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Abstract: The dextral North Anatolian Fault System (NAFS) extends for well over 1000 km from the compressive
tectonic domain of eastern Anatolia into the broad and diverse tectonic domain of the western Anatolian, Marmara
and Aegean regions. These different tectonic regimes are characterized by a narrow deformation zone in the east
and a much broader deformation zone with multiple sub-parallel fault zones in the west. The spatial and temporal
distribution of large historical and modern earthquakes (Mw>5) shows two distinctive macro-seismic zones in the
eastern and western parts of the NAFS. The eastern macro-seismic zone, between the towns of Erzincan and Bolu,
has produced a successive linear earthquake series parallel to the fault system over the last 500 years, suggesting
that stress transfer along the fault occurred in a manner of ‘Static Coulomb failure stress changes’ through the
entire elastic crust. In contrast, the western macro-seismic zone of the NAFS, in the Marmara region, has produced
successive earthquake pairs on the parallel faults, implying ‘dynamic stress changes’, involving large-scale flow in
the aseismic lower crust and the mantle.
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Dogrultu Atimli Fay Zonlarinda Farkli Stres Transferleri:
Kuzey Anadolu Fay1 Sisteminden Bir Ornek, Tiirkiye

Ozet: Sag yonli Kuzey Anadolu Fay Sistemi (KAFS), Dogu Anadolunun sikismali tektonik rejimi ile, Bati
Anadolu'nun genislemeli tektonik rejimi arasinda uzanmaktadir. Bu farkli tektonik rejimlerden dolayr Kuzey
Anadolu Fay Sistemi, doguda dar bir deformasyon zonuna, batida ise yari paralel faylardan olusan daha genis bir
deformasyon zonuna sahiptir. KAFS'nin Erzincan-Bolu arasinda kalan ‘dogu makro sismik zonu" 500 yillik stire¢
icerisinde fay zonuna paralel, birbirini takip eden lineer deprem serileri Uretmistir. Bu durum, deprem serilerini
olusturan stres transferinin butunlyle elastik kabuk icerisindeki fay boyunca ‘statik Coulomb Kkirilma stres
degisimleri'nin sonucunda meydana geldigini gosterir. Dider yandan, Marmara Bolgesinde Kuzey Anadolu Fay
Sistemi'nin ‘batt makro sismik zonu' ise yar1 paralel faylar (KAFS'nin kuzey ve gliney Kollart) Uzerinde birbirini takip
eden deprem ciftleri Uretmistir. Bu tur sismik 6zellik, asismik alt kabuk ve manto icindeki buyik olcekli akmalar
ile, paralel faylar arasindaki ‘dinamik stres degisimlerine’ isaret eder.

Anahtar Sézcukler: Kuzey Anadolu Fayi (KAFS), dogrultu atimli faylanma, deprem, stres transferi

Introduction

Stress changes in tectonically active areas are important
parameters for assessing the seismic potential of an area.
However, our ability to evaluate stress changes via
numerical simulation depends strongly on the assumed
fault configuration (Cai & Wang 2001) and yet the nature
of strike-slip faulting at depth is still poorly understood.
Some strike-slip fault zones appear to be near vertical and
penetrate deeply into, if not completely through, the
crust, whereas others are confined to the upper crust
above detachment horizons (Lemiszki & Brown 1988).

The vertical crustal geometry of the strike-slip fault zones
suggests that a significant amount of coupling occurs
along the fault system between the brittle upper and
ductile lower crustal regimes.

There is extensive support for an intracrustal
viscoelastic layer as has been suggested for the San
Andreas Fault System by Anderson (1971), Hadley &
Kanamori (1977), Yeats (1981), Furlong (1993),
Brocher et al. (1994) and Blrgmann (1997). According
to Hadley & Kanamori (1977) an intracrustal decollement
displaces the upper and lower portions of the San
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Andreas Fault System. Arguments for this decollement
were also given by Yeats (1981). Turcotte et al. (1984)
emphasized the role of intracrustal ductility on the
behaviour of major strike-slip faults. They suggested that
an upper elastic plate extends to a depth of about 15 km,
the depth of the deepest seismicity on, and adjacent to,
the fault. Beneath this upper elastic plate they postulated
that a soft, intracrustal ‘asthenosphere’ exhibits
viscoelastic behaviour.

Lemiszki & Brown (1988) used seismic reflection
profiles across strike-slip faults to reveal that intra-plate
strike-slip fault systems are decoupled in the middle crust
by sub-horizontal detachments. Such detachments in the
middle crust may act to ease the rotation of upper-crustal
blocks adjacent to strike-slip fault zones, as observed in
palaeomagnetic studies by Garfunkel & Ron (1985),
Tatar et al. (1995) and Piper et al. (1997). Brocher et al.
(1994) postulated a lower crustal detachment between
the San Andreas Fault System and Hayward Fault. The
postulated existence of a quasi-horizontal detachment
structure could facilitate more stress transfer between
sub-parallel faults than would be expected from a stress
change in an elastic medium, such as a change of the
Coulomb failure function which is often calculated
following large seismic events (Reasenberg & Simpson
1997). However, Parsons & Hart (1999) suggest that
fault-plane reflections reveal that the San Andreas and
Hayward faults actually dip toward each other below
seismogenic depths at angles of 60 and 70 degrees,
respectively, and persist to the base of the crust.

By using coda waves, Nishigami (2000) has
interpreted the deeper image of the San Andreas Fault
System. He argues that continuous slip across the deep
plate boundary encounters a sub-horizantal detachment
in the lower crust so that brittle fracture occurs along
these faults and shear stresses are transferred
horizontally to the bottoms of the San Andreas and
Hayward faults. This suggests that sub-parallel active
faults may be controlled by lower crustal detachments
that facilitate the broadening of a shear zone. This kind
of deep structure for the San Andreas Fault System is also
suggested by Lemiszki & Brown (1988), and Lisowski et
al. (1991). On the other hand Parsons & Hart (1999)
suggest that the San Andreas and Hayward faults actually
continue as faults beneath seismogenic depths. If these
faults retain their observed dips at 60 and 70 degrees,
respectively, they would converge into a single zone in the

upper mantle 45 km beneath the surface, although they
are currently only imaged in the crust.

The spatial and temporal variation of historic and
modern earthquakes that have occurred along the dextral
North Anatolian Fault System (NAFS) in Turkey can help
to resolve the problem of stress transfer along strike-slip
fault zones and in this study we show that different stress
transfer models, namely ‘static Coulomb failure stress
changes’ and ‘dynamic stress changes involving large-
scale flow in the aseismic lower crust and the mantle’, are
responsible for the formation of the earthquake series
and earthquake pairs on the eastern and western part
parts the NAFS, respectively.

Review of the North Anatolian Fault System (NAFS)

The NAFS is a morphologically distinct and seismically
active strike-slip fault which extends for about 1200 km
from Karliova to the Gulf of Saros along the Black Sea
mountains of North Anatolia (Figure 1). For most of its
length, the transform has a typical strike-slip fault zone
morphology, characterized by a narrow rift zone (Sengér
1979). Additionally, Sengor (1979) added that the crust
along the fault zone is thinner than normal. The
transform probably originated some time between the
Burdigalian and the Pliocene and has offset of about 85
km. The North Anatolian transform fault system appears
to have originated as a consequence of the Arabia-
Anatolia collision during the Late (? Middle) Miocene,
when the Anatolian Plate formed and was wedged out
into the oceanic tract of the eastern Mediterranean from
the converging jaws of Arabia and Eurasia to prevent
excessive crustal thickening in eastern Anatolia. The
westerly motion of Anatolia, with respect to Eurasia and
Africa, caused a great change in the tectonic evolution of
the eastern Mediterranean, giving rise to the Aegean
extensional regime and to internal deformation of
Anatolia (Sengdr1979). Zhu et al. (2006) suggest that
there is general trend of westward crustal thinning from
36 km in central Anatolia to 28-30 km in the central
Menderes Massif to 25 km beneath the Aegean Sea
(Figure 1). The reader is referred to Bozkurt (2001) and
Sengor et al. (2004) for a more information on the
NAFS.

In a review paper concerning the NAFS, Sengoér et al.
(2004) suggested that since the seventeenth century the
NAFS has displayed cyclical seismic behaviour, with
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Figure 1. Plate tectonic framework and relative motions in Turkey and adjoining regions after McClusky et al. (2000).

century-long cycles beginning in the east and progressing
westward. For earlier times, the record is less clear but
does indicate a lively seismicity. The twentieth century
record has been successfully interpreted in terms of a
Coulomb failure model, whereby every earthquake
concentrates the shear stress at the western tips of the
broken segments leading to westward migration of large
earthquakes. Following the 17 August and 12 November
1999, events, there is a ~50% probability of a major, M
< 7.6, event on the segment(s) of the NAFS within the
Marmara Sea within the next half century. Currently, the
strain in the Marmara Sea region is highly asymmetric,
with greater strain to the south of the Northern strand.

Different Macro-seismic Zones Along the North
Anatolian Fault System

Comparative geological and geophysical studies between
the well known San Andreas Fault System and North

Anatolian Fault System (NAFS) may help us to understand
and estimate seismic activity along these major
intracrustal transforms. It is well established that the
NAFS moves from a compressive tectonic domain in
Eastern Anatolia into a diverse, dominantly extensional,
tectonic domain in Western Anatolia (McClusy et al.
2000; Figure 1). These different tectonic regimes are the
result of diffential indentation of the Anatolian
accretionary collage by the northward movement of the
Arabian Plate and the tectonic escape of these terranes by
a combination of westward push and suction into the
southward-retreating Aegean Trench. The spatial and
temporal distributions of large historical and modern
earthquakes (Mw> 5) would appear to make up two
macro-seismic zones, one to the east of the NAFS and one
to the west of the NAFS. These zones differ in style and
express the different rheologic properties of the crust,
thus implying different stress transfer mechanisms.
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The Eastern Macro-seismic Zone and Earthquake
Series of the NAFS

The eastern macro-seismic zone of the NAFS, between
Erzincan and Bolu, has produced successive linear
earthquake series parallel to the fault zone for at least
500 years ( Figure 2). Five linear historical earthquake
series with an interval of 100 years were produced
between the 15" and 19" centuries. Each earthquake
series consists of successive earthquake events migrating
from east near Erzincan to Kastamonu city in the west
(Stein et al. 1997; Soysal et al. 1981; Table 1). At the
end of the 19" century the earthquake activity increased
and a similar earthquake series with an interval of ~50
years occured on this zone (Figure 2). The first
earthquake series of the 20" century began with the
Erzincan earthquake (M= 7.9) in 1939, and has
comprised seven earthquakes (Mw 6-7) migrating to the
west (Figures 2 & 3). A possible second earthquake
series, beginning in the 20™ century, began with the
Erzincan earthquake (M= 6.9) in 1992 and may be
completed by westward migrating earthquakes over
approximately the next 50 years (Figure 2). These
successive earthquake series on the NAFS, which have a
narrow expression in the ‘eastern macro seismic zone’
suggest that stress transfer along the NAFS has occurred
within a high-viscosity crust exhibiting primarily elastic
behaviour at all depths as suggested by Roy & Royden
(2000). According to this interpretation, a significant
fraction of the stress released on the fault is transferred
to the remaining locked section after a major earthquake
(Stein et al. 1997). This type of static stress transfer
between the locked sections of the fault is compatible
with the observed behaviour of the San Andreas Fault
(Turcotte et al. 1984).

The Western Macro-seismic Zone and Earthquake
Pairs of the NAFS

West of Bolu the NAFS splits into northern and southern
sub-parallel branches in a broad extensional deformation
zone incorporating the Marmara-northern Aegean region
(McClusky et al. 2000). In contrast to the eastern macro-
seismic zone, the western macro-seismic zone of the
NAFS in the Marmara region, has produced seven
historical (Mw> 7) and 12 modern (Mw 4.9-7)
successive earthquakes (Ambraseys & Jackson 2000;
Ambraseys 2002; Saroglu et al. 1999; Yaltirak et al.

2005) making up earthquake pairs on the northern and
southern branches of the NAFS over the last 500 years
(Figure 4). From 1912 to 2001, six destructive
earthquake pairs occurred corresponding to the northern
and southern branches of the NAFS around the margin of
the Marmara Sea (Figure 5). The 1935 Mw 6.4 Erdek-
Biga and 1943 Mw 6.6 Adapazari-Hendek earthquake
pair, the 1953 Mw 7.2 Yenice-Génen and 1963 Mw 6.3
Cinarcik-Yalova earthquake pair, and the 1964 Mw 7
Manyas and 1967 Mw 6.3 Adapazari earthquake pair are
all characteristic paired earthquakes on parallel fault
branches of the NAFS in the Marmara region. The 1983
Biga earthquake (Mw 4.9) on the southern branch was
followed by the 1999 Yalova and Diizce earthquakes (Mw
7.4) on the northern branch including one of the recent
catastrophic earthquake events in the Marmara region
(Figure 5). Historical earthquakes with (Mw>7) in the
Marmara region (Ambraseys & Jackson 2000) also make-
up earthquake pairs on the northern and southern
branches of the NAFS (Figures 4 & 5). Examples include
the 1509 istanbul earthquake—1556 Erdek earthquake,
1719 izmit earthquake—1737 Biga earthquake, the 1766
Gelibolu earthquake-1855 Bursa earthquake and 1894
izmit earthquake; in each case historical earthquake pairs
have alternated on the two branches of the NAFS (Table
1). These historical and modern seismic patterns of the
NAFS in the Marmara region suggest that the kinematics
and geometry of the western part of the NAFS are
controlled by large-scale flow in the aseismic lower crust.
Thus shear stress is transferred horizontally to the
bottom of the northern and southern parallel fault
branches by a horizontal detachment so that brittle
fracture has occurred successively on faults in the
seismogenic upper crust. A dynamic stress transfer model
involving mantle flow for the parallel branches of the
NAFS in the Marmara region is applicable to explaining
the occurrence of earthquake pairs such as the 1992 Mw
7.3 Landers and 1999 Mw 7.1 Hector Mine earthquake
pair in California (Pollitz et al. 2001).

Discussion

It has been known for a long time that earthquake
occurrence is non-random in space and time. Earthquakes
induced by static or dynamic stress changes may trigger
subsequent earthquakes. In addition to these, transient
flow in the upper mantle is a fundamental component of
the earthquake cycle (Pollitz et al. 2001).
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Figure 2. Historical and 20" century earthquake series on the
segments of the North Anatolian Fault System between
Erzincan and Bolu and possible future destructive
earthquakes. The historical and 20" century earthquakes are
taken from Soysal et al. (1981) and Saroglu et al. (1999),
respectively.
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Table 1. Intensity, date and locations of the historical earthquakes.

Intensity Date Location Serie

IX 1482 Erzincan

VI 1513 Amasya
VIII 1509 Corum Series 1
? 1584 Erzincan

Vil 1585 Amasya

IX 1598 Gorum Series 2
VI 1667 Erzincan

IX 1668 Amasya-Tokat
VI 1668 Bolu-Kastamonu Series 3
VI 1684 Amasya
VI 1784 Erzincan

\ 1870 Amasya

VIl 1873 Niksar

VI 1882 Tosya-Kastamonu Series 4
VI 1887 Tokat

4 1888 Erzincan

VI 1890 Niksar Series 5
VI 1890 Kastamonu

Static Stress Transfer and Formation of the
Earthquake Series

Harris (1998) and Stein (1999) use calculations of a
Coulomb stress increment calculated from an elastic-
dislocation model of the main-shock to examine
geographical pattern of subsequent earthquakes relative
to pattern of change in Coulomb failure. The coseismic
change in Coulomb failure function (CF) is given by

ACF = Ay, + p(Qg, + Ap),

where Ay is the coseismic change in shear stress in the
direction of the fault slip, A,, is the change in normal
stress (with positive tension), Ap is the change in pore-
fluid pressure, and p is an assumed ‘coefficient of internal
friction’. This general method has shown that static
Coulomb stress transfer is consistent with a pattern of
70-80% aftershocks for the studied events. According to
Stein et al. (1997), there is progressive failure on the
eastern part of the NAFS from east to west since 1939

by earthquake stress triggering. This progressive failure
mode along the eastern part of the NAFS makes up the
modern and historical earthquake series on the eastern
macro seismic zone of the NAFS (Figures 2 & 3).

On the other hand, different seismic patterns,
earthquake series and earthquake pairs, on the eastern
and western part of the NAFS, respectively, may not be
simply explained by the static stress change of the
successive earthquakes. For example, in series VII,
(Figure 2), the static stress increase related to the 1966
earthquake M 6.9 in the area of the 1992 M 6.9 Erzincan
earthquake, may be negligible due to the long distance,
125 km, between the epicentres of two earthquakes.
Similarly, in the historical series IV and V, if we take into
account the long distances between earthquakes or their
intensities, it seems that static stress change can not be
responsible for the earthquake series in the eastern part
of the NAFS.
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Figure 3. The eastern macroseismic zone of the NAFS located between Erzincan and Bolu, showing how an earthquake series of seven large
earthquakes (M ~6-7.4) has migrated regularly from east to west during the 20" century.

So we can deduce that in addition to the static stress
change, different crustal rheology played a considerable
role in the formation of the earthquake series and pairs.
Indeed, Roy & Royden (2000) suggested that brittle
failure in a high viscosity crust is primarily focused along
the narrow strike-slip fault zone forming earthquake
series regardless of the time of the earthquakes. In
contrast, when the elastic upper crust is underlain by a
low-viscosity lower crustal layer, the deformation zone
broadens in time to encompass many parallel strike-slip
faults in an interacting network and their earthquake
pairs.

In the modern series, VII (Figure 2) the region
recovered from the stress shadow created by the 1939 M
7.9 earthquake via the 1992 M 6.9 Erzincan earthquake.
We suggest therefore that this series may propagate
westward from Erzincan city over the next ~50 years.

Fault Interactions in a Viscoelastic Earth and
Formation of Earthquake Pairs

In addition to static stress changes, dynamic or transient
stress changes may also be capable of triggering
earthquakes. Lomnitz (1996) suggested that fault
interaction including distant triggering is due to deep-
seated flow in the earth in a response to the triggering
earthquake. Alternatively, Harris (2000) considered that
dynamic strains may be caused by distant triggering.
Parsons (2005) suggests that dynamic stress transfer has

a significant effect (potentially a minimum 409% of large
triggered earthquakes globally from dynamic stress
transfer) although the physics and timing of the dynamic
triggering are acknowledged to be poorly understood.

Deep post-earthquake after-slip and viscoelastic
relaxation of the lower crust and upper mantle may act to
redistribute stress into the seismogenic crust over time
(Pollitz et al. 2001). Stress transfer within elastic crust is
static and immediate, whereas stress transferred by a
large earthquake in the higher temperature lower crust
and upper mantle is time dependent because strain occurs
at depth by viscoelastic flow in response to a sudden
stress change (Pollitz et al. 2001; Pollitz 2005). Deep
post-seismic readjustment may impact the seismogenic
crust and act to modify the coseismic static stress change.
This process is known as stress diffusion, and appears to
occur rapidly relative to the seismic cycle (Parsons 2002).
Stress diffusion models were fitted to geodetic
measurements made after the 1999 (Mw 7.1) Hector
Mine, California and 1999 (Mw 7.4) izmit, Turkey
earthquakes (Hearn et al. 2002). The results emphasise
that stress diffusion models more easily explain the 1992
Mw 7.2 Landers—1999 Mw 7.1 Hector Mine earthquake
pair on the parallel faults rather than the classic static
stress transfer model. Roy & Royden (2000) emphasize
the effects of lower crustal flow on faulting at strike-slip
plate boundaries. They show that when a low-viscosity
lower crustal layer underlies a primarily elastic upper
crust, the deformation zone broadens in time to
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of the North Anatolian Fault System in the Marmara region. The historical earthquakes are taken from Ambraseys & Jackson

(2000), the fault map from Kogyigit (1988).

encompass many parallel strike-slip faults in an
interacting network such as in the San Francisco Bay area
and in the Marmara region of the NAFS. In contrast,
when the entire crust behaves elastically, the deformation
zone remains narrow as in the eastern part of NAFS, and
becomes focussed on a single plate-bounding fault. In
their model, the maximum depth of faults is limited by
stress relaxation and large-scale viscous flow in the lower
crust, which confines brittle failure to shallow and
midcrustal levels. Cai & Wang (2001) test fault models
with numerical simulation and propose two distinct
tectonic models for the faults in central California. In one
model (Figure 7, model a), no basal detachment is
assumed. In another model (Figure 7, model b), a master
detachment is assumed to be present below the
seismogenic layer and connects the San Andreas Fault
System with the other faults in the system. The authors
suggest that model b, the presence of a basal detachment,
may facilitate the transfer of shear deformation from the
base of the lithosphere. Hence the stresses predicted by

the two models are notably different and lead potentially
to different assessments of the seismic potential in a
given region. When we consider earthquake alternations
on sub-parallel faults of the NAFS in the Marmara region
we predict that model b is an appropriate explanation for
the sub-parallel faults on the western seismic zone of the
NAFS.

Primary interpretation of this work in relation to the
NAFS suggests that the kinematics and geometry of the
fault system and their earthquake pairs in the Marmara
region is consistent with the presence of large-scale flow
in the aseismic lower crust and contrasts with the eastern
seismic zone of the NAFS. Thus historic and modern
earthquake pairs on the parallel faults of the NAFS in the
Marmara region are explained by a stress diffusion model
rather than by a static stress transfer model.

Though some earthquake pairs (1983-1999;
1964-1967) are separated by more than 200 km, they
are also located in the broader Marmara deformation
zone of the NAFS. If the model we suggested above is
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correct we can say that the sub-parallel faults of the
NAFS, on which earthquake pairs occurred, may be
controlled by the lower detachment that facilitates the
broadening of the deformation zone.

However, Hubert-Ferrari et al. (2000) and King et al.
(2001) examined earthquake interactions since 1900 in
the Marmara Sea. They showed that 23 out of 29
earthquakes (M> 6) over an 85 year period could be
related to earlier events. In a similar way, they showed
that historical earthquakes, between 1700-1900,
migrated westward and eastward on the northern and
southern branches of the NAFS, respectively, in the
Mamara Sea.

Similarly, Parsons et al. (2000) argue that the 1999
M 7.4 izmit earthquake, as well as most background
seismicity of the Marmara Sea, occurred where the failure
stress is calculated to have increased 1-2 bars by M 6.5
earthquakes since 1939. The Izmit event, in turn,

increased the stress beyond the east end of the rupture
by 1-2 bars, where the M 7.2 Duzce earthquake struck,
and by 0.5-5 bars beyond the west end of the 17 August
rupture, where a cluster of aftershocks occurred
(Parsons et al. 2000). However, a critical question
related to this hypothesis is: why did the 1999 izmit
fracture not continue westward into Marmara Sea instead
of eastward to Duzce (e.g., King et al. 2001; Hartleb et
al. 2002)?

The hypothesis mentioned above contrasts with both
the modern and historical earthquake pairs models we
suggested in the text (Figures 4 & 5) for the Marmara
Sea. Though we used all of the 12 modern earthquakes
(M>5) since 1912, we had to use the historical
earthquakes of M> 7 with dates between 1700 and 1900
(Ambraseys & Jackson 2000). According to King et al.
(2001) the M> 7 events broke two or more segments
while the smaller earthquake occurred on a single
segment.
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Conclusion

Spatial and temporal variations of seismicity in the
eastern and western parts of the NAFS make up two
different macro-seismic zones, reflecting different crustal
rheologies and stress transfer in two distinct tectonic
domains as illustrated by the tectonic models discussed
above (Lemiszki & Brown 1988; Nishigami 2000; Roy &
Royden 2000; Cai & Wang 2001; Parsons 2004). The
eastern macro-seismic zone of the NAFS, located between
Erzincan and Bolu, has produced a series of seven modern
large earthquakes (Mw 6-7.4) which have migrated
regularly from east to west by the Coulomb static stress
transfer (Figures 2 & 3). This modern earthquake series
running parallel to the narrow NAFS zone suggests that
stress transfer and migration of the earthquakes along
the fault has occurred within a high-viscosity crust
exhibiting primarily elastic behaviour at all depths (Roy &
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Royden 2000). This type of static stress transfer between
the locked sections of the fault is consistent with
observed behaviour on the San Andreas Fault (Turcotte et
al. 1984).

West of the town of Bolu in the western macro-
seismic zone the NAFS splits into northern and southern
sub-parallel branches in a broad extensional deformation
zone within the Marmara-northern Aegean region.
During the last century, seismic activity in this zone has
included six earthquake pairs (Mw 6.1-7.4) alternating
on the distinct parallel fault segments of the northern and
southern branches of the NAFS (Figure 5). This type of
seismic activity may imply that there is a lower crustal
sub-horizontal detachment fault that may facilitate more
dynamic stress transfer between sub-parallel faults of the
NAFS than would be expected from a static stress
transfer in an elastic medium (Figure 6). However, so far,
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Figure 7. Schematic drawings of two different fault configurations showing (a) all faults terminating at the base of the seismogenic
layer and (b) all faults connecting to a detachment at the base of the seismogenic layer. () shear out of page; (®) shear

in the page (after Cai & Wang 2001).

in seismic hazard evaluations, or earthquake predictions,
faults in the Marmara Sea are simulated as dislocations in
a half-space where no basal detachment has been
assumed. We conclude that the static stress transfer
model in the eastern part of the NAFS and the dynamic
stress transfer model among the parallel branches of the
NAFS to the west provide the significant parameters for
predicting seismic hazards on the NAFS.

References

AMBRASEYS, N.N. 2002. The seismic activity of the Marmara Sea region
over the last 2000 Years. Bulletin of the Seismological Society of
America 92, 1-18.

AMBRASEYS, N.N. & Jackson, J.A. 2000. Seismicity of the Sea of Marmara
(Turkey) since 1500. Geophysical Journal International 141,

F1-F6.
ANDERSON, D.L. 1971. The San Andreas Fault. Scientific American 225,
53-67.

Bozkurt, E. 2001. Neotectonics of Turkey — a synthesis. Geodinamica
Acta 14, 3-30.

BROCHER, T.M., McCaRTHY, J., HarT, P.E., HoBrook, W.S., FURLONG,
K.P., McEviLLy, T.V., HoLg, J. & KLEMPERER, S.L. 1994. Seismic
evidence for a lower-crustal detachment beneath San Francisco
Bay, California. Science 265, 1436-1439.

BURGMANN, R. 1997. Active detachment faulting in the San Fransisco Bay
area?. Geology 25,1135-1138.

Cal, Y. & Wang, C.Y. 2001. Testing fault models with numerical
simulation: example from central California. Tectonophysics 343,
233-238.

FurLong, K.P. 1993. Thermal-rhelogical evolution of the upper mantle
and the development of the San Andreas Fault System.
Tectonophysics 223, 149-164.

Acknowledgements

The authors are grateful to Orhan Tatar, John Piper and
Erdin Bozkurt for constructive comments and correcting
the English of the manuscript. The authors thank Aurelia
Hubert-Ferrari and anonymous referee for scientific
contributions and essential discussions. The English of the
final text is edited by Darrel Maddy.

GARFUNKEL, Z. & Ron, H. 1985. Block rotation and deformation by
strike-slip faults 2. The properties of a type of macroseismic
discontinuous deformation. Journal of Geophysical Research 90,
8589-86029.

HabLey, D. & Kanomori, H. 1977. Seismic structure of the Transverse
Ranges, California. Geological Society of American Bulletin 88,
1469-1478.

Harris, R.A. 1998. Introduction to special section: stress triggers, stres
shadows, and implications for seismic hazard. Journal of
Geophysical Research-Solid Earth 103 (B10), 24347-24358.

Harris, R.A. 2000. Earthquake stress triggers, stress shadows, and
seismic hazard. Special section, Seismology 2000, Current Science
79, 1215-1225.

HarTLEB, R.D., Dotan, J.F., Akviz, H.S., Dawson, T.E., TUuCKer, A.Z.,
YerLi, B., RockweLL, T.K., Toraman, E., CAKIR, Z., DikBas, A. &
ALTUNEL, E. 2002. Surface rupture and slip distribution along the
Karadere segment of the 17 August 1999 izmit and the western
section of the 12 November 1999 Duzce, Turkey, earthquakes.
Bulletin of the Seismological Society of America 92, 67-78.

Hearn, E.H., BURGMANN, R. & REILENGER, R.E. 2002. Dynamics of izmit
earthquke post-seismic deformation and loading of the Dizce
earthquake hypocenter. Bulletin of the Seismological Society of
America 92, 172-193.

11



STRESS TRANSFER IN STRIKE-SLIP FAULT ZONES

HUBERT-FERRARI, A., BARKA, A., JacQuEs, E., NALBANT, S.S., MEYER, B.,
ARMLIO, R., TAPPONNLER, P. & KING, G.C.P. 2000. Seismic hazard in
the Marmara Sea region following the 17 August 1999 izmit
earthquake. Nature 404, 269-273.

KING, G.C.P., HUBERT-FERRARI, A., NALBANT, S.S., MEYER, B., ArMLIO, R. &
Bowman, D. 2001. Coulomb interactions and the 17 August 1999
izmit, Turkey earthquake. Earth and Planetary Sciences 333,
557-569.

Kogvicit, A. 1988. Tectonic setting of the Geyve basin: age and total
displacement of the Geyve fault zone. METU Pure and Applied
Sciences 21, 81-104.

Lemiszki, P.J. & Brown, L.D. 1988. Variable crustal structure of strike-
slip fault zones as observed on deep seismic reflection profiles.
Geological Society of American Bulletin 100, 665-676.

Lisowskl, M., Savace, J.C. & Prescort, W.H. 1991. The velocity field
along San Andreas Fault in central and southern California.
Journal of Geophysical Research-Solid Earth 96, 8369-8389.

Lomnitz, C. 1996. Search of worldwide catalog for earthquakes
triggered at intermediate distances. Bulletin of the Seismological
Society of America 86, 293-298.

McCLusky, S., BaLassanian, S., Barka, A., Demir, C., ERGINTAv, S.,
Georalev, I., GURKaN, O., HAMBURGER, M., HursT, K., KaHLE, H.,
KasTens, K., Kekeupze, G., King, R., Korzev, V., Lenk, O.,
MaHmouD, S., MIsHIN, A., NaDARIYA, M., Ouzounis, A., PARADISsIS, D.,
PETER, Y., PRILEPIN, M., REILINGER, R., SANLI, I., SEEGER, H., TEALEB,
A., Toksoz, M.N. & VEis, G. 2000. Global positioning system
constraints on plate kinematics and dynamics in the eastern
Mediterranean and Caucasus. Journal of Geophysical Research-
Solid Earth 105 (B3), 5695-5719.

NisHiGami, K. 2000. Deep crustal heterogeneity along and around the
San Andreas Fault System in central California and its relation to
the segmentation. Journal of Geophysical Research-Solid Earth
105, 7983-7998.

PaRrsons, T. 2002. Post-1906 stress recovery of the San Andreas Fault
System calculated from three-dimensional finite element analysis.
Journal of Geophysical Research-Solid Earth, 107 (B8) 2162,
10.1029/2001JB001051.

Parsons, T. 2004. Recalculated probability of M= 7 earthquakes
beneath the Sea of Marmara, Turkey. Journal of Geophysical
Research-Solid Earth 109 (B5) BO5304.

Parsons, T. 2005. Significance of stress transfer in time-dependent
earthquake probability calculations. Journal of Geophysical
Research-Solid Earth 110 (B5) B05S02, 10.1029/2004J
B003190.

Parsons, T. & Hart, P.E. 1999. Dipping San Andreas and Hayward
faults revealed beneath San Francisco Bay, California. Geology 27,
839-842.

Parsons, T., Topa, S., STEIN, R.S., BArRkA, A. & DIETERICH, J.H. 2000.
Heightened odds of large eathquakes near Istanbul: an ineraction-
based probability calculation. Science 288, 661-665.

PipeR, J.D.A., TATAR, O. & GURsoy, H. 1997. Deformational behaviour of
continental lithosphere deduced from block rotations across the
North Anatolian Fault Zone in Turkey. Earth and Planetary
Science Letters 150, 191-203.

PoLuitz, F.F. 2005. Transient rheology of the upper mantle beneath
central Alaska inferred from the crustal velocity field following the
2002 Denali earthquake. Journal of Geophysical Research-Solid
Earth 110 (B8) B08407, 10.1029/2005JB003672.

PoLtitz, F.F., Wicks, C. & THATCHER, W. 2001. Mantle flow beneath a
continental strike-slip fault. post-seismic deformation after the
1999, Hector Mine earthquake. Science 293, 1814-1818.

REASENBERG, P.A. & SimpsoN, R.W. 1997. Response of regional seismicity
to the static stress change produced by the Loma Prieta
earthquake. Science 255, 1687-1690.

Rov, M. & Rovpen, L.H. 2000. Crustal rheology and faulting at strike-
slip plate boundaries 2, Effects of lower crustal flow. Journal of
Geophysical Research-Solid Earth 105, 5599-5613.

SaroGLY, F., EMRE, O. & Kuscu, i. 1999. Tirkiye Diri Fay Haritasi [Active
Fault Map of Turkey]. Mineral Research and Exploration Institute
(MTA) of Turkey Publications, Ankara.

SovsaL, H., SipaHioGLU, S., Kolcak, D. & ALtiNok, Y. 1981. Tirkiye ve
Cevresinin Tarihsel Deprem Katologu [Historical Earthquake
Cataloque of Turkey and its Neighbourhood]. TUBITAK Project
no. TBAG341 [in Turkish, unpublished].

SteIN, R.S. 1999. The role of stress transfer in earthquake occurrence.
Nature 402, 605-609.

SteN, R.S., Barka, A.A. & DIeTrICH, J.H. 1997. Progressive failure on
the North Anatolian Fault since 1939 by earthquake stress
triggering. Geophysical Journal International 128, 594-604.

SENGOR, A.M.C. 1979. Geometry and Kinematics of Continental
Deformation in Zones of Collision: Examples From Central Europe
and Eastern Mediterranean. MSc Thesis, State University of New
York at Albany [unpublished].

SENGOR, A.M.C., Tuovsuz, O., IMREN C., SAKING, M., EvipoGan, H., GORUR,
N., LE PicHoN, X. & Rancin, C. 2004. The North Anatolian Fault: a
new look. Annual Review of Earth and Planetary Sciences 33,
37-112.

TATAR, O., PiPER, J.D.A., ParRk, R.G. & GUrsoy, H. 1995. Paleomagnetic
study of block rotations in the Niksar overlap region of the North
Anatolian Fault Zone, Central Turkey. Tectonophysics 244,
251-266.

TurcotTe, D.L., L, J.Y. & KutHawy, F.H. 1984. The role of an
intracrustal asthenosphere on the behaviour of major strike-slip
faults. Journal of Geophysical Research-Solid Earth 89,
5801-5816.

YaLTiRaK, C., YALCIN, T, YUCE, G. & BozkurToGLu, E. 2005. Water-level
changes in shallow wells before and after the 1999 izmit and
Duzce earthquakes and comparison with long-term water-level
observations (1999-2004), NW Turkey. Turkish Journal of Earth
Sciences 14, 281-309.

Yeats, R.S. 1981. Quaternary flake tectonics of the California
Transverse Ranges. Geology 9, 18-20.

ZHu, L., MITCHELL, B.J., AkvoL, N., CEMEN, I. & Kekoval, K. 2006. Crustal
thickness variations in the Aegean region and implications for the
extension of continental crust. Journal of Geophysical Research-
Solid Earth 111 (B1), BO1301, 10.1029/JB003770.

Received 04 September 2006; revised typescript received 12 October 2006; accepted 13 October 2006

12



