two types: basic vertex denoted by  

and compound vertex denoted by . Here,  encapsulates basic geometric elements, such as 

points, straight lines and circles;  encapsulates a directed sub-graph , which represents a 

condensed strong component of the directed graph . The analogous methods about how to condense 

strong components to compound vertices in a directed graph are reported in Ref. [8]. 
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A directed constraint graph  has the following characteristics. First, the directed arc  

represents one and only constraint , where c is matched with the head vertex of . Second, the 

number of the constraints matched with , which is equal to the in-degrees of , should be less than 

or equal to the DOF of . 
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Thus it can be seen, the key point to construct a geometric constraint graph is to search a vertex 

 to match the new constraint . If no appropriate v  is found,  is redundant. The analogous 

conclusion can be also seen in Ref. [3]. 

v c c

 

2.3 Dynamic solving planning 

 
In a directed constraint graph, the arc’s direction indicates the dependence of its head vertex on 



 
 

its tail vertex. Then, the vertices whose out-degrees are equal to zero are independent on any other 

vertices. As shown in Fig.1(b), P6 is independent on P1, L1 and L4. The condensed directed acyclic 

graph indicates a partial-order between the set of vertices, and a global-order solving sequence can be 

produced with Topological Sort method. 

For example, the directed acyclic graph in Fig.1(b) has no strong components. Therefore, the 

solving sequence, {P6, L1, L4, P1, L2, P2, L3, C, P3, P4, P5}, can be made by using Topological Sort. 

Since the global solving is too slow and consumes too much space to satisfy real-time 

interactive operations, certain dynamic planning strategies must be taken to decrease the constraint 

solving scale. As a matter of fact, the arc’s direction in a directed graph implies the broadcasting scope of 

the variations caused by the constraint’s change, called Constraint Broadcasting Scope (CBS) [3]. In a 

directed acyclic graph, the CBS for vertex  and the constraint matched with  is defined by a set of 

vertices denoted by , which can be produced through forward Depth-First-Search from . 

0v 0v

}{v 0v

As shown in Fig.1(b), if the radius dimension d4 matched with the arc C is modified, only the 

vertices in {P3, P4, P5}, which are equivalent with the CBS of vertex C and d4, must be re-solved. 

 

2.4 Software architecture of CBA 
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Fig. 2. Software structure of CBA. (a) object hiberarchy of CBA, and (b) aggregation and 

reference relations between CBA objects. 

 



 
 

Based on above explanations, we give the software structure of CBA in the object-oriented 

form, as shown in Fig.2. The object hierarchy of CBA presents most classes in the geometric constraint 

solver except those used in 3D constraint solving, which are beyond the scope of this work and have been 

ignored. The object inheritance relations are shown in Fig.2(a), and expressed with hollow arrows. Next, 

the aggregation and reference relations are shown in Fig.2(b) with rhombic nodes and arrows respectively. 

The brief descriptions for CBA objects are given as follows.  

As the base-class of all the other objects, CbaObject provides necessary common interfaces and 

services, including object identification and debugging. 

CbaModel encapsulates all objects of a geometric constraint system, including a set of virtual 

bodies denoted by {CbaBody}, a set of geometric entities denoted by {CbaGeomEntity}, a set of 

constrain relations denoted by {CbaRelation}, a directed constraint graph denoted by CbaGraph related to 

the geometric constraint model, and a dynamic solving sequence denoted by {CbaSolveUnit}. 

Since the geometric constraint solving engine does not directly manage actual geometric 

elements, CbaBody in this work is defined as Virtual Body. The virtual body contains the DOF of a given 

geometric body and a set of basic geometric elements, where the basic geometric elements are attached to 

the virtual body and have various constraint relations with other entities. The virtual body links to the 

actual geometric elements through their unique handles from CAD systems. 

Correspondingly, CbaGeomEntity encapsulates the common properties of all types of basic 

geometric elements. And, the basic geometric elements are constructed through derivation from it, such 

as points denoted by CbaPoint2d, straight lines denoted by CbaLine2d and circular arcs denoted by 

CbaArc2d. 

CbaConstraint is used to describe a constraint component. As the minimal solving unit, it is 

associated with a unique algebraic constraint equation. And, CbaRelation encapsulates a group of (mostly, 

only one) constraint components, which can be seen through the user interface. 

CbaDiGraph represents a directed constraint graph. It provides the operations of constructing, 

searching and traversing for directed graphs, and searching and condensing for strong components. The 

vertex and directed arc in a constraint graph are described with CbaDiVertex and CbaDiEdge respectively. 

Finally, CbaSolveUnit is used to explain one step in a solving sequence，which is actually 

bound with a basic or compound vertex in a directed constraint graph. 

CBA can be easily used to represent geometric constraint models, and many crucial algorithms 

for constructing, matching and decomposing constraint directed graphs are also developed for practical 

applications [3]. Among these classes, CbaBody is one of the most important objects for 2D/3D united 

constraint solver for its properties vary from different spaces and problems [22]. Furthermore, other 

classes and their sub-classes including CbaModel, CbaGraph, CbaConstraint and CbaSolveUnit will be 

used to deal with various problems in different fields. 

 

3. Integration framework in CBAbench 



 
 

 

3.1 Open characteristics of AutoCAD 

 

Before introducing the integration framework of CBAbench, we begin to explain the object-

oriented characteristics of AutoCAD. First, due to its open application architecture, AutoCAD can be 

regarded as a general geometric kernel. Then, a third-party application can be developed based on this 

system or transplanted to this platform, and seamlessly integrated with it. 

Second, the object hierarchy of AutoCAD can be further extended. Besides providing various 

objects and functions in the object-oriented form, AutoCAD permits new objects to be constructed 

through derivation from existed classes, and provides relevant methods to manage them. 

Third, AutoCAD provides powerful message mechanism. It reports various internal events 

(such as creations or deletions of entities, calling commands) to external applications. And the latter can 

process them in time. 

Last, the graphics database of AutoCAD is open. Like existing internal objects, the new objects 

of external applications constructed through derivation can be saved into the graphics database, and 

managed and maintained by AutoCAD consistently. 

 

3.2 Integration framework of CBA and AutoCAD 

 

AutoCAD
Graphics
Database

CBADB
Constraint
Broadcasting
Automation

ObjectARX CBA for AutoCAD

Dynamic
Navigation

(a) 

CbaDbEntity

CbaDbPoint

CbaDbLine

CbaDbArc

AcDbEntity

CbaDbRelation

AcDbObjectReactor

CbaObjectReactor

AcEditorReactor

CbaCommandReactor

(b)                      (c) 

Fig. 3. Intergration framework in CBAbench. (a) integration framework of CBA and AutoCAD, 

(b) CBADB: run-time objects, and (c) object reactor and command reactor. 

 

Practically, CBA is an independent calculation model, and CBA object information is temporary 

and cannot be persistently saved. The correlations between the object instances of CbaBody, 

CbaGeomEntity, CbaRelation and the platform-dependent entities can be built only by using unique 

handles, which helps to construct an integration framework of CBA and AutoCAD. In this work, a 

seamless integration framework shown in Fig.3 has been accomplished based on ObjectARX [20]. 



 
 

Among these sub-systems, Dynamic Navigation in Fig.3(a) is a set of interactive tools used to 

draw lines and dimension, which uses the Object Snap functions of AutoCAD to draw exact lines and 

extract accurate constraint relations between them. Moreover, in this framework, Dynamic Navigation is 

used as a bridge to communicate the geometric constrain solving engine with AutoCAD. 

In this framework, CbaDbEntity and its sub-classes in Fig.3(b), including CbaDbPoint, 

CbaDbLine and CbaDbArc, are defined as actual geometric elements, and used in Dynamic Navigation to 

create geometric entities during interactive drawing. 

Besides being the storage carrier of geometric constrains in AutoCAD, CbaDbRelation is used 

to really display the types and states of constraints. And that, the function of synchronously processing 

constraint information while saving and opening DWG files is also achieved based on it. 

The two reactors, that is, CbaObjectReactor and CbaCommandReator in Fig.3(c), are defined to 

implement Object Reactor and Command Reactor respectively. And, these reactors are combined to 

achieve the full adaptability to Undo/Redo operations. This will help the system automatically update 

geometric constraint models. 

In a geometric constraint graph, the vertices and directed arcs are associated with different types 

of graphics entities. In this work, those actual geometric elements, defined by CbaDbPoint, CbaDbLine 

and CbaDbArc, are associated with the basic vertices, and the constraint entities defined by 

CbaDbRelation are related to the directed arcs. 

Through unique handles, called AcDbHandle in ObjectARX [20], the correlations between the 

temporary run-time objects in CBA (such as CbaGeomEntity and CbaRelation) and the persistent user-

defined entities in AutoCAD (such as CbaDbEntity and CbaDbRelation) can be created conveniently. 

 

4. System implementation 
 

4.1 Construction of geometric constraint model 
 

As mentioned above, Dynamic Navigation has two major sets of functions, that is, drawing 

lines and dimensioning. And it plays an important role in automatically constructing geometric constraint 

models during interactive drawing. 

The functions of drawing lines in Dynamic Navigation are similar to those existing commands 

in AutoCAD. During drawing lines, Dynamic Navigation completes two major works (explained below) 

and outputs necessary results to the constraint system in an appropriate form. 

The first is to create actual geometric elements, such as points, straight lines and circular arcs, 

which are the instances of CbaDbPoint, CbaDbLine and CbaDbArc respectively.  

The second is to collect snap types and target entities of Object Snap during interactive 

operating. The typical snap types include end-point, perpendicular-point and tangent-point and so on. 

Subsequently, the relevant constraints are extracted from the Object Snap results, and then 



 
 

exported into the geometric constraint system. For example, the Point-On-Line constraint is obtained 

from the end-point snap. The same is true for the perpendicularity constraint from the perpendicular-point 

snap, and the tangency constraint from the tangent-point snap. 

The dimensioning functions in Dynamic Navigation have some inferential characteristics. 

According to the selected entities and mouse’s movement, the dimension types can be automatically 

determined, such as Point-Point distance, Line-Line angle, Radius and Diameter. Subsequently, the 

dimensions and their associated entities are converted into relative constraints, which are submitted into 

the geometric constraint system finally. 
Through analyzing the results submitted by Dynamic Navigation, the system obtains geometric 

entities and various types of constraints, including implicit structural constraints, explicit structural 

constraints and dimension constraints. Then, an under-constrained geometric constraint model is 

automatically constructed by using the methods in Section 2.2. Finally, the GCG is optimized to meet the 

requirement of decreasing the constraint solving scale. 
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Fig. 4. Initial GCG of the geometric constraint model in Fig.1(a). 

 

As an example, the initial GCG of the geometric constraint mode in Fig.1(a) is shown in Fig.4, 

and the optimized GCG is shown in Fig.1(b). The differences between the two figures present the GCG’s 

transition in various states. 

Apparently, more than one strong component exists in the GCG shown in Fig.4. Therefore, a 

global solving sequence cannot be obtained only by using simple Topological Sort method. Furthermore, 

for the modifications of some constraints, the local solving sequence cannot be made only by using the 

CBS method in Section 2.3. 

As a coupled problem, the strong component in a GCG can be solved only through the 

numerical computing methods, such as Newton-Raphon’s iteration or its variants [22].  

Comparatively, the GCG in Fig.1(b) is more applicable to produce a serial solving sequence, 

which can be orderly solved with algebraic analysis methods [21]. 

 

4.2 Storage and restoration of constraint information 

 



 
 

AutoCAD permits that the user-defined objects derived from AcDbObject can be persistently 

saved into the graphics database of AutoCAD through overriding the following virtual functions, 

including dwgInFields(), dwgOutFields(), dxfInFields() and dxfOutFields() [20]. And, as the AcDbObject 

is the base-class of AcDbEntity, therefore, above rules can be also applied to CbaDbRelaton. 

Since the user-defined objects are accessed as a part of DWG files, the object instances of 

CbaDbRelaton can be the storage carrier of constraint relations in AutoCAD to preserve the consistency 

of constraint information with geometric drawing. 
On the basis of the fact that the decomposition mode from constraint relations to constraint 

components is invariable in CBA, certain simplified measures can be taken to decrease the storage scale 

of constraint information in DWG files. For example, when a DWG file is saved, the whole GCG is 

ignored because it can be re-built from geometric entities and correlative constraint relations between 

them. The storage methods used in this work are given as follows. 

First, all constraint relations in current geometric constraint model, including their types and 

geometric elements associated with them, are saved into DWG files.  

Second, the states of each constraint component decomposed from the given constraint relations, 

for example, whether it is redundant or not, are also stored. 

In this way, when a DWG file is saved in AutoCAD, all of necessary data about constraints are 

stored in the graphics database simultaneously. While the DWG file is opened, all the data about 

constraint relations and constraint components are extracted, and then a geometric constraint model is re-

built as done during interactive drawing. If needed, the geometric constraint graph is optimized 

automatically. Subsequently, new design starts. 
 

4.3 Display and deletion of constraints 

 

AutoCAD permits that the user-defined graphics entities derived from AcDbEntity can be 

displayed according to given styles by overriding worldDraw() and other virtual functions [20]. And, by 

calling Erase command, the designers can directly select the displayed entities and delete them in 

AutoCAD’s graphics window. 

Since the object instances of CbaDbRelation resident in the graphics database of AutoCAD can 

be displayed, the designers can learn the types and states of the constraint relations in current geometric 

model in AutoCAD’s graphics window, and directly select and delete them. This will help the designers 

maintain the constraint system conveniently. 

In CBAbench, the normal constraints are displayed in green color, and the redundant constraints 

are displayed in red color. In Fig.5, the types and states of the normal constraints in the drawing of 

Fig.1(a) are displayed in green color, including one horizontality constraint, two verticality constraints, 

two Line-Circle tangency constraints. But, the L1-L2 perpendicularity constraint is displayed in red color 

because it is apparently redundant. Then the designers can easily learn the state of a given constraint 

according to its color. 
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: Normal Tangency

: Redundant perpendicularity

Fig. 5. Real display of constraints. 

 

When a graphics constraint entity is deleted, the constraint engine can be notified due to Object 

Reactor (explained below), and some actions are automatically taken to deal with the delete event. On 

this condition, we establish the Truth Maintenance Scheme (TMS), which can be used to automatically 

maintain the remainder set of constraints placed on geometric entities, where the geometric entities are 

associated with the deleted constraint. The truth maintenance scheme is briefly explained as follows. 

When a constraint entity is deleted, the system automatically checks the geometric element  

matched with the deleted constraint. Assume that a redundant constraint  exists in the remainder set 

of constrains matched with . If the number of the existing normal constraints matched with  is less 

than the degrees of freedom of , the state of  can be turned normal, that is,  is activated. 

e

rc

e e

e rc rc

As shown in Fig.5, if the verticality constraint placed on L2 is removed, the L1-L2 

Perpendicularity constraint matched with L2 can be turned normal, and can be activated immediately. 
 

4.4 Adaptability to Undo/Redo 

 

In AutoCAD, AcDbObjectReactor and AcEditorReactor are used to create object reactors and 

command reactors for special applications respectively. The applications can make use of both the 

reactors to capture the user’s intents, and automatically make responses. 

As shown in Fig.3, the user-defined object reactors, called CbaObjectReactor, is defined 

through derivation from AcDbObjectReactor. The implementation of CbaObjectReactor needs overriding 

the following callback functions, such as erased(), modified(), modifyUndone(), reappended() and 

unappended(). After the object reactor is attached to the objects resident in the graphics database of 

AutoCAD, all actions operated on the given objects can be captured, and relevant notifications are sent 

automatically. 

And, the command reactor, called CbaCommandReactor, is defined through derivation from 

AcEditorReactor. The implementation of CbaCommandReactor needs overriding the following callback 

functions, such as commandWillStart(), commandEnded(), commandCancelled() and commandFailed(). 

After the command reactor is registered in AutoCAD, one or more of the user’s commands can be 

captured. 

CBAbench combines the object reactor and command reactor to achieve the full adaptability to 



 
 

Undo/Redo operations. The approximate steps are described as follows.  

First, the object reactor captures the actions operated on geometric entities, and records 

operation types and target entities.  

Second, the command reactor captures the command callings of Undo or Redo. When the 

command comes to an end, the geometric constraint model is automatically updated according to 

previous operating information. 

Actually, while running Undo or Redo command, the objects of CBADB and constraint 

relations resident in the graphics database of AutoCAD might be modified due to the previous actions 

operated on them. Once the relevant events happen, the object reactors capture them, and record 

necessary information. When the command comes to an end, the system will automatically update the 

geometric constraint model. As an example, the system’s response to an Undo command is given briefly 

as follows. 

While running the Undo command, the new-created geometric elements and constraint entities 

are deleted from AutoCAD. When the command comes to an end, the relevant vertices and directed arcs 

are automatically removed from the GCG with necessary optimizations. These delete events are detected 

by the object reactors, and the operation types and target entities are detailed recorded. If a Redo 

immediately follows the Undo command, the effects of Undo will be reversed. 

 

5. Illustrative examples 
 

CBAbench introduced in this paper meets well the requirements of interactive designs, and can 

be applied to the routine product designs supported by geometric constraints. Two industrial models made 

with CBAbench are shown below. 

(a) 

   

   

   



 
 

 (b) 

Fig. 6. Industrial models made with CBAbench. (a) drafting of a cross gimbal, and (b) 

engineering drawing of a valve in the motor-engine. 

 

In Fig.6, Fig.6(a) shows the drafting of a cross gimbal without dimension constrains, and 

Fig.6(b) shows the engineering drawing of a valve in the motor-engine with a complete geometric 

constraint model. 

 

6. Conclusions and future works 
 

It can be seen from this work, as a general geometric constraint solving engine, CBA is 

independent on special CAD systems and geometric modeling kernels. As shown in Fig.3, when 

CBAbench is transplanted to other systems with necessary capabilities summarized in Section 3.1, only 

the run-time classes of CBA, i.e. CBADB, need be re-constructed with minor modifications made to the 

other modules. Similar works have been carried out based on ACIS. 

CBAbench introduced in this paper meets well the requirements of interactive designs, and can 

be applied to the routine product designs supported by geometric constraints. The advantages of the 

proposed system are given as follows. 

1. Dynamic Navigation connects the run-time classes of CBA with AutoCAD efficiently. Based 

on it, the system succeeds in automatically constructing geometric constraint models in the course of 

interactive drawing. In fact, the geometric entities with more complex shapes, i.e. formed features, such 

as holes and key-slots, can be also defined through derivation. And their characteristic points for Object 

Snap can be defined and obtained by Dynamic Navigation. Moreover, their DOF and sub-entities can be 

consistently maintained with the Virtual Body. These aspects will help to extend this system to 

incorporate other applications beyond mechanical scope. 

2. The constraint information is persistently stored as a part of DWG files. CBAbench preserves 

the consistency of constraint models with geometric drawings. And, the types and states of constraints in 

a geometric constraint model can be shown in a visual form. 

3. The user-defined geometric and constraint entities can be managed in a manner analogous to 



 
 

that for other types of existing entities in AutoCAD. And, the full adaptability to Undo/Redo operations 

gives a good help to end users in interactive designs. 

In actual design process, the engineering constraints expressed with formulas or equations are 

often used to satisfy the given functional, manufacturable and structural design requirements. If the 

interpretive design languages, such as InteBasic [24] or VBScript, are introduced to convert complex 

engineering constraints into parametric geometric constraints, the proposed system can become more 

flexible. As one of leading CAD systems, AutoCAD has been widely applied in various industrial fields. 

The secondary developmental modules with parametric capabilities will improve the designers’ work 

efficiency further. 
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