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Abstract: The Celebi district is well known for its polymetallic Fe-W and Cu vein ores. These ores are hosted by
calcic skarn zones, which are broadly classified as “intrusive around skarn” type. Both exoskarns (pyroxene-garnet)
and endoskarns (epidote-pyroxene) occur in the district.

The formation of endoskarns is manifested by complete replacement of plagioclase by epidote and pyroxene;
the epidotized granitoids are regarded as incipient and/or early metasomatic products. The abundance of pyroxene
in endoskarns tends to increase with plagioclase content and within the groundmass of the granitoids towards
exoskarn zones. The increase in pyroxene is also coincident with the formation of anhedral, isotropic brown
garnets. The garnet-rich pockets also mark irregular zones and veins of magnetite mineralization. The main
magnetite mineralization occurs within the pyroxene-garnet exoskarn as 15 to 20-m-thick pockets and veins within
pyroxene-rich zones. The pyroxene crystals are optically zoned and the composition ranges from hedenbergitic
(core) to diopsidic (rim).

Elemental compositions vary systematically in relation to skarn zones. A decrease in SiO, corresponds to an
increase in FeOry from granite toward skarn zones. The Celebi district endoskarns are enriched in CaO, MnO, MgO
and FeOr), yet depleted in SiO,, TiO, Al,03 and K0 compared to the Celebi Granitoid. CaO and FeOry behave
comparably in the endoskarns, suggesting that the iron mineralization is coincident with carbonization of prograde
assemblages during retrograde alteration.
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Celebi Bélgesi (Kirikkale, Tiirkiye) Skarnlarinin Jeokimyasi ve Mineralojisi

Ozet: Celebi bolgesi polimetalik Fe-W ve Cu damar tipi yataklariyla bilinir. Bunlar genel olarak “intriizif cevresinde
gelisen skarnlar” olarak siniflanan kalsiyumlu skarn zonlari i¢inde bulunurlar. Bélgede hem ekzoskarnlar (piroksen-
granat) hem de endoskarnlar (epidot-piroksen) bulunur. Bu calisma bodlgedeki skarnlasma surecleri boyunca etkili
olan elementlerin kimyasal potansiyellerini sunmanin yaninda, skarnlarin jeokimyalarini, mineralojilerini ve
boélgedeki cevherlesmelerin kimyasal kontrollerini arastirmayr amaclayan bir calismadir.

Endoskarnlar, granitik kayaclarin ceperlerinde 0¢zellikle mermer dokanaklarina yakin kesimlerde,
granitoyidlerin renginin yesilimsi gri tonlarina calmasiyla karakteristiktir ve plajiyoklazlarin tamamen epidot ve
piroksen tarafindan ornatilmasiyla belirgin hale gelirler. Dolayisiyla epidotlasan granitoyidler erken ya da yeni
baglayan metasomatik urlnler olarak degerlendirilmektedir. Endoskarnlar sadece granitlerde gdzlenen skarn
olusuklari degdildir, mermerler arasinda bantlar halinde gozlenen gnayslarda ve ¢zellikle sistozite dizlemlerine
paralel ince zonlar halinde skarn zonlari da gelismistir. Epidotlasma 6zellikle zonlu plajiyoklazlarda, zonlanmanin
merkezinden itibaren baslar. Onceleri sadece plajiyoklazlar iizerinde gelisme gésterirken mermer dokanagina dogru
piroksenlerle birlikte kayacin bagka kisimlarinda da bulunur. Piroksenlerin miktari hem ornattiklart plajiyoklazlar
Ustiinde hem de granitik kayacin tamaminda (hamur icinde) kirectasi dokanaklarina dogru artar. Piroksenlerin
artmasiyla birlikte iri magmatik kuvarslar daha ince taneli ve hidrotermal kuvarslar tarafindan ¢epecevre sarilirken,
tek tik kahverengi izotrop ve 6zsekilsiz granat kristalleri de gdzlenir. Granat miktarlarinin arttigi kesimler ayni
zamanda 2-3 cm kalinhiginda ¢ok kiigiik manyetit ve hematit ceplerinin de ilk kez ortaya ciktigi kesimlere karsilik
gelmektedir.

Ekzoskarnlar endoskarnlara gére hem boyut hem de dagilim itibariyla daha sinirlidir. Genellikle ¢ok yaygin
endoskarn zonlari ile goéreceli olarak daha Kkuclk mermer mostralari arasina sikismis durumdadir. Hakim
mineralgjisini piroksen ve granat olusturur. Ekzoskarnlar icindeki epidot, kalsit, tremolit ve kuvars gibi mineraller,
piroksen ve granat tzerinde daha ilerlemis evrelerde etkili olan retrograd olaylarla olusmus mineral topluluklaridir.
Cok genel olarak ekzoskarnlar mermerden uzakta piroksen-epidot skarnlari, mermere yakin kesimlerde ise
piroksen-granat seklinde belirsiz bir zonlanma icindedir. Ana manyetit cevherlesmesi piroksen-granat zonlar icinde
15-20 cm boyutlarinda cep ve damarlar halinde bulunur.

Skarn zonlarindaki element bilesimleri her zona goére sistematik degisimler sunar. Cok genel olarak endoskarn
zonlarinda SiO, bakimindan bir fakirlesme FeOry bakimindan bir zenginlesmeye karsilik gelir. Celebi bolgesindeki
endoskarnlarin olustuklari orfjinal kayacin (Celebi Granitoyidi) bilesimine gére CaO, MnO, MgO, FeOr) bakimindan

zenginlestigi, SiO,, TiO,, Al,O5 ve K>0 bakimindan fakirlestigi belirlenmistir. Ekzoskarnlar ise, kristalize kirectasina

121



SKARNS OF THE CELEBI DISTRICT

gére FeOry ve Si0, bakimindan zenginlesirken hem CaO hem de CO, bakimindan hizla fakirlesmektedir. Ote
yandan K,0 ve Na,O bilesimlerinde bir degisim gézlenmemektedir.

Endoskarnlar icinde CaO ve FeO(T)‘in ilgin¢ ve zit davraniglar sunmasi cevherlesmenin prograd evre skarn
topluluklarinin retrograd evrede karbonatlasmasiyla ilgili olduguna isaret etmektedir.

Anahtar S6zcUKler: Celebi (Kirikkale), Skarn Zonlari, Manyetit, Skarnlarin Jeokimyasi

Introduction

The Celebi district is one of the main Fe-producing
districts in Turkey. The Celebi district is situated about 3
km northwest of Celebi (Kirikkale), and is accessible from
the Bala-Kaman highway. Production has come from a
series of small isolated skarns, with grades of 50 to 62
% Fe, and variable WO5 (0.93 % to 12 % WO;) (Bayhan
1984), developed along offshoots of the Celebi Granitoid
into marble. Mining occurred from ancient times until the
late 1960s. Presently, the skarns in this district are of
interest to the Mineral Research and Exploration
Directorate of Turkey with the main focus being the
geology and ore-reserve estimation of iron and tungsten
mineralizations within individual skarn bodies. However,
the geochemical controls on mineralization, and skarn-
forming processes have not been investigated.

Therefore, this study aims to present the relative
setting of the skarn zones with respect to the granitoid,
to describe the geochemistry of the skarns and the
relative distribution and abundance of elements in
relation to iron mineralization. This paper aims to (1)
present the relative setting of the skarn zones with
respect to the granitoid; (2) describe geochemistry,
mineralogy and geochemical controls of mineralization;
and (3) shed light on the importance of chemical potential
of elements — relative distribution and abundance of
elements in relation to iron mineralization — during
skarnification in the district.

Geologic Setting

The Celebi district is located in the northwestern part of
the Central Anatolian Crystalline Complex (CACC;
Gonctoglu et al. 1991) in the Fe-W metallogenic skarn
zones defined by Kuscu & Erler (1998). The CACC is an
assemblage of metamorphic, ophiolitic, intrusive and
extrusive rocks (Figure 1); those rocks exhibiting a
metamorphosed platform-type succession have been
termed the Central Anatolian Metamorphics (CAM)
(Gonctoglu et al. 1993). Many workers consider CAM to
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be basement. CAM comprise three main rocks units
consisting of gneisses at the bottom, amphibolite and
marble intercalations in the middle and dolomitic marbles
with amphibolite lenses at the top of the sequence.
Studies concerning the age of the main metamorphic
events (Ataman 1972; Erkan & Ataman 1981; Gdncioglu
1986) suggest a Late Cretaceous (late Campanian-early
Maastrichtian) (71-74 Ma). The main metamorphic
evolution in the CAM is progressive from medium
pressure-medium/high temperature to medium/low
pressure-high temperature (Gonctoglu et al. 1991).
Ophiolitic rocks resting on the CAM as nappes are
referred to as the Central Anatolian Ophiolites (CAO), and
comprise various ultramafic rocks, non-layered gabbro,
plagiogranite, diabase, pillow lava, and epi-ophiolitic
sediments. The CAO are locally exposed as
undeformed/undisturbed slabs, or locally as tectonic units
resting on the CAM. The majority of the ophiolites are
early Turonian in age (excluding metamorphosed
equivalents) and are of supra-subduction type, derived
from a supra-subduction zone which developed within the
izmir-Ankara-Erzincan Ocean, during the closure of the
northern branch of Neotethyan Ocean (Yaliniz et al
1996). Intrusive rocks in the CACC have been collectively
named the Central Anatolian Granitoids (CAQG)
(Gonctoglu et al. 1993). These rocks include granite,
granodiorite, monzonite, monzodiorite, quartz
monzonite and diorite (Gonctoglu et al. 1991). The
Central Anatolian Granitoids (CAG) intrude the
metamorphic sequence and gave rise to extensive
metasomatic processes between the host marbles and
granitoids; the skarns are predominantly restricted to
these contact zones. The Central Anatolian Granitoids
range from 95 Ma to 75 Ma in age and are members of
two broad classes; S- and I-type granitoids, or
combinations of the two (hybrid) (see Boztug 2000 and
references therein). The CAG were generated during and
after the southward obduction of the ophiolitic rocks
onto the Tauride-Anatolide Platform (TAP) during the
Late Cretaceous (Goncuioglu et al. 1993). The geological
evidence indicates that two phases of magmatism
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resulted from two successive obductions. The earlier
phase resulted in generation of S-type granitoids 95 Ma
in age (Goncuoglu 1986) and was due to the obduction of
N-type oceanic crust. The later phase was due to
obduction of a supra-subduction zone ophiolitic sequence
onto the metamorphic rocks and the previously obducted
N-type oceanic crust (i.e., collision of ensimatic arc with
the TAP and CACC) (Géncioglu et al. 1993).

The Celebi Granitoid, which caused extensive skarn
formation in the district occur as a N-S trending lensoidal
body (Figure 1). The Celebi Granitoid comprises the
western-margin the CAG (Figure 1). The granitoid is cut
by numerous aplite dikes and contains rounded enclaves
of diorite and quartz-diorite in different sizes. The Celebi
Granitoid is not a single, uniform plutonic body, but
consists of two different end-members (types): a granitic
(more felsic and evolved type), and a dioritic to
granodioritic (more mafic or primitive type). These two
end-members are poorly mapped since their contacts are
obscured by vegetation and soil cover, and are poorly
exposed. The primitive component occurs as large (locally
> 100 meters in length) and small enclaves (about 10 to
30 cm in diameter) in the felsic rocks, and both are cut
by later aplite dikes. The Celebi Granitoid consists of
plagioclase, orthoclase (K-feldspar megacrysts), quartz,
hornblende, biotite and clinopyroxene as major
constituents, and titanite, zircon and apatite as minor
constituents.

The granitoids are classified as subalkaline and calc-
alkaline on the basis of the Irvine & Baragar (1971)
classification scheme. The primitive suite is gabbroic to
granodioritic in composition, whereas the evolved suite is
only granitic in composition based on the Cox et al.
(1979) diagram (Kuscu et al. 2000). The molecular
A/CNK ratio (Al,05/Ca0+Na,0+K;0) is less than 1.1, and
they are metaluminous to mildly peraluminous in nature.
The granitoids show I-type characteristics on the basis of
the Chappel & White (1974) classification, as evidenced
also by the occurrence of hornblende, apatite, titanite,
and zircon.

The contact zones with marble are usually concordant,
and the calcite crystals therein exhibit plastic deformation
textures. Although the exact depth of emplacement is not
known, this textural evidence suggests that emplacement
took place at relatively great depth, and that these are
deep-seated granitoids.

The marbles are interpreted as metamorphosed
platform carbonates grading upward into pelagic
limestones then to calci-turbidites, and are intercalated
with gneiss and amphibolite layers. The marbles are
aligned parallel to the contact zones. They usually consist
of twinned calcite and occasionally dolomite, and
generally show evidence of ductile deformation. Dolomitic
marbles are very rare and are usually associated with thin
gneiss interlayers. Calcite shows plastic deformation and
deformation-induced kinking, and is medium-grained
with grain size increasing along the contact zones due to
synchronous metasomatism.

Skarns and Skarn Deposits in the Celebi District

The skarn in the Celebi district is mostly calcic skarn, rich
in garnet-pyroxene-epidote (Kuscu 2000); whereas
olivine and phlogopite skarns are also observed at
contacts with dolomitic rocks. The general trends of the
skarn zones parallel discordant fracture planes within the
marbles. These zones trend both NW-SE and N-S.
Exoskarns either appear as narrow skarns with limited
distributions, commonly along fracture zones in marbles
of the Central Anatolian Metamorphics, or are
sandwiched between endoskarn zones and smaller marble
outcrops. The exoskarns are broadly classified as
“intrusive around skarn type” based on the Burt's (1977)
classification scheme, since they are enclosed by the
Celebi Granitoid (Figure 2). Extensive endoskarns form
along the margins of the granitoid whereas exoskarns
occur either as 1-10-m-wide irregular veins within
fracture and joint planes of the marble, or as widespread
skarn zones along the contacts of the Celebi Granitoid and
marble in roof pendants. Epidote-pyroxene skarns (with
some garnet) and pyroxene-garnet skarns are the main
skarn zones in the district.

Endoskarns

The endoskarns can be recognized easily in the field by
the change in the colour of granite from grey to green,
particularly along the marble-granitoid contacts.
Mesoscopically, the alteration of amphibole and biotite to
epidote can be observed. In places, fresh granitoid
patches occur within the skarnized granitoids. Endoskarn
formation began with epidotization, and was coincident
with sericitization during metasomatism. Endoskarn
zones are represented mainly by epidote-pyroxene skarns
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Figure 2.  Geologic map of the Celebi district.

in which epidote is the early product. The epidotization is
more marked in zoned plagioclases, and its intensity
increases rimward. A more intense metasomatism
occurred with the complete replacement of plagioclases
by epidote and pyroxene as the marble is neared.

Therefore, the epidotized granitoids are regarded as
early-stage metasomatic products.

The pyroxene is associated mainly with epidote as
replacement of plagioclase. The increase in the abundance
of pyroxene is consistent with the rimming of coarser
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magmatic fine-grained hydrothermal quartz. Garnet is
present as sporadic crystals in endoskarns. They are
generally andraditic to granitic with GrosAndgs to
GrogyAnd,, (Bayhan 1984), the latter is confined mainly
to vein-type skarns close to exoskarn zones. The garnets
become more andraditic as Celebi Granitoid is neared.
The abundance of pyroxene tends to increase both in
plagioclase crystals and within the groundmass of the
granitoids towards the exoskarn zones. The increase in
the abundance of pyroxene coincides with the formation
of anhedral, isotropic brown garnets in the endoskarns.
The only zoned crystals are observed close to the
exoskarns. The garnet-rich pockets also mark irregular
pockets and veins (2-3 cm in diameter) of magnetite and
hematite. The width of the endoskarns ranges from 30 to
300 m. The pyroxene-epidote skarns also occur as
veinlets along schistosity planes of the gneisses. These
occurrences are referred to as skarnoid that formed by
the exchange of elements between unlike lithologies, such
as gneiss and marble, and are of minor importance both
in distribution and mineralization compared to other
skarn zones of the district. The epidote-pyroxene skarns
are also zoned from granitoid to marble in terms of
epidote-, pyroxene- and garnet-dominant assemblages.
Farther within the granite, endoskarns occur only as
disseminated veinlets, and are enriched in garnet towards
the granite.

Exoskarns

The exoskarn zones typically have N-S and NE-SW
orientations and are present in the eastern parts of the
district (Figure 2). The dominant minerals are pyroxene
and garnet as prograde assemblages, and epidote,
tremolite and calcite as retrograde mineral assemblages
(Figure 3). The exoskarns are limited in size and
distribution relative to the endoskarns (Figure 2). In
general skarn and vein trends are conformable to the
general trends of the foliation and fracture planes in the
marble. The exoskarns occur mainly as pyroxene-garnet
skarns. Pyroxene and garnet skarns occur along fractures
and veinlets that pinch and swell. In general, the exoskarn
shows zoning with pyroxene-epidote assemblages close
to the marble front (distal skarns) and with pyroxene-
garnet assembalges close to the endoskarn zone
(proximal skarn). The skarns that formed along the
fracture planes of the marbles are more or less zoned
from the centres to the margins of fracture as garnet-
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pyroxene-plagioclase. The widths of individual zones
range from 3-5 to 30-50 m. Epidote, calcite, tremolite
and quartz typically make-up the retrograde assemblages
which formed by the alteration of pyroxene and garnet in
the advanced stages of skarn formation (Figure 3).

Pyroxene is generally subhedral to euhedral, and
hedenbergitic to diopsidic in composition. The euhedral
crystals typically occur in distal skarns or along fracture
planes in the marbles. Two types of garnets are observed
in the exoskarns: smaller, isotropic garnets at the
transitions between endoskarn-exoskarn zones, and
larger, oscillatory-zoned anisotropic garnets close to the
marble fronts. These garnets are mainly grossularitic,
ranging from Grog,And,, to Grog,And,,. They also contain
pyrope (0-2.11%) and almandine (0-2.61%) (Bayhan
1984). Garnets that predominate at the distal marble
front show oscillatory zoning and are accompanied by
magnetite mineralization.

Geochemistry of Skarn Zones

Representative samples for each skarn zone, marble and
related igneous rocks were analyzed by XRF in the
GeoAnalytical Laboratories of Washington State
University. The results are given Table 1. In order to
understand bulk compositional gradients and
metasomatism, the compositions of samples from the
endoskarn were compared with granitoid composition,
and exoskarns with marble along a line of section (A-B in
Figure 2). The results are shown in Figures 4 and 5.
Figure 5 was adapted from the Hildreth (1981) diagram,
and based on the normalization of components in the
endoskarn and exoskarn with respect to components in
the original rocks (granitoid and marble, respectively).
This diagram enabled the determination of depletion and
enrichment in endoskarns and exoskarns relative to
original granitoid and marble. The following features are
recognized.

The endoskarns are enriched in FeQ,, CaO, MnO and
MgO, and are depleted in SiO,, Al,O5,TiO,, K;0, Na,O and
P,Os compared to the original granitoid composition
(Figures 4 and 5). The SiO, content decreases from
granitoid to endoskarn since it was used to form calc-
silicate assemblages (pyroxene and garnet) in the
endoskarns. The decrease is very sharp close to the
peripheries of the granitoid (Figure 4). It is negatively
correlated with FeOy,, and this situation may be
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attributable to the formation of iron-rich assemblages
during prograde skarn formation. The increase in CaO
content may verify this in that formation of calc-silicate
assemblages by the addition of CaO from the marble also
enhanced the formation of iron-rich assemblages such as
andraditic garnets and hedenbergitic pyroxenes.
However, it resembles Al,O5 in that both show the same
enrichments and depletions (Figure 4). AL,O5; decreases
gradually from granitoid to endoskarns close to the
granitoid contact, however, and increases close to the
exoskarn zones. This situation could be related to
increase in abundance of grossular garnets within the
endoskarn zones. TiO,, which is considered to be an
immobile component, and concentrated mainly in titanite
in magmatic rocks, is almost constant throughout the

A schematic diagram illustrating the skarn zones. Prograde and retrograde assemblages and relative setting of skarn zones in the Celebi

skarn zones with only slight depletion from the granitoid
to the endoskarn. Bayhan (1984) reported that TiO, was
not detected the clinopyroxene and garnet, but was
detected in epidote and amphibole. This finding is
consistent with TiO, enrichment at endoskarn-exoskarn
transitions (Figure 4) and within the exoskarns where
prograde assemblages were altered somewhat to
retrograde assemblages, such a tremolite and epidote.
FeQ, increases gradually from granitoid to endoskarn,
suggesting that Fe is derived from the granitoid.
According to Figure 5, the total iron oxide content of the
endoskarn was enriched about 15% with respect to the
original granitoid content. However, products of
magnetite mineralization that could also contribute to
FeQ, enrichment in the endoskarns. However, the total
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Table 1. Representative geochemical data and average values in the skarn zones (C: granitoid; endo: endoskarn; ska: exoskarn; weight percent for
major oxides and ppm for trace elements; nd: not detected).
C1 cz C5 Cc6 Evolved Primitive  endo-7 endo-8 endo-11 C15(ska) C17(ska) C20(ska) C24(ska) C34(ska) C38(ska) Marble
Granitoid  granitoid

Siop 7441 72,03 7307 7292  73.10 61.98 72.45 5089 36.72 61.51 60.63 4037 9.82 1145 3871  3.19
Ai03 1360 1451 1394 1436  14.10 16.16 8.36 970 737 1127 1523  6.19 0.50 1.18 1.03  0.13
) 0.16  0.19 0.20 0.17 0.18 0.54 0.09 0.10 007 135 0.59 0.28 0.00 0.03 0.00  0.00
FeOrry  0.24 1.88 1.47 0.96 1.13 6.80 8.07 2345 2500 3.33 5.34 1707 86.16 8648 2661 054
MnO 0.02 0.06 0.05 0.04 0.04 0.12 0.20 027 066 022 0.17 0.78 0.17 0.20 1.02 021
Ca0 1.45 1.85 1.44 1.49 1.55 5.76 946 1409 2871 1065 11.78 3244 271 060 3231 50.50
MgO 0.01 0.18 0.17 0.32 0.17 2.65 0.47 044 066 489 1.88 2.71 0.00 0.00 020  4.40
K0 538  5.21 5.22 5.61 5.35 1.03 0.34 0.71 0.02 332 0.44 0.02 0.04 0.03 0.01 0.04
Naz0 340  3.86 3.56 3.18 5.53 2.89 0.02 0.00 0.00 243 3.20 0.01 0.00 0.08 0.00  0.00
coy 009 0.1 0.12 0.09 0.12 0.19 0.06 076 035 042 0.21 0.61 1.02 0.21 032 41.06
Total 9876 99.88 99.24  99.14 101.27 98.12 99.52 10041 99.56 99.39  99.48 100.48 10042 100.26 100.21 100.07
Ni nd 533 726 755 504 95 11 5 3 136 23 2 113 143 0 2
cr nd 254 246 214 179 732 10 22 0 244 72 120 4 15 0 9
Sc nd 101 124 160 96 16 405 541 10 11 11 0 0 11 0 ND
% nd 16 15 17 15 13 8 13 14 119 79 51 32 26 8 15
Ba 9 13 9 12 11 153 7 6 7 727 81 0 1 0 19 30
Rb 177 190 175 172 178 27 169 106 79 135 16 0 0 0 0 2
Sr 16 26 30 17 22 19 10 5 27 279 398 20 18 34 19 292
Zr 40 27 30 29 126 17 28 21 1 127 156 49 20 23 6 9
Y 7 4 9 3 32 30 0 8 0 22 27 26 7 8 3 nd
Nb 20 0 22 0 10 13 0 1 0 32 13 7 5 6 2 nd
Ga 2 4 2 106 0 0 0 12 18 15 12 8 6 nd
La 15 14 12 12 13 68 20 31 18 37 32 0 9 10 0 nd
Ce 1 2 20 21 11 35 65 840 922 89 67 14 7 20 303 nd
Th 64 34 46 32 44 75 69 796 434 6 7 0 1 11 14 nd

iron content is low in the granitoid and marble.
Therefore, a large amount of iron is considered to have
been supplied to these rocks during skarn formation and
ore formation. MnO content have geochemical trends to
FeQ, contents. The increase in Mn and Fe in pervasively
altered plutonic rocks are attributed to reactions between
hydrothermal fluid and melt (Burnham 1979; Urabe
1985). Highest abundances are associated with samples
close to exoskarn zones suggesting that the Mn-bearing
assemblages, particularly pyroxenes, may confined to
these zones. The behaviour of Ca0 is almsot identical to
MnO, particularly in the endoskarn zones (Figure 4),
suggesting that both accompanied metasomatic reactions
that yielded calc-silicate assemblages. However, it appears
that the endoskarn is more enriched in CaO (about 9 %)
than MnO (5 %) with respect to the granitoid
composition (Figure 5). Since Ca0 is a component derived
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mainly from carbonate rocks (marbles in this study), the
marble-derived CaO triggered the metasomatism of the
granitoid and the formation of calc-silicate assemblages
within the granitoid. Ca0 also has an enrichment trend in
the exoskarn zones. Therefore, it is thought that the
zonal arrangement of skarns in the Celebi district is
attributable primarily to the geochemical behaviour of
Ca0. MgO content gradually increases from the granitoid
to the endoskarn, with a sharp increase near the exoskarn
zones (Figure 4). This trend may suggest that the Mg-
bearing assemblages, such as diopsidic pyroxenes, did not
form within the endoskarns but formed near the
exoskarn zones. K;0, Na,O and P,Os all decrease from
granitoid to endoskarns, indicating that they were not
involved in metasomatic reactions that yielded calc-silicate
skarn assemblages. The distribution of these components
is considered to be controlled by original plutonic rock
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compositions, suggesting that they were leached from the
granitoid during hydrothermal alteration. Among these,
K,0 is the most depleted component (about 20-23% with
respect to the original granitoid), as shown in Figure 5.
However, K,0, Na,0 and P,05 increase near the exoskarn
zones, probably indicating that the excess alkalies were
derived from hydrolysis of feldspars which coincided with
any increase in SiO, derived directly from hydrolysis
reactions, as suggested by Lentz & Gregorie (1995).

Exoskarn is enriched in SiO,, AL,Os, TiO,, Na,0O, K,0
and FeQ, and depleted in CaO, MgO and CO, contents
(Figures 4 and 5) with respect to marble. K,0 and Na,O
remained constant in exoskarns relative to marble. SiO,
apparently increases from marble to exoskarn. Since SiO,
is a possible magmatic component, SiO, enrichment is
attributable to the chemical potential of SiO, derived from
magmatic rocks in the region. The SiO, is enriched 5 to
10% with respect to the original marble composition
(Figure 5). Although both FeOy, and SiO, are enriched in
exoskarn with respect to marble (Figure 5), FeO, and
SiO, are inversely proportional in exoskarns (Figure 4).
This relationship suggests that iron mineralization
occurred via replacement of the calc-silicate assemblage
during the retrograde skarn-forming stages. Al,O5; and
TiO, behave almost identically, and are enriched in the
exoskarns. Figure 5 shows that the exoskarns are
considerably enriched in terms of these components. The
most striking enrichment in exoskarn is in FeQ,y, content
(Figures 4 & 5). However, enrichment in FeO, content
of the exoskarn is confined to pyroxene-epidote zones
close to marble. Mno and CaO played similar roles in calc-
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silicate formation and ore formation. Although depletion
of Ca0 in the marble seems to be insignificant (Figure 5),
a sharp decrease in CaO content from marble to exoskarn
is coincident with a sharp increase in FeO, (Figure 4),
suggesting that iron mineralization is accompanied by
Ca0 depletion where retrograde alteration is pervasive.
Also noteworthy are the similar CaO and FeO, contents
of skarns within prograde assemblages near to the
endoskarn zones (Figure 4), suggesting that calc-silicate
assemblages should be rich in iron close to endoskarns.
Both K,0 and Na,O are enriched with respect to marble
(Figure 5), but this is valid only for the transition from
endoskarn to exoskarn. The K,O and Na,O contents of
the rest of the exoskarn are almost constant as shown in
Figure 4. The enrichment is related to the metasomatic
transfer of alkalies from granitoids to country rocks
(Barton et al. 1991). The CO, is depleted drastically from
marble to the exoskarn, and remains almost constant in
exoskarn (Figures 4 and 5), and is accompanied by a
pronounced decrease in CaO content. Figure 5 shows that
the CO, content of marble decreased about 90%; this
depletion is apparent at the calc-silicate reaction front
where metasomatically induced decarbonation reactions
begin along the contact zones between carbonates and
granitoids.

Discussions and Conclusions

Geochemical study of the Celebi skarn zones reveal that
the endoskarns are enriched in FeQ, Ca0, MnO and
MgO, and are depleted in SiO,, Al,O5,TiO,, K;0, Na,0 and

N 320
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95 CO2
Exoskarn (average)

Hildreth (1981) type diagrams showing the relative enrichment and depletion of endoskarn with respect to granitoid (A) and of exoskarn
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P>0s. Accordingly, FeO, is introduced from granitoid to
marble fronts, and SiO,, ALLO5 and K,0 were transported
into the marble. Therefore, the peripheral or fractured
granitoids at the marble fronts were metasomatized by
Ca and alkalies. However, the steady-state behaviour of
K,0, Na,0O and Al,O5 suggest that they did not take part
in skarnification as compared to Ca0, FeQ, and SiO,, in
that they remained as almost as they are in the granitoid.
This situation is also due to the fact that the alkalies (such
as K and Na) are not transported to distal areas during
skarnization and are enriched along the margins of the
granitoid itself (Burnham 1979) if the intrusive rock
assimilates  CO,-rich rocks such as limestone. This
behaviour also explains the relative intensity of alkali
metasomatism in all skarn-producing granitoids. Figures
4 and 5 suggest that the mineralization of the Celebi
district occurs both in endoskarns and exoskarns and was
coincident with the development of calc-silicate
assemblages in the endoskarns while they are
accompanied by carbonization reactions that took place
during retrograde alteration of early prograde skarn
assemblages in the exoskarns. Deep-seated emplacement
of granitoids into the marbles enhanced the plastic
deformation and folding of the marbles such that they
parallel the igneous contacts (Figure 3). Therefore, fluids
were unable to circulate through fractures in the marbles.
However, fluids circulated along the periphery of the
granitoids parallel to the carbonate contacts, resulting in
inward circulation or influx of Ca-rich fluids into
granitoids. This fluid flow initiated the formation of calc-
silicate mineral assemblages at the peripheries and along
the fracture planes of the granitoids. Consequently, the
endoskarns formed particularly along marble-granitoid
contact zones and in associated fracture zones.
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