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Abstract: The eastern part of the Anatolian plateau in eastern Turkey has experienced dramatic landscape
evolution in the Late Cenozoic, surface uplift having been associated with the disruption of former lake basins and
the development of the modern high-relief landscape, incised by the upper reaches of the River Euphrates and its
major tributary, the Murat. Overall, the altitude of the plateau decreases gradually westward, and it has been
assumed that uplift on any given timescale has varied regionally in a similar manner. However, using the Ar-Ar
method, we have dated an episode of basaltic volcanism around the city of Elazig to ~1.8-1.9 Ma (two alternative
calculation procedures give ages of 1885+16 ka and 1839+16 ka; both +2c). The disposition of this basalt
indicates no more than ~100 m of incision by the River Murat on this timescale in this area, in marked contrast
to neighbouring localities where much more incision on similar timescales is indicated by the geomorphology. We
interpret these variations as consequences of flow in the lower continental crust induced by surface processes, the
flow being vigorous because the lower crust in this region is highly mobile due to the high Moho temperature. We
thus suggest that the ~1.8-1.9 Ma Elazi§ volcanism was triggered by outflow of lower crust following the
emptying at ~2 Ma of the adjacent Malatya lake basin; the resulting local removal of part of this lower-crustal layer
can also account for the limited amount of subsequent net crustal thickening and surface uplift that has occurred
locally. Local patterns such as this are superimposed onto the regional westward tilting of the surface of the
Anatolian Plateau, which has facilitated the disruption of former lake basins such as this.
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Dogu Anadoluda Elazig Kuvaterner Volkanizmasinin Yasi ve Bélgenin
Jeomorfolojik Evrimi ile Yiikselimi Agisindan Onemi

Ozet: Anadolu Platosunun dogu kesimi Geg Senozoik'te dikkat cekici bir evrim gecirmistir. Tektonik yiikselmeler
daha dnce var olan gél havzalarinin tahrip olmasina ve bu havzalarda Firat nehri ve onun ana kolu olan Murat nehri
tarafindan derince yarilmig, yiksek rakimli topografyanin meydana gelmesine sebep olmustur. Genel olarak
Anadolu Platosunun yukseltisi batiya dogru azalmaktadir. Bu durum tektonik ylkselme oranlarinin batiya dogru
azalma egiliminde oldugunu ortaya koymaktadir. Bununla birlikte, Ar-Ar metodunun uygulanmasiyla Elazig
yakininda yUzeyleyen bazaltik karakterdeki volkanizmanin yasinin 1.8-1.9 milyon yil oldugunu ortaya konmustur
(iki farkll hesaplama metodu Elazig volkanizmasi yasinin 1885+16 ka ve 1839+16 ka arasinda degistigini
gostermektedir). Bazaltlarin topografik durumundan anlasildigi Uzere volkanizmanin meydana geldidi zamandan
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glinimuze kadar gegen strede Murat nehri calisma sahasinda yatagini 100 m den fazla derinlestirememistir. Buna
Karsilik, calisma sahasina komsu alanlarin ginimuzdekt jeomorfolojik durumu ayni zaman diliminde nehirlerin
yataklarini derine kazma miktarlarinin daha fazla oldugunu gostermektedir. Nehirlerin yataklarini derine kazma
oranlarindaki bu farkliliklari ylzey proseslerinin sebep oldugu alt kitasal kabuktaki akintilarin rollne
bagdlamaktayiz. Bu bolgedeki alt kitasal kabuk yiksek moho sicakligindan dolayr daha mobil olup, kabuk icerisinde
olusan akintilar ise daha glgludur. Boylece 1.8-1.9 milyon yasindaki Elazi§ volkanizmas! yaklasik olarak 2 milyon
yil 6nce komsu Malatya gol havzasinin dis drenaja (bosalmasini) baglanmasini takip eden doénemde calisma
sahasindaki alt kitasal kabugun civar alanlara dogru akisinin tetikledigi varsayilmaktadir. Alt kitasal kabuktaki bu
tlrden hareketlenmeler bazi sahalarda yerel olarak kabuk kalinlasmasina ve tektonik yikselmelere sebep olmustur.
Bu tlrdeki yerel tektonik yikselmeler ayni zamanda batiya dogru topyekin egimlenmis olan Anadolu Platosu
Uzerine eklenmistir. Bu durum Malatya gol havzasinda oldugu gibi daha 6nce var olan gél havzalarinin ortadan

kalkmasina sebep olmustur.

Anahtar Sézcukler: Tirkiye, Anadolu, Miyosen, Pliyosen, Pleyistosen, volkanizma, Ar-Ar yaslandirma

Introduction

Eastern Turkey (Figure 1) forms the modern boundary
zone between the African (AF), Arabian (AR), Eurasian
(EU) and Turkish (TR) plates. The right-lateral North
Anatolian Fault Zone (NAFZ) takes up westward motion
of the Turkish plate relative to Eurasia; the left-lateral
East Anatolian Fault Zone (EAFZ) accommodates WSW
motion of the Turkish plate relative to Arabia. The overall
effect of both fault systems is to accommodate
north—-northwestward motion of Arabia relative to
Eurasia. The NAFZ and EAFZ converge at Karliova (Figure
1), which is thus regarded as the notional TR-AR-EU
‘triple junction’. Geodetic studies (e.g., McClusky et al.
2000) indicate that internal deformation of these plates
is not significant, given the limits of measurement
precision. This modern geometry of the NAFZ and EAFZ
is thought to have developed at ~4 Ma (e.g., Westaway
2003, 2004a, 2006a; Westaway et al. 2006b). It is
thought (e.g., by Westaway & Arger 2001; Westaway
2003, 2004a; cf. Kaymakct et al. 2006) that,
beforehand, the relative motion between the Turkish and
Arabian plates was acommodated by slip on the Malatya-
Ovacik Fault Zone (MOFZ; Figure 2). The SW part of this
structure, the SSW-trending Malatya Fault, was shown by
Kaymakcr et al. (2006) to have accommodated
transtension, involving left-lateral slip and extension,
resulting in subsidence in the interior of the lacustrine
Malatya Basin.

For most of their length the NAFZ and EAFZ transect
the Anatolian plateau. As many people have noted, the
typical altitude of the land surface within this plateau rises
eastward from ~500-1000 m a.s.l. in the west to ~3000
m in the east. The large negative Bouguer gravity
anomaly (e.g., Ates et al. 1999) indicates that this plateau
is underlain by a thick lower-crustal ‘keel’ or ‘root'.
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Studies of seismic wave propagation indicate that the
crustal thickness is 30 km in the west (Saunders et al.
1998) and up to 50 km in the east (Zor et al. 2003).
Eastern Anatolia is adjoined to the south, across the
suture of the former southern Neotethys ocean (Figure
2), by the northern part of the Arabian Platform crustal
province, where the land surface is much lower (typically
~500-1000 m a.s.l.). As many people have previously
discussed, the Cenozoic continental collision between
Arabia and Anatolia has evidently resulted in much more
intense deformation of the latter than of the former,
indicating that the Arabian Platform crust is much
stronger than that of Anatolia (see Demir et al. 2007, for
a recent analysis of this topic).

Recent studies have begun to constrain the detailed
history of Late Cenozoic regional surface uplift within the
northern Arabian Platform, using heights of terraces of
the rivers Tigris and Euphrates that are capped by dated
basalt flows (e.g., Bridgland et al. 2007; Demir et al.
2007, 2008; Westaway et al. 2008). These
investigations indicate a general southward tapering in
uplift. For instance, the fluvial incision estimated since
~0.9 Ma decreases southward from ~70 m near
Diyarbakir in SE Turkey (near the northern margin of the
Arabian Platform) to as little as ~15 m near Deir ez-Zor
in NE Syria, ~250 km farther south; the incision
estimated since ~2 Ma decreases southward between
these localities from ~100 m to ~40-50 m. Much greater
amounts of fluvial incision, equated to regional surface
uplift, are evident in western Anatolia; for instance dating
of basalt flows and other evidence indicates that in the
vicinity of Kula the River Gediz has incised by ~140 m
since ~1 Ma and by as much as ~400 m since ~3 Ma
(e.g., Westaway et al. 2004, 2006c¢). If the uplift during
each span of time varied across Anatolia in proportion to
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Figure 1. Map of Turkey showing the locations of the cities of Malatya and Elazi§ and of the Euphrates river system, together with localities

outside our immediate study region that are mentioned in the text. K. Maras, G. Antep, and $. Urfa are abbreviations for
Kahramanmaras, Gaziantep, and Sanliurfa. The NAFZ runs westward from Karliova past Erzincan, along the Kelkit valley, then past
Vezirkopri, Kargi, Tosya, and Adapazarl to the vicinity of Istanbul. The EAFZ runs generally WSW from Karliova along the Murat
valley, past Lake Hazar between Elazi§ and Clngus, then between Malatya and Adiyaman to the vicinity of Kahramanmaras.

the overall topography, one would expect to observe
incision several times greater than each of these estimates
in eastern Anatolia on corresponding time scales.
However, there has as yet been no equivalent
investigation of any age-height relationship for basalts
that cascade into river valleys in eastern Anatolia.

The present study region, adjoining the city of Elazig,
is located well north of the EAFZ (Figure 2), within
eastern Anatolia; the crust being locally 42 km thick (Zor
et al. 2003). This region is now drained by the upper
reaches of the River Euphrates and its major left-bank
tributary, the Murat. As previously noted (e.g.,
Huntington 1902; Westaway & Arger 2001) the gorges
of these rivers (now flooded by hydro-electric reservoirs)
in some localities attain depths of many hundreds of
metres, having been incised into former lake basins
across much of the region. Basalt flows have cascaded
partway down tributary gorges leading into the Murat
valley, terminating at levels that can be presumed to mark
the contemporaneous Murat valley floor. Dating of such
basalts can indicate amounts of subsequent fluvial incision

(and thus, after appropriate corrections, discussed below,
regional uplift), for comparison with surrounding
regions.

This study will, first, discuss the disposition of basalts
and lake sediments in and around the study region, then
present dating evidence for the basalts, which will
demonstrate that a brief phase of volcanism occurred in
the Elazi§ area at ~1.8-1.9 Ma. The possible cause-and-
effect relationship between the chronology of this
volcanism (and the limited subsequent fluvial incision and
local surface uplift indicated by it) and that of the
disruption at ~2 Ma of the youngest lake basin in the
region, the Malatya Basin, will then be discussed.

Overview of Late Cenozoic Lacustrine Deposits and
Basalts

This study region is within the eastern part of the Turkish
plate, adjoining the Eurasian and Arabian plates, south of
the NAFZ and north of the EAFZ (Figure 2). Both these
active fault zones are well-known from both GPS satellite
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Figure 2. Map of the study region, showing sites of (?) Late Miocene Pliocene basaltic volcanism (triangles; omitted outside the Elazi§ region) and
mammal sites (diamond symbols) in relation to the Euphrates river system and to major strike-slip fault zones: the NAFZ, MOFZ and EAFZ.
Light grey shading illustrates schematically the Malatya Basin. As discussed in the text, its northern limit marks the end of continuous
outcrop, and is somewhat arbitary, as the (?) Late Miocene and Pliocene lacustrine deposits in localities farther north and east evidently
formed part of the same palaeo-lake. Dashed dark grey line marks the Neotethys suture, as delimited by the northern margin of outcrop
of rocks of the Cenozoic carbonate sequence of the Arabian Platform (after Altinli 1961; Baykal 1961; Tolun 1962). Between points
marked, this suture roughly coincides with strands of the EAFZ. Triangles indicate young basaltic necks, with arrows indicating schematic
directions of basalt flow from them; G, K and S denote the Gumugsbaglar, Karatas, and Saribucuk necks; Ka and Su denote the Karababa
(Mamaar) and Sursurt mammal sites. For geological maps of this area see Westaway & Arger (2001).

geodesy and geological evidence (e.g., McClusky et al.
2000; Westaway 2003, 2004a; Westaway et al. 2006b)
to involve transform faulting for most of their lengths,
which requires no vertical component of crustal motion.
This modern geometry of strike-slip faulting is thought to
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have superseded a different geometry that existed
between ~7-6 and 4 Ma (e.g., Westaway & Arger 2001;
Westaway 2006a), which involved left-lateral slip on the
MOFZ rather than the EAFZ (Figure 2).
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Prior to this latest Miocene development of strike-slip
faulting, the region accommodated northward (or
northwestward) convergence of the African and Arabian
plates relative to Eurasia by active folding and reverse
faulting. It is thought that this earlier phase of crustal
deformation became active in the Late Eocene, at the
start of the continental collision between Africa/Arabia
and Eurasia; beforehand, the convergence between Africa
and Eurasia was instead accommodated by northward
subduction of the southern Neotethys Ocean beneath
Anatolia (e.g., Aktas & Robertson 1984). Rocks
associated with this subduction, which began in the Late
Cretaceous (~90 Ma), known locally as the ‘Elazig
Complex’, indeed form much of the bedrock outcrop in
the study region. These rocks are unconformably overlain
by latest Cretaceous to earliest Cenozoic limestone,
thought to mark the Maastrichtian—Paleocene hiaitus in
relative motion between the African and Eurasian plates.
The subsequent resumption of subduction is marked by
deposition of the claystone-dominated Kirkgecit
Formation, biostratigraphically dated to the Middle to
Late Eocene (e.g., Bingdl 1984), apparently in a back-arc
extensional basin overlying the subduction zone. Recent
detailed accounts of the magmatism, sedimentation, and
structural development associated with these Late
Cretaceous and Early Cenozoic events include work by
Cronin et al. (2000), Rizaoglu et al. (2006), and
Robertson et al. (2007). This summary was provided to
facilitate later discussion, given the stratigraphic and
structural relationships of the region’s young basalts and
lake sediments, and the associated landscape, to older
rocks and structures.

Previous studies of the incised Late Cenozoic
lacustrine sequences around Elazi§ (Figure 3) include
Tonbul (1987), Kerey & Turkmen (1991), and Westaway
& Arger (2001). Westaway & Arger (2001) also
summarised the limited information then accessible
regarding the lacustrine Malatya Basin. Kaymakci et al.
(2006) have subsequently resolved the structure of this
basin in greater detail using seismic reflection profiling.
West of this basin, comparable lacustrine deposits of
inferred Middle-Late Miocene age are known as the
Kuzgun Formation (e.g., Peringek & Kozlu 1984); they
crop out in the flanks of the present Tohma River gorge,
upstream and downstream of Darende (Figure 2).

Excluding evidence derived from dating of basalts, age
control for these lacustrine successions is available from

mammalian biostratigraphy at three significant sites: at
Sursurd (~2.5 km S of Elazig; Figures 2 & 4), Hacisam
(~50 km east of Elazi§; ~20 km west of Palu; Figure 2),
and, within the Malatya Basin, Karababa (~80 km west of
Elazig; ~35 km north of Malatya; Figure 2). As is noted
below, ages have also been assigned to the lacustrine
sediments of the Malatya Basin using pollen, but the ages
thus obtained conflict with the mammalian evidence.

Lacustrine Deposits in the Elazig Region

The stacked lacustrine sequence in the western and
central Elazi§ region is known as the Karabakir
Formation (e.g., Tonbul 1987; Asutay 1988; Figure 3),
after a type locality ~17 km NW of Pertek at c. [ED 185
165] (Figure 2); farther east, similar deposits have been
called the Palu Formation (Kerey & Turkmen 1991). This
sediment was originally thought to be Late Miocene,
based on microfossils (Sirel et al. 1975; Bingdl 1984).
However, at Hacisam and Surslru (Figures 2 & 4)
evidence from mammalian biostratigraphy now places
these lacustrine deposits in the Early and Middle Pliocene,
respectively (Unay & de Bruijn 1998; see below).

As already noted, amounts of Late Cenozoic uplift
have increased eastward across the Anatolian Plateau,
reflecting the regional topography. However, the
disposition of the Karabakir Formation lacustrine deposits
indicates that, on a local scale, vertical crustal motions
have been more complex (e.g., Westaway & Arger 2001).
Indeed, over significant parts of the region, eastward
tilting is evident, the opposite effect to the overall
westward decrease in altitude of the Anatolian Plateau.
For instance, these deposits are found at altitudes of up
to ~1480 m ~5 km east of Baskil at c. [DC 897 701]
(Figure 4). However, ~12 km farther east around Yolcati
(c. [EC 019 6507]), they are found no higher than ~1270
m (Figure 4). In this area these deposits are observed to
be tilted gently northeastward (Tonbul 1987). At Elazig,
~20 km farther NE these deposits reach ~1100 m a.s.l.,
whereas ~50 km farther east at Hacisam they are found
no higher than ~900 m a.s.l. Throughout this area these
deposits are quite thin, typically no more than tens of
metres thick. In many localities around Elazi§ anticlines
formed in older rocks protrude above the level of the
‘Karabakir’ palaeo-lake (Figure 4); this folding has been
thought to date from the mid-Cenozoic (i.e., Late Eocene
to early Late Miocene) phase of crustal shortening (cf.
Yazgan 1984), although some of it may possibly be
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Figure 3. Comparison of Late Cenozoic lacustrine successions and associated volcanism in different parts of the present study region. Left part
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of Figure indicates schematic stratigraphic column (using standard notation for lithologies) for the stacked sequence of the southern
Malatya Basin, based on Figure 2 of Onal (1995) with additional information from Onal (1997), and with suggested ages from the
present study. Thicknesses indicated refer to type localities. Right part of the Figure indicates our tentative suggestions for how the
successions in the central and eastern parts of the Elazi§ region correlate with the Malatya Basin. Note the progressive eastward
reduction in the span of time for lacustrine deposition. In the central Malatya Basin, Onal (1997) defined only the Boyaca Formation
as overlying the Parcikan Formation, this being evidently a lateral equivalent of the Seyhler Formation. The top of the Beyler Deresi
Formation has been incised by modern rivers, such as the Sultansuyu (Figure 2) and the Beyler Deresi (Figure 6a), to create the
modern dissected landscape in the Malatya Basin interior. Fluvial deposits that post-date the start of this incision are not shown.
Except where other environments are indicated, the stacked succession is lacustrine or low-energy fluvial, the proportions of both
types of input varying laterally and over time, as indicated by the lithologies. The Mamaar volcanics, depicted, in the central Malatya
Basin are equivalent, according to Kaymakei et al. (2006), to the Yamadag volcanics farther north (Figure 2). The latter volcanism
is Middle Miocene, given K-Ar dates of 18.7+0.5, 16.8+0.5 and 14.1+0.4 Ma (Leo et al. 1974), and of 15.9+0.4 and 15.2+0.5
Ma (Arger et al. 2000). As noted in the main text, this K-Ar interpretation and the pollen evidence (Onal 1995, 1997) for a Middle
Miocene age for the Parcikan Formation is contradicted by mammalian biostratigraphic evidence from Kaymakci et al. (2006), which
requires the lower part of this deposit to be no older than the early Late Miocene. Kaymakc et al. (2006) suggested using the name
Sultansuyu Formation for terrace deposits of the Sultansuyu, Tohma and Kuru rivers that are inset into the stacked sequence of the
Malatya Basin. However, this would be confusing, as the same name is already in use for older deposits in the region, as illustrated.
Regarding the chronology, Onal (1995, 1997) proposed that the whole sequence above the Kiiseyin Formation is Middle Miocene,
but provided no age-control above the Upper Lignite, which could be latest Middle Miocene. Kaymakci et al. (2006) suggested that
the low-energy sediments above the stratigraphic level of the Mamaar/Yamadag volcanics, including the Upper Lignite, are Late
Miocene, and the overlying coarse fluvial clastics are Early to Middle Pliocene, the latter age assignment based on a correlation with
the lacustrine deposits at Surslrl near ElaziJ (see text, this Figure, and Figure 4). However, such a correlation seems most unlikely,
as the lithologies in the two localities are very different. We tentatively infer that the deposits of the Beyler Deresi Formation are
Late Pliocene, having aggraded after the Mid-Pliocene climatic optimum but before the regionl increase in uplift rates at ~2 Ma (see
text).
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Figure 4. Geological map of the central part of the Elazig region, after Tonbul (1987), with additional information from Bingdl (1984).
The Sursurd mammal site is in the position shown, c. [EC 189 774], adjoining the minor road between the villages of Aksaray
and Yenikdy (~1 km SW of the former; ~2 km NE of the latter). This site was evidently named after the village of Sursurd,
although this is ~2.5 km away and thus has no particular connection with it.

younger and may indeed be associated with the observed As previously noted (Westaway & Arger 2001; Demir
gentle tilting of the Pliocene lacustrine deposits (see et al. 2004), at present the limit of this lacustrine
below). sediment at Baskil coincides with a col (the Belhan Pass)
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between the Altinkusak river, which flows into the Murat
near Elazi§, and a local south-flowing Euphrates tributary
that joins this river near Kale near the SE margin of the
Malatya Basin (Figures 2 & 4). Demir et al. (2004)
suggested that this Belhan Pass marked the former
drainage outlet from the Elazi§ region into the Malatya
Basin, at which the level of the ‘Karabakir’ palaeo-lake
was regulated. They inferred that as a result of some
combination of processes (the northward component of
subsequent tilting? river capture?) this drainage was
diverted to the modern course of the Murat farther
north. Conversely, although the col between the Elazig
region and local drainage into the Malatya Basin south of
Yolcati at Gunacti (c. [EC 017 588]) is much lower
(~1280 m), there is no geomorphological evidence that it
ever formed a drainage outlet from the Elazi§ region.

The Sirsird mammal site (Figure 4) is at ~1080 m
a.s.l., ~10 m below the 1090 m a.s.l. summit flat of
Rizvan Tepe ~500 m farther north. The mapping by
Bingdl (1984) and Tonbul (1987) indicates that this
~1090 m a.s.l. level locally marks the top of the stacked
sequence of the Karabakir Formation (Figure 4). Unay &
de Bruijn (1998) described the Karabakir Formation at
this site as consisting of a fossil bed of brown claystone
with abundant molluscs, interbedded within a sequence of
grey limestone and green siltstone. Their rodent finds
included Mimomys occitanus, Occitanomys brailloni,
Apodemus dominans, Mesocricetus aff. primitivus, and
other specimens not identified to species level. In their
view, the most significant age-diagnostic taxon was M.
occitanus, indicative of the Late Ruscinian (biozone
MN15) mammal stage, with a numerical age in the range
4.2-3.2 Ma (cf. Agusti et al. 2001).

The Hacisam mammal site is at c. [EC 627 809],
~900 m a.s.l., in a cutting along the minor road linking
Hacisam village to the Elazig-Bingdl highway at
Muratbagi (Figure 2) (~0.75 km SSE of the former
village; ~3 km NNW of the latter), near where the River
Murat leaves the north side of the EAFZ linear valley
(Figure 2) via a narrow gorge. This area is now flooded
to ~850 m a.s.l. by the Keban hydroelectric reservoir.
The thin ‘veneer’ of Karabakir Formation deposits that
blankets much of the landscape in this area,
unconformably overlying the Kirkgecit Formation, was
missed by Altinli (1961) and Bingdl (1984), but was later
noted by Herece et al. (1992). At the Hacisam site these
deposits reportedly consist of mollusc-bearing massive
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lacustrine mudstone. Unay & de Bruijn (1998) noted
rodent finds including Mimomys moldavicus, Apodemus
cf. dominans, and other specimens not identified to
species level. In their view, the most significant age-
diagnostic taxon was M. moldavicus, indicative of the
Early Ruscinian (late biozone MN14) mammal stage.
According to Agusti et al. (2001), biozone MN14 spanned
4.9-4.2 Ma. Since the Hacisam site has been placed late
within this biozone, its probable age is close to 4.2 Ma.

The Elazig Region; Basalts

Associated with the Karabakir Formation lacustrine
deposits are widespread basalts (Figures 3 & 4), dating of
which can constrain the ages of the sediments. Most of
these basalts (e.g., those illustrated in Figures 2 and 4)
have flowed over the surface of these lacustrine deposits
or along river valleys incised into them. The individual
flow units, in localities south of the Murat or west of the
Euphrates, will be briefly described. Available geological
maps (e.g., Altinli 1961; Bing6l 1984; Asutay 1988)
indicate that stratigraphically equivalent basalts also crop
out north of the Murat, including the designated type
locality of the Karabakir Formation, noted above, but
have not yet been investigated by us.

The basalt at Cipkdy, ~13 km west of Elazig (Figure
4), was studied by Arger et al. (2000) using whole-rock
K-Ar dating. They identified a lower rather altered flow,
with a date of 1.47+0.18 Ma (+2c), and an upper,
fresher-looking flow with a date of 1.87+0.14 Ma
(x20), which they considered more likely to be correct.
They also suggested that Sanver’s (1968) normal
magnetic polarity in the basalt near Gimusbaglar (~7 km
N of Elazig; Figure 4) probably denotes the Olduvai
subchron, likewise indicating an age of ~1.9 Ma. East of
GUmusgbaglar, more basalt with a similar disposition in
the landscape is evident (e.g., Bingdl 1984; Figure 2); it
flows northward from a neck at Karatas into the Murat
valley around Beydali. A similar disposition is evident
around Agin, where basalt from the Kara Dag neck
flowed eastward towards the Euphrates and southward
towards the tributary valley of the Arapkir River (e.g.,
Asutay 1988; Figure 2). Other basalt flows in this region
are illustrated in Figure 4 and discussed below.

In the easternmost part of the Elazi§ region is the
extensive young basaltic volcanism Sanver (1968)
obtained a whole-rock K-Ar date of 4.10+0.64 Ma (+20)
for basalt from ~10 km SE of Karakogan (Figure 2),
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around [ED 985 065], and showed it to be reverse-
magnetised, indicating eruption during the Gilbert chron.
However, this site is well east of localities where the
Karabakir Formation lacustrine deposits have been
identified. Some 25 km farther SW, ~55 km east of
Elazig, we have observed localised basalt capping hilltops
in the vicinity of the easternmost part of the ‘Karabakir’
palaeo-lake, ~1 km SW of Kovancilar (c. [EC 735 845];
Figure 3).

The GlUmugbaglar basalt, already noted, crops out
over a ~100 km® area centred ~10 km NW of Elazij
(Figure 4). As mapped by Tonbul (1987) it erupted from
an E-W chain of necks in the modern interfluve between
the Yukari and Altinkusak rivers, northward-flowing left-
bank tributaries of the Murat. The main neck, in the east,
reaches ~1430 m a.s.l. at c. [EC 154 866], between
Gumusgbaglar and Camyatadi (Figure 5a); Kara Tepe, ~7
km farther west at [EC 089 880], reaches no higher than
1112 m a.s.l. Basalt that probably originated from the
main, eastern, neck flowed northward into the Yukari
valley (Figure 5b), then downstream past Salkaya to the
~850 m a.s.l. level of the Keban reservoir at Cakil. Other
basalt flowed initially westward into the Altinkusak valley,
then downstream past Alaca (Figure 5c¢) to the level of
this reservoir at Kisla. Inspection of the map by Altinl
(1961), which pre-dates the Keban dam, indicates that
both these basalt flows died out where they now adjoin
the reservoir; no significant former basalt outcrop is now
submerged. The reservoir is locally ~100 m deep; thus,
no more than ~100 m of fluvial incision has occurred
locally since these basalt eruptions.

We designate as the Saribucuk basalt the flow unit
that originates from a neck near the village of this name,
at ~1180 m a.s.l. at c. [EC 104 791], and flows NW for
~5 km, dying out at ~1000 m a.s.l. in the eastern flank
of the Altinkugak river valley near Cipkdy, c. [EC 063
819]. As illustrated in Figure 4, the distal end of this flow
unit adjoins the SW limit of the Gumuisbaglar basalt.
Although field relationships are unclear due to the limited
exposure, we suspect that the upper flow unit exposed in
the Cipkdy highway cutting (cf. Arger et al. 2000) is the
distal part of this Saribucuk basalt, whereas the lower
flow unit exposed in this cutting may instead be a distal
part of the Gimusbaglar basalt.

Two other small flow units are evident near Meryemili,
~6 km SW of Elazig (Figure 4). The larger flow

originated at ~1250 m a.s.l. at c¢. [EC 155 750] and
persisted NE for ~2 km to c. [EC 169 762], dying out at
~1150 m a.s.l. near Yenikdy. The smaller more westerly
flow extends northward for ~600 m from c. [EC 151
758] at ~1200 m a.s.l. to c. [EC 151 764] at ~1150 m
a.s.l., its distal end overlying the Karabakir Formation.
Other basalt (also undated; not illustrated in Figure 4) is
also evident in a quarry section (c. [EC 18950 77850) in
the vicinity of (but stratigraphically below) the Sirsura
mammal site, overlain by the upper part of the lacustrine
succession (Figure 3). The age of this older volcanism
may be very tentatively estimated as ~4 Ma, making it
possibly contemporaneous with the Karakocan/Kovancilar
basalt mentioned above.

Finally, farther west (Figure 2), there is the Ortiilii
basalt of Arger et al. (2000). This appears to have
erupted from a neck in the vicinity of Karakez Dag, which
reaches 1523 m a.s.l. ¢. [DD 614 056]; it is preserved
mainly eastward and southeastward of this point for
distances of up to ~10 km. As mapped by Asutay (1988),
this basalt reaches ~1475 m a.s.l. at Karakez, indicating
that it is locally overlain by ~50 m of lacustine limestone,
assigned to the Karabakir Formation; like the Sursurd
basalt it thus pre-dates the end of stacked deposition. The
same mapping also indicates that this basalt is underlain
by the marine Alibonca Formation, although earlier
mapping by Baykal (1961) depicts the basalt as capping
sediments considered as lateral equivalents of what is
now known as the Karabakir Formation (i.e., lacustrine
sediments). This basalt crops out for >5 km along the
road from Keban to Arapkir at altitudes between ~1250
c. [DD 654 029] and ~1350 m a.s.l. ¢. [DD 620 073]. Its
eastern distal part has been exposed by young incision in
the flanks of the Kuru river valley (which flows eastward
into the Arapkir river and thus into the Euphrates)
around Yedibag. According to the mapping by Asutay
(1988), its base descends to ~1050 m a.s.l in the
northern flank of this valley at ¢. [DD 698 059] and to
~1100 m a.s.l. in its southern flank at c. [DD 684 028].

The Malatya Basin

Lacustrine sediments of the Malatya Basin (Figure 3) can
be traced for ~100 km in the NNE-SSW direction,
parallel to the Malatya Fault (Figure 2). Lacustrine
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Figure 5. Elazi§ region field photos. (a) View ENE from Avcili, at [EC 05782 86780], looking across the Altinkusak river gorge towards Korpe. In
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the left foreground, the gorge exposes an inlier of gently tilted limestone of the Kirkgegit Formation. To the right, sandy deposits of the
Karabakir Formation are banked against this inlier, although this is not clear in this view. These sediments are capped by the Guimusbaglar
basalt, flows of which are warped across the Kirkgecit Formation inlier, indicating channelization by contemporaneous palaeo-relief. In the
right background is the main neck, near Gumusbaglar village, from which much of this basalt erupted (the Kara Tepe neck is almost directly
in front of this and is thus diffict to identify). In the left background are small cuestas of Kirkgecit Formation limestone, in the area around
Kérpe, rising to ~1300 m a.s.l., which prevented the flow of basalt in that direction. (b) View north looking down the Yukari river gorge
from [EC 17520 89390], a point ~2 km N of Asagi and ~2.5 km S of Salkaya. The west flank of this gorge is capped by the main part
of the flow unit of Guimusbaglar basalt. A small outlier of the same basalt is present in its east flank, next to the electricity pylon. After
basalt eruption this river has cut down into the underlying rocks of the Late Cretaceous subduction-related complex by ~50 m, keeping
mostly (except for this outlier) beyond the eastern margin of the basalt. (c) View SE from Alaca at [EC 05249 89380], adjacent to the
point where samples 02TR33 and 34 were collected, looking up the narrow Altinkusak river gorge that is flanked by Gimusbaglar basalt.
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deposition seems to have begun in this area immediately
after the region uplifted above sea-level, as the succession
overlies Lower Miocene marine deposits (Figure 3). Onal
(1995, 1997) designated the succession as consisting of
four mainly lacustrine formations, known as the Kiseyin,
Parcikan, Boyaca (or Seyhler), and Sultansuyu
formations, in order of decreasing age. The latter deposit
is overlain by the Beyler Deresi Formation, comprising
fluvial conglomerate, forming the uppermost part of the
stacked succession (Fig. 6a). As noted by Onal (1995,
1997), the typical extent of erosion of this succession
increases northward. Thus, the Beyler Deresi Formation
is only found in the southern part of the basin; farther
north, erosion has typically removed progressively more
of the succession so that only its basal part remains
(Figure 6D).

The northern Malatya Basin adjoins the Ortiilii area,
the upper surface of the Karabakir Formation is at its
highest, ~1500 m a.s.l., around Karakez, and — as noted
by Asutay (1988) — slopes SE from this point to no higher
than ~1280 m ~14 km farther SE near Bayindir, c. [DC
718 964], just north of the modern Euphrates gorge
downstream of Keban (Figure 2). This gorge is ~600 m
deep, cut mostly into the metamorphic basement (formed
by the Palaeozoic / Mesozoic Keban Group), incising to a
modern river level of ~690 m a.s.l. The Asutay (1988)
mapping indicates that the Karabakir Formation
lacustrine limestone is ~30 m thick around Bayindir. It
has not been reported farther south, suggesting that the
Bayindir area lay near the southern margin of the
Karabakir palaeo-lake. This implies that — once fluvial
incision began — the southward tilt of the landscape
caused the Euphrates gorge to rapidly become ‘locked’ in
the southern part of this former depocentre where the
uplift rate was least. The amount of fluvial incision here
is, nonetheless, much more than near Elazij, where the
top of the Karabakir Formation is ~1100 m a.s.l. (Figure
4) and the local level of the River Murat is ~750 m a.s.l.,
indicating ~350 m of post-Karabakir incision.

Farther SW, at a point ~5 km E of Yazibasi, ~10 km
SSW of Tasdelen, and ~2 km N of the upstream end of
the Karakaya reservoir on the Euphrates (at [DC 54319
92004]), the road from Malatya to Keban crosses the
Ségutlucay river. This is a substantial right-bank tributary
of the Euphrates, ~30 km long, which flows southward
from the vicinity of Arapkir (Fig. 2). Along it, the land
surface forms a succession of terrace flats, capped by

fluvial gravel, a notable example being around [DC 54387
92214], estimated at ~40 m above present river level
(~730 m against ~690 m a.s.l.). These fluvial deposits
are inset into sand, mapped by Asutay (1988) as the part
of Lower Miocene marine Alibonca Formation. No
lacustrine deposits assigned to either the Karabakir
Formation or the Malatya Basin lacustrine succession are
present in this area. However, it is evident that the land
surface has locally been dissected by fluvial incision to a
level well below that of the Karabakir Formation. Farther
upstream, for instance ¢. [DD 530 010], the Ségutlucay
river has cut its own ~350 m deep gorge (from ~1300
m to ~950 m a.s.l.) into the Keban metamorphics, similar
to the main Euphrates gorge near Bayindir.

According to the mapping by Baykal (1961), the
lacustrine succession (with interbedded lava flows) of the
Malatya Basin is first encountered ~3.5 km west of the
Ségutlucay valley, where the basal part of these deposits
crops out above the marine succession at ~900 m a.s.l.,
c. [DC 501 908]. These deposits are found at
progressively higher levels to the north and west, for
instance reaching ~1300 m a.s.l. ¢. [DD 420 015]. The
similarity in altitude range suggests that, before incision
by the Sogutlucay river, this lacustrine succession passed
continuously laterally into its Karabakir Formation
counterpart ~15 km farther northeast in the
Karakez/Bayindir area (Figure 2).

The only mammalian biostratigraphic control for the
Malatya Basin succession is from Kaymakcl et al. (2006),
who mentioned (without giving details) evidence of the
ancestral mouse Progonomys sp. at their site 35, at [DC
41583 77639], near Karababa (formerly called Mamaar
or Mamahar), adjoining the locality depicted in Figure 6c.
Based on their co-ordinates and the mapping of the area
by Onal (1997), we infer this site to be located near the
base of the Parcikan Formation (Figure 3). According to
Agusti et al. (2001), the first appearance of Progonomys
cathalai is in mammal zone MN10, which spans 9.7-8.7
Ma. On this basis, this sediment can be no older than early
Late Miocene, making it younger than the Middle Miocene
age determined for the Parcikan Formation by Onal
(1995, 1997) using pollen. The Mamaar volcanics crop
out nearby, also around Karababa, for instance at [DC
42134 77155], where they interbed with sediments of
the Parcikan Formation. These lavas have been described
as typically andesitic (Onal 1997), thus similar to the
Yamadag volcanism farther north (Figure 2), with which
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Figure 6. Malatya Basin field photos. (a) View northward, looking down the Beyler Deresi valley from [DC 31090 43362], ~5 km west of Malatya.
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The view illustrates coarse, poorly-sorted but well-stratified fluvial conglomerate of the Beyler Deresi Formation, which has been incised
by ~70 m (locally, from ~900 m to ~830 m a.s.l.) to create the modern dissected fluvial landscape. Note the flat upper surface of the
conglomerate, the top of the stacked sequence in the Malatya Basin, in the interfluves on both sides of the young river gorge. (b) View
WSW from the E-W-trending ridge ~400 m N of Kiseyin village, in deposits of the Kuseyin Formation at [DC 36196 77724] looking
across the Malatya Basin interior to the W—E-trending Arkac Dagi ridge. The part of the Arkag Dagi ridge illustrated is between ~3 km
(to the left) and ~5 km away (to the right). The eroded top of the stacked succession of the Malatya Basin, the lacustrine Parcikan
Formation, overlain by the lacustrine/fluvial Boyaca Formation in the Onal (1995, 1997) stratigraphic scheme, is overlain by up to a few
tens of metres thickness, and no more than ~100 m of width, of sand and gravel, presumably deposited by the ancestral Kuru River at
an early stage of its history of fluvial incision. This cap of relatively erosion-resistant material has locally preserved the underlying lake
sediment, creating the observed topography. In the foreground (behind the farmer’s shack) is a tell. (c) View of the west face of the cutting
on highway 875 (Malatya—Keban) at [DC 37666 76675] in the central Malatya Basin, showing the lacustrine sequence (clay, silt, lignite,
etc.) of the Parcikan Formation, mentioned in the text, tilted steeply to the south, apparently as a result of slip at depth on the underlying
Aydinlar Thrust (see main text). The stratigraphic section illustrated is ~10 m thick.
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they have been tentatively correlated (Kaymakct et al.
2006). However, there has been no detailed work (e.g.,
involving dating or geochemical analyis), to substantiate
such a correlation, and other mapping (e.g., that by
Baykal 1961) depicts the Mamaar and Yamada§ lava
flows as distinct phases of volcanism. K-Ar dating places
the Yamadag volcanism in the Middle Miocene (19-15
Ma; Leo et al. 1974; Arger et al. 2000), consistent with
the dating of the Parcikan Formation by Onal (1995,
1997) (Figure 3) but inconsistent with the mammalian
age from Kaymakcl et al. (2006). At this stage we merely
note these difficulties over the chronology of the
lacustrine succession of the Malatya Basin, resolution of
these difficulties being beyond the scope of this study.
From the available evidence, we consider it probable that
lacustrine deposition in the Malatya Basin continued
through the Middle and Late Miocene and Pliocene.

No biostratigraphic control thus exists for the upper
part of the Malatya Basin succession. Deposition of the
Beyler Deresi Formation (Figures 3 & 6a) evidently
required an environment conducive to rapid erosion (in
adjoining upland areas, such as the Malatya Mountains;
Figure 2) and sediment transport. Pervasive vegetation
cover will prevent such high rates of erosion and
sediment transport. By analogy with adjoining regions
(e.g., western Turkey and Bulgaria; Westaway et al.
2006¢; Westaway 2006a), it is expected that such
vegetation cover was present until, at the earliest, the end
of the Mid-Pliocene climatic optimum. We thus consider it
unlikely that an environment consistent with deposition
of the Beyler Deresi Formation could have existed during
or before this time. We thus infer that this sediment
probably post-dates this time, suggesting an age for it in
the range ~3-2 Maj; it is evidently younger than the upper
part of the stacked lacustrine sequence at Elazig, given
that no analogous cap of coarse sediment is present in
this area (see above). A similar succession, involving
prolonged lacustrine deposition, then stacked deposition
of coarse fluvial clastics, then fluvial incision, is evident
elsewhere in eastern Turkey, such as around Diyarbakir in
the northern Arabian Platform (e.g., Tolun 1951;
Westaway et al. 2008; Figure 1), and may reflect the
same chronology.

At the extreme SSW end of the Malatya Basin around
Dogansehir (c. [DC 015 170]), the upper part of its
lacustrine sequence forms extensive flats at ~1280 m
a.s.l., dissected by the upper reaches of the Sultansuyu
River, for instance around [DC 040 217] and [DC 050

240]. These deposits persist as far south as the col, also
at ~1280 m a.s.l. (at [DC 005 130]), which separates the
Sultansuyu catchment from the Géksu catchment farther
south (Figure 2). This evidence suggests that this col,
rather than the modern Euphrates gorge (Figure 2),
formed the drainage outlet of the Malatya Basin while a
lake existed within it.

The modern Euphrates gorge leaves the Malatya Basin
at Kale (Figure 2). Locally, it reaches a depth of ~800 m,
for instance in the vicinity of the Karakaya Dam west of
Clngus, c. [EC 118 311], where this gorge has become
incised from ~1350 to ~550 m a.s.l.. As has been noted
previously (e.g., Westaway & Arger 2001; Demir et al.
2004) this gorge is offset left-laterally across the EAFZ
by much less distance than the total slip on this fault
zone. At the SW end of the EAFZ (SW of Celikhan; Figure
2) it is observed to have accommodated ~37 km of TR-
AR relative motion: ~4 km across the Strgl Fault; and
~33 Kkm across the Goksu Fault and its southwestward
continuations (Westaway et al. 2006b). In contrast, the
main EAFZ strand offsets the Euphrates gorge at
Doganyol by 13 km, whereas farther south at Ciingus the
subsidiary en échelon Cungls Fault offsets this gorge by
~5 km (Figure 2). Recent kinematic models, from both
geological and geodetic evidence, predict ~9-10 mm a’
of slip on the EAFZ (e.g., McClusky et al. 2000;
Westaway 2004a; Westaway et al. 2006b), making its
age ~4 Ma (3.73+0.05 Ma was estimated by Westaway
et al. 2006b). The ~18 km of EAFZ slip since the modern
Euphrates gorge became established suggests that this
gorge developed around 2 Ma. Capture of the Malatya
Basin by this gorge would have caused rapid emptying of
its lake and initiated the dissection of the underlying
lacustrine sequence. However, the current lack of age-
control evidence from the Malatya Basin itself prevents
any direct confirmation of this inferred timing of the
disruption of this lake basin.

Basalt Sampling and Analysis
Fieldwork

Basalt samples for geochemical analysis and Ar-Ar dating
were collected from four localities around Elazig, from
Ortili, Cipkdy, Alaca and Gimiigbaglar.

Sample 02TR22 was collected from the Ortili basalt
at [DD 63688 05078], ~1200 m a.s.l., just below the
contact with the overlying lacustrine limestone. Two
basalt flows are locally visible in the landscape: a lower

509



ELAZIG VOLCANISM, E TURKEY

flow that is vesicular and highly weathered, and an upper
more massive flow that appears much less weathered.
The sample was collected from a fresh section exposed in
a ~3 m deep trench cut into this upper flow.

Sample 02TR31 was collected from the upper flow in
the cutting on the Elazig-Keban road at Cipkdy, at [EC
06704 82031]. This flow consists of ~3 m of greyish
basalt that appears only slightly altered. Sample 02TR32
was collected ~30 m farther west, where the cutting has
descended to the level of the lower flow, at [EC 06669
82033]. This lower flow, of which up to ~1.5 m
thickness is exposed, appears darker and more altered,
and has a vesicular top, many vesicles having been infilled
by calcite or silty material.

Samples 02TR33 and 02TR34 were collected farther
down the Altinkusak valley at Alaca, at [EC 05249
89380] (Figure 5b). The Gumigbaglar basalt exposed
here is ~10 m thick, its top ~950 m a.s.l.; it locally
overlies the Kirkgecit Formation. Since the eruption, the
river has locally incised to ~880 m a.s.l., creating a ~70
m deep and ~200 m wide gorge (Figure 5b). Sample
02TR33 came from ~2 m below the top of the section,
where the basalt is massive and shows no significant
alteration. Sample 02TR34 came from the base of the
exposed section, in what appears to be the same flow
unit, but highly altered.

Sample O2TR35 was collected ~1200 m a.s.l. at [EC
18088 88361] from basalt exposed in a cutting on the
west side of the road linking Elazi§ to the ferry across
Keban Reservoir to Pertek, ~1 km N of the Asadi district
of GUmdugbagdlar village. This basalt, which presumably
originated from the main GiUmugbaglar neck ~3 km to
the SW, has backfilled a former river channel cut into
rocks of the Elazig Complex. We sampled the lowest flow
exposed, in direct contact with the bedrock. The
headwaters of the present Yukari River have
subsequently incised a new course ~300 m farther west,
reaching a level ~50 m lower. Sample O2TR36 was
collected ~1 km farther south, at [EC 17738 87300],
also ~1200 m a.s.l., from what may be the same flow
unit. This site is near the northern end of a flat land
surface capped by basalt, on which Gimusbaglar village
has been built. A short distance farther north the basalt
appears to cascade down a bluff into the Yukari river
valley. This flow unit is locally ~15 m thick, as indicated
by the extent of fluvial incison; its upper part was
sampled.
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Analysis Procedures

Preparation for Ar-Ar dating involved initial screening by
inspection of hand specimens and petrographic thin
sections. Samples were then crushed, washed in
deionized water and dilute hydrochloric acid, sieved to a
60-80 um size fraction, and phenocrysts and xenocrysts
were removed by magnetic separation and hand picking.
This choice of grain size was determined by the
desirability of excluding phenocryst material from the
samples, given the tendency for excess, or ‘inherited’,
argon to reside in phenocrysts (e.g., Lanphere &
Dalrymple 1976; Kaneoka et al. 1983; Laughlin et al.
1994; Singer et al. 2004). On the other hand, sieving to
too small a grain size would increase the logistical
difficulties of picking out any phenocryst or xenocryst
material, and would also increase the risk of obtaining
incorrect ages due to effects of *’Ar recoil during sample
irradiation.

The basis of conventional K-Ar dating is the
measurement of decay of “’K into “°Ar; however, this
requires independent measurements of concentrations of
potassium and of argon isotopes in each sample. In the
Ar-Ar variant of the technique, irradiation in a nuclear
reactor converts *°K into *°Ar. The resulting *°Ar, a proxy
for the potassium content in the sample, can then be
measured at the same time as the other argon isotopes.

Irradiation of our multi-grain samples utilized the
Cadmium-Lined, In-Core Irradiation Tube (CLICIT) facility
within the Oregon State University TRIGA reactor in
Corvallis, Oregon. Argon isotopes were subsequently
measured in the microcrystalline groundmass at the
Laboratory for Noble Gas Geochronology, Massachusetts
Institute of Technology, and analyzed using procedures
essentially the same as those described by Singer &
Pringle (1996) and Harford et al. (2002). Argon release
from each sample occurred in ten heating steps, as
indicated in Figure 7. Four methods of age-determination
are thus available for each sample (Tables 1 & 2). First,
is the ‘total fusion’ age, using the total amounts released
of *Ar and “°Ar. Second is the ‘weighted plateau’ age,
which uses only data from the heating steps that form a
concordant age plateau (Figure 7). Finally, one may use
the argon isotopes from the different step-heating splits
to generate isochron plots for each sample. This can be
done either as a ‘normal’ isochron, by plotting “’Ar/*°Ar
against *Ar/*°Ar, or as an ‘inverse’ isochron, by plotting
®Ar/“Ar against *Ar/°Ar. Full documentation of this
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Figure 7. Graphs showing apparent Ar-Ar ages and their uncertainties
for each heating step of each sample. The age range for
each heating step spans a +2c margin of uncertainty.
Horizontal bars indicate the splits that contribute to each of
the “weighted plateau” age determinations in Tables 1 and
2.

procedure, including analyses of calibration blanks,
temperatures of heating steps, concentrations of argon
isotopes, and related graphs, are provided in the
Appendix. Results are summarised in Tables 1 and 2 and
Figures 7 and 8.

To facilitate geochemical classification, whole-rock
samples were analysed using an automated ARL 8420 X-
ray fluorescence spectrometer at the School of Earth
Sciences and Geography, Keele University. Major oxide
analyses used fused glass beads with a 1:5 ratio of sample
powder and lithium metaborate flux; trace element
analyses used pressed powder pellets. For analytic details
see Floyd & Castillo (1992); for details of calibration see
Yurtmen et al. (2002). Table 3 lists the results of this
analysis.

On the basis of inspection of the samples in thin
section, we anticipated that the principal constituent of
the groundmass, and thus the mineral phase yielding the
Ar-Ar dates, would be plagioclase. However, only the
highest-temperature heating steps of the samples indicate
low K/Ca ratios, characteristic of plagioclase (Figure 9).
This suggests that the samples represent mixtures of
mineral phases, which bears upon the interpretation of
the dating results (see below).

Results

For sample O2TR31, from the upper basalt flow at
Cipkdy, the weighted plateau age and both isochron ages
are in good agreement, ~1.9 Ma, somewhat greater than
the total fusion age (Table 2). We thus adopt the
weighted plateau age, of 1865+21 ka (x20), as our
preferred age-determination for this sample. This
confirms the validity of the Arger et al. (2000) whole-
rock K-Ar date of 1870+140 ka (+20) for the same
flow.

For sample 02TR35 from Gumusbadlar, all four age
determinations are in good agreement, ~1.9 Ma (Table
2). The weighted plateau age is associated with a high
MSWD value (Table 2); however, Figure 7c indicates that
this is because the individual step-heating splits have very
narrow margins of uncertainty but their ages are slightly
different; it is thus not a problem. We adopt this
weighted plateau age, of 1914+25 ka (+20), as our
preferred age-determination for this sample. This date
lies within the Olduvai subchron, which spans marine
oxygen isotope stage (MIS) 72 to MIS 64 or
~1950-1780 ka (e.g., Hilgen 1991). It thus confirms the
deduction by Arger et al. (2000) that the normal
geomagnetic polarity of this basalt indicates the Olduvai
subchron (cf. Sanver 1968) and that this volcanism was
essentially synchronous with that at Cipkoy.
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Table 1. Summary of Ar-Ar dating results.

Site Sample UT™M Lab. No. “CAr(r) / *°Ar(K) (£20) Age (ka) (£20) PAr(k) (%)  K/Ca (+20)

Cipkay 02TR31  EC 0670482031  E21 RW5F041Q 2.9148+0.0275 (+0.94%)  1865.3+20.9 (+1.12%) 51.42  0.667+0.195
Alaca 02TR33  EC 05249 89380  E22 RW5F041R 3.3331+0.1392 (+4.18%)  2131.0+89.9 (+4.22%) 74.78  0.730£0.010
Giimigbaglar ~ 02TR35 ~ EC 18088 88361  E23 RW5F041S 2.9982+0.0341 (+1.14%)  1913.8+24.6 (+1.28%)  65.31 1.540+0.020

All samples were of basaltic groundmass, separated as described in the text. “°Ar(r) / **Ar(k) is the measured ratio of the number of “’Ar atoms produced by radioactive
decay of the potassium in the sample to the number of *Ar atoms produced by irradiation of the potassium in the sample. Age is the weighted plateau age for each sample
(see Table 2). *Ar(K) (%) is the percentage of the **Ar in the irradiated sample that is determined to have been produced by irradiation of potassium. K/Ca is the measured
ratio of potassium to calcium atoms in the sample, which is used to correct the *Ar measurements for *Ar produced by irradiation of calcium. All ages have been calibrated
relative to the U.S. Geological Survey Taylor Creek Rhyolite tcr-2a sanidine standard, as a neutron flux monitor during sample irradiation, with an assigned age of 28.34

Ma (after Renne et al. 1998). Calculations assume decay constants from Steiger & Jager (1977), together with “OAr/*Ar ratio for atmospheric argon of 295.5.

Table 2. Comparison of alternative Ar-Ar age-determinations.

Weighted plateau

Normal isochron Inverse isochron

Site Sample Total fusion

age (ka) Age (ka) n/N MSWD Age (ka) MSWD Age (ka) MSWD
Cipkoy 02TR31 1806.9+22.6 1865.3+20.9 4/10 0.75 1873.4+58.9 1.08 1874.3+58.1 1.07
Alaca 02TR33 2156.8+19.1 2131.0+89.9 7/10 80.52  1883.7+267.6  45.41 1877.3+255.7  44.20
GUmgsbaglar 02TR35 1916.7+15.1 1913.8+24.6 4/10 8.61 1929.8+80.7 11.11 1929.4+86.7 12.27

See Table 1 for site co-ordinates and other details. MSWD is the mean squared weighted deviation for each of the age determinations, a measure of
the scatter between individual contributing data (age estimates for different heating steps, or sets of isotope ratios used to fit each of the isochrons).
For the weighted plateau age, N is the total of heating steps measured; n is the number of these steps that were used for each age determination.

For sample 02TR33, the total fusion age and
weighted plateau age (Figure 7b) are more than 200 ka
older than the two isochron ages (Figure 8c, d)), which
are ~1.9 Ma, albeit with high margins of uncertainty
(Table 2). These isochron plots have y-intercepts that
indicate “°Ar/*Ar ratios of ~380-390, well above the
value for atmospheric argon (295.5). This implies that,
despite the preparation steps taken to eliminate
phenocryst material, the sample contains inherited
radiogenic “OAr, causing the weighted plateau age to
exceed its true age. As previously noted (McDougall &
Harrison 1999, p. 114-116) the presence of inherited
argon will mimic the effect, in the weighted plateau age
calculation for this sample, of an atmospheric “°Ar/*°Ar
ratio of ~380-390 (Figure 8c, d). It would thus be
possible, in principle, to re-run the calculation with this
higher ratio, which would lead to an alternative weighted
plateau age that would be similar to the isochron ages
already determined for the sample. However, we prefer
instead simply to adopt the inverse isochron age in Figure
8d, 1877+256 ka (+2c) as our preferred age for this
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sample, it being marginally the better constrained of the
two isochron ages.

Four dates thus now exist for this volcanism:
1870+140 ka (+20) for the upper basalt flow at Cipkdy,
from Arger et al. (2000), and, from this study,
1865.3+20.9 ka (+20) for the same flow, 1877+256 ka
(+20) for the basalt at Alaca, and 1913.8+24.6 ka (+20)
for the GUmugbaglar basalt. These dates are concordant
at the +2¢ level, indicating no significant differences in
age. The overall weighted mean for these four dates is
1885.4+15.8 ka (+20), within the Olduvai subchron,
consistent with the palaesomagnetic evidence (Sanver
1968; see also above).

The potential outlier of this set of data, with the
oldest apparent age, is the Gumusbaglar basalt (sample
02TR35). As Figure 7c indicates, the majority of the
splits of this sample indicate a trend of apparent age
decreasing slightly with increasing heating temperature.
In principle, such a trend might result from the effect of
recoil of *°Ar nuclei produced by irradiation of *K (e.g.,
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Graphs of isochron ages for each of our samples, as summarized in Table 2. Solid lines are isochron lines of best fit, fitted through the

data points marked with solid symbols. Open symbols are data points that are not used in fitting the isochrons, these being the same points
as are excluded from the weighted plateau age determinations (Figure 7). Dashed lines are isochrons that are fitted, for comparison,
through a y-intercept corresponding to the modern ratio of “°Ar/>°Ar in the atmosphere (295.5). Solid and open symbols are labelled to
indicate their order of release by step-heating, for comparison with graphs in Figure 7 and data tables in the appendix. Key argon isotope
ratios dewtermined from the graphs are labelled, those for the inverse isochron graphs being expressed as reciprocals to facilitate
comparison with the normal isochron graphs. All margins of uncertainty are +2c. See text for discussion.
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Figure 9. Graphs of the K/Ca ratio (+20) in each of the step-heating
splits of each of our samples, calculated from the measured
concentrations of argon isotopes (tabulated in the appendix)
after Singer & Pringle (1996) and Harford et al. (2002).
See text for discussion.

Turner & Cadogan 1974; Hess & Lippolt 1986). Such
recoil will result in partial loss of the *Ar, the loss being
greatest from near the edges of mineral grains, which
release argon early in the step-heating sequence. Since

*Ar is a proxy for *K, such an effect would result in
apparent ages that would be too old; one would thus
expect to see a decrease in apparent age with step-
heating temperature, as is indeed observed for sample
02TR35 (Figure 7c). However, *°Ar recoil is not expected
to be a significant problem for samples with grain size as
large as ours (60-80 pm); it is only expected to become
significant at much smaller grain sizes (e.g., Paine et al.
2006; Jourdan et al. 2007). Nonetheless it is
impracticable to correct any of our apparent ages for loss
of *°Ar by recoil, using the equations derived by Jourdan
et al. (2007), because they require information (such as,
the typical shape of the grains) that was not measured
during the analysis of our samples.

In any case, for sample O2TR35, the trend of
decreasing apparent age with step-heating temperature
correlates with a trend of decreasing K/Ca ratio with
step-heating temperature (Figure 9c), the latter trend
suggesting (as noted above) that a mixture of mineral
phases is present. The trend in apparent age may thus be
unrelated to *’Ar recoil; it could simply indicate that the
different mineral phases yield slightly different apparent
ages, the low-K/Ca phase that is most concentrated in the
highest-temperature splits giving a lower apparent age
than the other phase. However, regardless of the correct
interpretation of the data in Figure 7c, the trend in
apparent age introduces some doubt as to the true age of
the sample. We have therefore recalculated the age of
sample 02TR35 using the three highest-teperature splits,
which yield apparent ages (all +20) of 1822.4+37.3 Ka,
1790.2+32.8 ka, and 1739.3+128.1 ka, obtaining a
weighted mean value of 1801.9+24.2 ka (+2c). The
weighted mean of this date and the dates of the three
Cipkdy and Alaca samples can be determined as
1838.8+15.7 ka (+2c). Both this alternative age for
sample O2TR35 and the resulting overall weighted mean
age fall within the Olduvai subchron, consistent with the
palaeomagnetism (Sanver 1968); thus, like the first set
of calculations, this alternative set of results is consistent
with the available evidence, and is thus a tenable age
assignment.

Another alternative method of determining the age of
sample O2TR35 would be to fit a new inverse isochron
(cf. Figure 8f), weighted to fit the trend through step-
heating splits 8, 9 and 10. As can be seen by inspection
of Figure 8f, such an isochron would intersect the
*Ar/“Ar axis close to the modern atmospheric “°Ar/*°Ar
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Figure 10. Total alkali (Na,0+K,0) versus SiO, diagram for Elazig
basalts (after Le Bas et al. 1986).

ratio (295.5), and would also intersect the *°Ar/*°Ar axis
slightly to the right of the marked intercept, which would
indicate a slightly lower ratio of radiogenic “°Ar to *°Ar
produced by the irradiation of the sample, and so would
indicate a slightly lower age of the sample, in agreement
with our deduction from reanalysis of the age spectrum
graph (Figure 7c).

We also hoped to date sample 02TR22 of the Ortili
basalt. Arger et al. (2000) had previously collected two
samples of this basalt for dating, but these were rejected
as too altered. Despite the careful selection in the field,
sample 02TR22 was likewise rejected; as a result, the
Ortiili basalt remains undated. This basalt evidently
erupted into the Karabakir palaeo-lake; its alteration thus
presumably reflects a hydrothermal effect at the time of
eruption rather than subsequent chemical weathering. It
pre-dates the local end of lacustrine deposition, but
whether it is Late Miocene, as was tentatively suggested
by Asutay (1988) or Pliocene (cf. Arger et al. 2000;
possibly contemporaneous with the Karakog¢an/Kovancilar
basalt already discussed) still cannot be resolved.

To supplement the results of our geochemical
analysis, we add those from Arger et al. (2000) for the
Ortili and Cipkdy localities (Table 3). As Figure 10
indicates, using total alkali versus silica this set of samples
is quite diverse, comprising basalts (sensu stricto),
basanites, hawaiites and a mugearite. On the basis of
normative composition (Table 3), all samples classify as
alkali basalt due to the presence of normative olivine and
the absence of normative quartz. All three samples
analysed from Cipkdy and two others — O2TR33 from
Alaca and O2TR36 from Gumugsbaglar — contain
normative nepheline. From its position in the landscape
(Figure 4) the Alaca basalt could be a distal part of either
the Cipkdy (Saribucuk) or Gumugbaglar flows. On the
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basis of geochemistry (Figure 10) it seems more likely to
correspond to the Gumdugbaglar flow. However, the
volcanism at all three localities was essentially
synchronous, as already noted.

It is evident that many characteristics of these basalts
(Table 3) are complex and no single petrogenetic process
can explain them. Most samples have low ratios of Zr/Nb
(~4), suggesting that thay have formed as a result of
small-degree partial melting of mantle material.
However, some have Ba/La ratios of >>10, suggesting
some input of crustal contamination. The Zr/Nb ratio
measures the degree of partial melting, primarily because
Nb becomes concentrated in the melt to a greater extent
than Zr (e.g., Johnson et al. 1989; Camp & Roobol
1992). A Ba/lLa ratio of 10.2 is expected for primitive
mantle (Sun & McDonough 1989); a ratio >>10 thus
indicates crustal contamination.

Following Pearce et al. (1990), we assess the relative
importance of partial melting and fractional crystallisation
in the formation of these basalts using a plot of the
abundances of Cr against Y (Figure 11). The incompatible
element Y becomes strongly concentrated in small-degree
partial melt and is not readily taken up during any
subsequent fractional crystallization. The compatible
element Cr exhibits the opposite behaviour: its tendency
to remain bound within silicate crystal lattices means that
it is strongly depleted in partial melt and becomes even
more depleted in the residual melt left after any fractional
crystallization. Figure 11 suggests that the measured
abundances of Cr and Y indicate that small-degree partial
melting of the asthenosphere at a temperature of ~1225
°C was followed by significant differentiation by
fractional crystallization. The samples indeed all plot
along the same fractional crystallisation trend, suggesting
that the Ortili basalts have experienced the least
differentiation as a result of fractional crystallization and
those from Glmugbaglar the most.

Discussion
Evolution of Fluvial and Lacustrine Systems

As already discussed, it seems probable that a lake basin
existed in the Malatya area from the time this region rose
above sea-level — in the Early Miocene — onward. For
much of this time, this deposition was evidently unrelated
to the motions of adjoining plates, and presumably took
place simply because this region acted as a sediment trap
or sag basin. This palaeo-lake basin may well have
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Figure 11. Cr versus Y diagram highlighting the roles of partial
melting and fractional crystallization in the formation of
the basalts in the study region. Solid lines are partial
melting trends, calculated by Pearce et al. (1990) for
garnet lherzolite (55% olivine, 20% orthopyroxene,
12.5% clinopyroxene, and 12.5% garnet) at 1200°C,
1250°C, and 1300°C, with each solid phase disappearing
at the indicated degree of partial melting. See Pearce et al.
(1990 for the values of the partition coefficients used and
for sources of data. The line for 1225°C is estimated in
this study by interpolation. Barbed lines indicate mafic
crystallization trends, also from Pearce et al. (1990). See
text for discussion.

extended well to the west of the line along which the
Malatya Fault later developed, as depicted schematically in
Figure 12a on the basis of the fragmentary local evidence
of terrestrial sediment.

At this time, before any of the Late Cenozoic strike-
slip fault systems developed, eastern Anatolia
accommodated the NNW convergence between the Arabia
and Eurasian plates by crustal shortening. The
stratigraphic evidence noted by Kaymakci et al. (2006)
suggests that the major sediment influx into the Malatya
Basin was from the east, consistent with fluvial input
from the ancestral River Murat across the Belhan col near
Baskil (Figures 2, 4 & 12a). We tentatively suggest that
the Kiseyin and Parcikan formations (Figure 3) date
from this time.

Around 7 Ma, we estimate, the MOFZ became active
(cf. Westaway 2003, 2004a; Westaway et al. 2005). We
infer that the component of local subsidence east of the
Malatya Fault created accommodation space for further
lacustrine sedimentation in the Malatya Basin, resulting in
the accumulation of the thick sequence in this basin. In
contrast, the associated relative uplift of the area west of
this fault would have rapidly brought Ilacustrine
sedimentation to an end. Reworking of material by rivers
flowing through the Malatya Fault escarpment, such as
the Tohma and Kuru (Figure 2), may have redistributed
much of the sediment formerly deposited in this area into
the Malatya Basin. Notwithstanding the uncertainties
already discussed in the dating of the Malatya Basin
succession, we consider it probable that the
Boyaca/Seyhler Formation was deposited while the
Malatya Fault was active, as this part of the sequence
thickens strongly towards the Malatya Fault in a manner
consistent with localised subsidence associated with slip
on this fault (cf. Kaymakci et al. 2006).

It can be presumed that the loading of the crust by
this thickness of sediment in turn affected the isostatic
balance, locally depressing the crust (or partly cancelling
the regional uplift that would otherwise have occurred)
and also causing the land surface ESE of the Malatya
Basin to tilt towards the WNW. We presume that this
combination of processes led to the abandonment by the
ancestral River Murat of its former Baskil course and its
deflection northward, together with the gradual
northward and eastward expansion of the palaeo-lake to
encompass the Karabakir Formation localities in the
Elazig region. In contrast, the much greater stability of
the Dogansehir outlet col implies greater local crustal
stability, possibly related to the proximity of the
Neotethys suture (Figure 2) and the nearby presence of
much stronger crust of the Arabian Platform (see below).
Figure 12b shows a schematic illustration of the inferred
palaeo-geography at ~4 Ma, shortly before slip on the
MOFZ ended. The palaeo-lake system seems to have
reached its greatest extent around this time, as evidenced
by the thin lacustrine sediments in the Palu area, dated at
Hacisam (Figure 2) to >~4 Ma by mammalian
biostratigraphy.

We presume that significant transtension on the
Malatya Fault ended with the adjustment of the TR-AR
plate boundary from the MOFZ to the EAFZ around 4 Ma.
The end of creation of accommodation space by this local
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Figure 12. Cartoons indicating schematically the history of river system development and lacustrine sedimentation in the Malatya-Elazi§ area. Grey
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shading indicates palaeo-rivers and lake basins that are inferred to have existed at each stage. The black background is taken from Figure
2. Post ~4 Ma slip on the EAFZ has been restored assuming that slip on the Clingis Fault began at ~2 Ma and its ~5 km of subsequent
slip has occurred at a uniform rate of ~2.5 mm a. It follows that the main NAFZ strand in this area has slipped ~30 km of which 13
km has occurred since 2 Ma at a uniform rate of ~6.5 mm a', and the remainder occurred beforehand at a uniform rate of ~9 mm a™.
Other solutions are also possible. Slip on the Surgl Fault has not been restored. Likewise, other than to restore the offsets of the

Euphrates and Arapkir (Kozluk) gorges the strike-slip and normal slip on the MOFZ have not been restored. All these minor displacements
would be difficult to show clearly on a diagram covering a region of this size.
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component of downthrow presumably meant that this
lake basin no longer acted as such an effective sediment
trap; from this time onward the sediment flux through
the Dogansehir outlet col is thus expected to have
increased significantly. At the same time, the general
eastward increase in regional uplift across Anatolia,
combined with the stability of the outlet col, required —
given the need for the lake surface to maintain its own
level — the eastern margin of this lake to retreat
progressively westward. We tentatively suggest that the
Sultansuyu Formation (Figure 3) marks the deposition
occurring within the Malatya Basin at this time. The
mammalian biostratigraphy at the Sirsuri site near
Elaz1i§g (Figure 4) indicates that lacustrine deposition
ceased locally at or shortly before 3 Ma. Figure 12¢
illustrates the palaeo-geography thus deduced around this
time.

We infer that continued westward regional tilting led
to further progressive westward retreat of the lake basin,
such that by ~2 Ma it may have been quite small, possibly
confined to the southern Malatya Basin as shown
schematically in Figure 12d. As already noted, we infer
that the Beyler Deresi Formation (Figure 3), in the south
of the Malatya Basin, marks the deposition around this
time. Shortly afterwards, as already noted, headward
incision by the modern Euphrates gorge around Doganyol
captured the Malatya Basin, causing the abandonment of
its former Dogansehir outlet col and initiating the rapid
dissection of the lacustrine sequence. Thus, at ~1 Ma we
infer that a situation similar to that at present already
existed, although with smaller-than-present offsets of
river gorges by the EAFZ strands (Figure 12e).

One complicating factor regarding such an
interpretation concerns the possible role of localized
faulting, as opposed to regional uplift, in causing some of
the vertical crustal motions in the study region. East of
the Malatya Basin is a north-dipping reverse-fault zone
known as the Aydinlar thrust (e.g., Kaymakci et al. 2006;
Figure 2). This structure continues westward across the
Malatya Basin, slip on it being thought responsible (e.g.,
by Kaymakel et al. 2006) for localized deformation of the
basin succession (as in Figure 6¢). At its eastern end this
structure seems to pass end-on into the WNW-dipping
Piran thrust (Figures 2 & 4), along which the Keban
Group metamorphic rocks have been overthrust onto
rocks of the Elazig Complex. Farther east, there is
another ENE-trending mountain range, passing north of

Elazi§ through Harput (Figure 4), which we call the
Harput Fault. All these structures have hitherto been
thought to be related to Late Cretaceous or Mid-Cenozoic
crustal deformation, pre-dating the modern tectonic
regime (e.g., Bing6l 1984; Yazgan 1984; Kaymakc et al.
2006). For instance, in Figure 4 part of the Piran Thrust
has been mapped as ‘sealed’ by Lower Cenozoic marine
limestone, implying that it has not slipped since the Late
Cretaceous. However, a variety of forms of evidence
suggests the possibility of continued activity on such
structures. For instance, west of Elazig the Mid-Pliocene
deposits of the Karabakir Formation reach ~1200 m
a.s.l. around Sahinkaya, in the hanging-wall of the Harput
Fault, more than 100 m higher than their upper limit
nearby (at Rizvan Tepe) in its footwall (Figure 4).
Likewise, the hanging-wall of the Piran/Aydinlar thrust
has been recognized (e.g., by Tonbul 1987) as an area of
dramatic fluvial incision, as has indeed been noted in the
present study, such as may be expected if it is uplifting
faster than its surroundings on the other side of this
fault. Such an effect may possibly relate to reverse slip on
this fault at depth but not at the Earth’s surface (i.e., it is
a ‘blind" reverse fault). The deformation in the Malatya
Basin (Figure 6¢) is evidently younger than the whole
sedimentary section preserved in the area, but whether it
stopped at some point in the latest Miocene or Pliocene
(as suggested by Kaymakci et al. 2006) or continues to
the present-day cannot be resolved from the available
evidence. The available GPS evidence (e.g., McClusky et
al. 2000) cannot resolve horizontal motions comparable
in rate to the rates implied by these observations of
vertical motion (i.e., by no more than hundreds of metres
in millions of years, or of the order of a tenth of a
millimetre per year).

Separating out regional-scale vertical crustal motions
from local effects of faulting in Turkey and adjoining
regions is well-known to be a difficult question (e.g.,
Westaway 2003, 2006a; Westaway et al. 2004, 2006c¢;
Demir et al. 2007), as is trying to resolve whether
vertical crustal motions in plate boundary zones (such as
the present study region) are caused directly by the plate
motions or are induced by climate, via the isostatic
consequences of surface processes (e.g., Bridgland &
Westaway 2008). As Demir et al. (2007) have noted,
resolving possible contributions to vertical crustal motion
from blind reverse faults requires detailed survey work,
and is thus beyond the scope of the present study. Below,
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we discuss possible mechanisms that may relate to
deformation of the study region, caused by induced flow
in the lower continental crust. It should be noted that
such arguments are unaffected by whether the induced
vertical motions occur gradually (i.e., involve only tilting
of the upper crust), or whether the stresses induced by
the moving lower crust are sufficient to reactivate
segments of pre-existing faults (cf. Westaway 2006D).

Relationship to Crustal Properties

The maximum crustal thickness beneath eastern Anatolia
is now tightly constrained at 50 km from travel times of
seismic waves (Zor et al. 2003). This crust is thus not
much thicker than that beneath the Arabian Platform
(~40 km thick; see below), and yet is overlain by high
topography, >2 km above sea-level, whereas most of
Arabia is within ~500 m of sea-level. This situation has
been seen as anomalous, and has led to the recent
development of ad hoc models for the Late Cenozoic
uplift of eastern Anatolia, in terms of the isostatic
response to delamination of the underlying mantle
lithosphere (e.g., Keskin 2003; Seng¢r et al. 2003;
Barazangi et al. 2006). Elsewhere, notably in Europe,
modern explanations for Late Cenozoic epeirogenic uplift,
in terms of coupling between surface processes and
induced lower-crustal flow, have removed the need for
this and other ad hoc local explanations that were
formerly prevalent (e.g., Westaway 2001, 2002a, b;
Bridgland & Westaway 2008).

The surface heat flow in the Arabian Platform is low,
being ~45-50 mW m® (e.g., Tezcan 1995; Medaris &
Syada 1999; Al-Mishwat & Nasir 2004). Geobarometric,
seismic and gravity studies indicate that this crust is ~40
km thick (e.g., Best et al. 1990; Nasir & Safarjalani
2000), but is thought to include a layer of mafic
underplating at least ~10 km thick (e.g., Nasir &
Safarjalani 2000; Al-Mishwat & Nasir 2004), which will
not flow and thus forms the lower boundary to the
overlying mobile layer (cf. Westaway 2001). Numerical
modelling of Late Cenozoic uplift histories, derived from
trerrace staircases of the River Euphrates in the Arabian
Platform in SE Turkey and farther downstream (Demir et
al. 2007), indicate that this mobile layer is locally no
more than ~5 km thick. We thus infer that the local ~40
km thickness of crust consists of an upper brittle layer
may be ~25 km thick, with this ~5 km mobile layer and
a ~10 km mafic basal layer. The presence of this mafic
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layer, in combination with the low heat flow, appears to
be the main reason why the mobile lower crust is so thin
in this region.

Taking the base of the upper-crustal brittle layer as
marking the 350 °C isotherm, as in previous studies
(e.g., Sibson 1983), and assuming a 10 °C km
geothermal gradient in the lower crust, we tentatively
estimate temperatures of ~400 °C at the base of the
mobile lower-crustal layer and ~500 °C at the Moho.
Using the Westaway (1998) calibration, a temperature as
low as ~400 °C at the base of the mobile lower-crust
indicates an effective viscosity m, for the lower-crustal
layer in excess of ~10% Pa's. For comparison, in the Kula
area of western Anatolia (Figure 1) where the crust is
~30 km thick, the Moho temperatuire is estimated as
~660 °C, with m, (again, using the Westaway 1998
calibration) of the order of 2x10'® Pa s (Westaway et al.
2004, 2006¢).

Other modelling of the thermal state of the crust in
western Anatolia (Westaway 2006c), where the surface
heat flow reaches ~120 mW m?®, suggests that the
lithosphere is locally no more than ~60 km thick,
comprising ~30 km thick crust overlying ~30 km thick
mantle lithosphere. The station-spacing in the Zor et al.
(2003) seismic tomography study was rather coarse to
image such thin mantle lithosphere, raising the possibility
that they have mistaken a situation with similarly thin
mantle lithosphere for one where no mantle lithosphere
is present. If the lithosphere of eastern Anatolia is instead
represented by 50 km of crust overlying 30 km of mantle
lithosphere, then — even neglecting any contribution from
radiogenic heating in the crust — the Moho temperature
can be estimated as ~875 °C, making m, for the lower-
crustal layer (again using the Westaway 1998,
calibration) no greater than ~2x10'® Pa s. A dramatic
contrast in effective viscosity of the lower crust, by more
than five orders-of-magnitude, is thus inferred to exist
between Arabia and eastern Anatolia.

This much greater mobility of the lower crust beneath
Anatolia, causing the lithosphere of Arabia to be far
stronger, is presumably the main reason why their
Cenozoic continental collision has resulted in much
greater deformation of the former than of the latter. It
also explains how it is possible for the crust of eastern
Anatolia with much higher topography (~2-3 km) to co-
exist in isostatic equilibrium adjacent to Arabia: the lower
crust of Arabia is so stiff that rates of outflow of lower-
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crustal material from beneath Anatolia are limited. This
situation thus provides a smaller-scale analogue to the
continental collision between India and Eurasia farther
east, where the higher topography of Tibet than of India
is dynamically maintained by the contrast in rheology
between the Archaean craton of peninsular India and the
much younger and hotter lithosphere of Tibet (e.g.,
Westaway 1995). This effect was also formerly explained
as a consequence of delamination of the mantle
lithosphere beneath Tibet (cf. Molnar et al. 1993).

The predicted extreme mobility of the lower crust
beneath eastern Anatolia means that the application of
any local surface load (such as water or sediment in a lake
basin) or of any negative load caused by local erosion,
leads to significant outflow or inflow, respectively, of
lower crust being induced. Extrapolating from what is
observed in regions of less mobile lower crust (e.g.,
Westaway 2002¢; Westaway et al. 2004), it is anticipated
that the local addition at any point of a layer of rock at
the Earth’s surface will displace a significantly greater
layer of lower crust at depth. This effect can readily
explain the observations, by Westaway & Arger (2001)
and in the present study, that amounts of surface uplift in
the study region (revealed, for instance, by fluvial
incision) show such dramatic local variations. In contrast,
in localities with significantly less mobile lower crust,
rates and amounts of surface uplift stay roughly constant
across broad regions (e.g., Westaway 2001, 2002a,
2002b, 2004b; Westaway et al. 2002, 2006a). It means
that the history of vertical crustal motion at each locality
in the present study region is extremely sensitive to
details of the histories of sedimentation and erosion both
in that locality and in its immediate surroundings. An
example of this complexity is the inference that sediment
loading in the Malatya Basin palaeo-lake deflected the
crust downward in @ manner than enabled a narrow arm
of this lake basin to extend eastward by more than 100
km (Figure 12b). In a region of much less mobile lower
crust this would not have occurred, due to the much
greater stiffness of the isostatic response to surface
loading.

The Synchronous Elazig Volcanism and Dissection of
the Malatya Basin

Our dating (Gimusbaglar) confirms and strengthens the
earlier view (Arger et al. 2000) that the Elazi§ volcanism
occurred at 1.8-1.9 Ma. This timing has no obvious

relationship to any change in the regional kinematics, so
potential explanations for it as a consequence of slip on
the EAFZ are not favoured. In contrast, previous
discussion suggested that the modern Euphrates gorge
past Doganyol (Figure 2) developed, and the resulting
dissection of the Malatya Basin began, at ~2 Ma. We
suspect that this similarity in timing is not coincidental,
but instead raises the possibility of a cause-and-effect
connection.

In western Europe, the time around ~2-1.9 Ma is
known as the Tiglian C stage (e.g., Zagwijn 1992). As
many studies (e.g., Shackleton et al. 1990; Hilgen 1991)
now confirm, this was a time of significant climate
instability at the 40 ka Milankovitch periodicity, reflected
in the formation of contemporaneous terraces in many
European rivers. A notable example, which is dated to the
contemporaneous Olduvai subchron by magneto-
stratigraphy, is provided by the Stoke Row terrace of the
River Thames in SE England (e.g., Whiteman & Rose
1992; Rose et al. 1999; Westaway et al. 2002) and
associated marine deposits that are
magnetostratigraphically dated to the Olduvai subchron
(Zalasiewicz et al. 1991). Periglacial conditions were thus
widespread in western Europe during cold stages at this
time (e.g., Kasse & Bohncke 2001), whereas in eastern
Europe (where this part of the geological record is known
as the Late Akchagyl stage) during cold stages an ice sheet
is thought to have covered much of European Russia
(e.g., Moskvitin 1961; Grichuk & Moskvitin 1968).
Periglacial conditions can thus be anticipated in Turkey
during cold stages at this time, as is indicated by the
presence of successive Early Pleistocene river terraces
reflecting this 40 ka Milankovitch periodicity (on the
Gediz River around Kula, Figure 1; Maddy et al. 2005;
Westaway et al. 2006c¢). Such cyclic patterns of climate
instability promote alternations of fluvial incision and
aggradation, strong incision often occurring during
warming transitions (e.g., Bridgland 2000). In a region
that is uplifting, rivers will thus cut to successively lower
levels (relative to the rock column) during successive
climate cycles. Eastern Turkey was already uplifting
before ~2 Ma (e.g., Arger et al. 2000; Demir et al.
2007), but an increase in uplift rates at this time can be
expected as the isostatic response to increased rates of
erosion (cf. Westaway et al. 2004), inducing further
fluvial incision. It is thus not surprising that the ancestral
headwaters of the Lower Euphrates incised significantly
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in the Cungus-Doganyol area and thus cut headward at
this time, enabling them to capture the Malatya Basin.
Recent investigations of the northern Arabian Platform,
comprising the reaches of the River Euphrates in Syria
(e.g., Demir et al. 2007) and SE Turkey (Demir et al.
2008) and the reach of the River Tigris around
Diyarbakir (Westaway et al. 2008), indicate a significant
increase in incision rates at ~2 Ma that is presumed to
mark a regional increase in erosion rates associated with
climate change. A corresponding increase in rates of uplift
and fluvial incision can be expected in the present study
region, and can be expected to be more dramatic due to
the higher relief and stronger isostatic response
associated with the more mobile lower-crustal layer that
is thought to be present.

The dissection of the lacustrine sequence in the
Malatya Basin that is expected to have followed this
capture process would have led to the rapid removal of
much of this former sediment load and its downstream
transport by the Euphrates. The resulting unloading of
the crust in the Malatya Basin would have reduced the
local pressure at the base of the upper-crustal brittle
layer. This would have set up a lateral pressure gradient
that acted to drive mobile lower-crust to beneath the
Malatya Basin from beneath its surroundings. Since the
lower crust in this region is expected to be highly mobile
(see above), the resulting induced flow can be expected to
have been vigorous, such that (by analogy with the
behaviour of other analogous coupled systems; cf.
Westaway 2002c; Westaway et al. 2004, 2006c) the
influx of lower crust may well have exceeded the loss of
material by erosion at the surface. The corresponding loss
of lower-crustal material from surrounding regions, such
as the Elazi§ region, would be expected to reduce the
local pressure in the underlying mantle lithosphere,
adjusting conditions there towards the solidus of
previously-frozen basaltic melt. The existence of earlier
volcanism in these surrounding regions suggests that
conditions were already close to the threshold for re-
melting; thus, it is possible that even a relatively small
pressure reduction may have been sufficient to ‘trigger’
the basaltic volcanism around 1.9 Ma.

We thus infer that the low-degree partial melting of
the athenosphere that originally created the basaltic
magmas that we have analysed (Table 3) occurred
gradually in the ancient geological past. Since such small-
volume melting results in negligible upward heat
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transport, this material froze, and thus progressively
accumulated, in the mantle lithosphere, but presumably
remained at conditions close to the threshold for re-
melting. It was thus feasible for any subsequent decrease
in pressure, possibly for the reason described above, to
trigger renewed melting. This potential explanation,
which is similar in principle to explanations suggested for
other instances of Late Cenozoic small-volume basaltic
volcanism elsewhere in Turkey (e.g., Arger et al. 2000;
Yurtmen et al. 2002; Westaway et al. 2004, 2005) is
thus incompatible with the views of others (e.g., Keskin
2003; Sengor et al. 2003) that no mantle lithosphere is
present beneath eastern Anatolia.

The nature of the melting process responsible for the
production of basaltic magmas has long been debated.
Many years ago, it was thought that complete or near-
complete melting of amphibolite would produce hydrous
basaltic magma (e.g., Yoder & Tilley 1962; Green &
Ringwood 1967). The view subsequently developed that
complete melting of any source rock is unfeasible; for
instance, one modern textbook (Best & Christiansen
2001) states that ‘Before total melting might occur,
either the buoyant melt separates and moves out of the
source or the partially melted rock becomes sufficiently
buoyant to rise en masse, perhaps as a diapir, out of the
source region and away from the perturbing changes’. If
so, then re-melting of frozen basaltic melt would result in
melt of much less mafic composition, invalidating the
potential explanation for the basaltic volcanism of the
study region that we proposed earlier. However, recent
ideas about the rheology of basaltic melts (e.g., Hoover et
al. 2001; Jerram et al. 2003; Cheadle et al. 2004)
recognize that ‘freezing’ involves the development of a
framework of crystals. When the volume of this
framework reaches a threshold, which is of the order of
1/3 of the total volume (the proportion depends on
factors such as the shape of the individual crystals), the
residual melt can no longer percolate between these
crystals. The aggregate thus develops a finite yield
strength, i.e., effectively begins to behave as a solid. It
follows that, on re-melting, the material will continue to
behave as a solid until the proportion of melt exceeds
~2/3, after which the framework of crystals breaks down
and the material behaves as a liquid. The remaining
crystals will then be entrained within the moving melt and
form phenocrysts in the basalt that is ultimately
produced. It follows that basaltic melts may indeed freeze
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and then re-melt, maintaining their original composition
(i.e., without chemical differentiation by partial melting
to form less mafic melts), consistent with the potential
explanation, given above, for the basalts in the present
study region.

This process also provides a natural explanation for
the limited incision — no more than ~100 m — by the
River Murat and its tributaries around Elazi§ since ~2
Ma. The effective removal of a layer of lower crust from
beneath this region by the sequence of processes
described above has partly cancelled the crustal
thickening (sustained by inflow of lower crust) that would
have otherwise occurred. River gorges elsewhere in
eastern Anatolia are notably much more dramatically
incised, as is illustrated by examples discussed in this
study and others noted by Westaway & Arger (2001).

Such effects are, however, difficult to quantify,
because of the issue of converting incision in this upper
part of the Euphrates system to uplift. If a river maintains
a uniform downstream channel gradient, creates a
staircase of terraces disposed subparallel to this gradient,
and the downstream distance to the coastline does not
change systematically over time, then incision can serve as
a good proxy for uplift (e.g., Westaway et al. 2002).
However, in the case of the Euphrates, first, it is evident
that the coastline has retreated dramatically in the Late
Cenozoic, which will cause the observed incision to
underestimate the associated uplift. Second, it is evident
that the channel gradient of the Euphrates increases
significantly in the upstream direction; it is ~0.3 m km’'
in NE Syria (Demir et al. 2007), increasing to ~0.6 m km”
in the reach between Atatirk Dam and Birecik (Demir et
al. 2008), and (judging from topographic contours on old
maps) as high as ~1.5-2.0 m km™ in the reaches of the
Euphrates and Murat that are now flooded by the Keban
Reservoir. Such a variation will also result in incision
underestimating the corresponding uplift by a
progrsssively greater extent as one moves upstream
through the system. It follows that the uplift in the Elazi§
area since ~2 Ma may well be much greater than the
~100 m of fluvial incision. However, the same
(potentially quite large) correction will also be applicable
elsewhere in the region to convert uplift to incision; the
smaller amount of incision around Elazi§ thus implies less
uplift than in other more deply-incised reaches of the
upper Euphrates system.

Some previous studies (e.g., Kennett & Thunell 1975)
have argued for a global increase in volcanic activity in the
Quaternary. This point of view requires a cause-and-
effect mechanism linking climate change to magmatic
processes in the Earth’s interior, which seems a priori
unlikely. This Malatya-Elazig example nonetheless
indicates a sequence of processes whereby such a cause-
and-effect relationship can arise indirectly: climate change
triggers erosion, which induces lower-crustal flow, which
triggers volcanism through decompression melting. In
principle, this sequence of processes can be modelled
quantitatively using software systems developed by one
of us (R.W.). Although we present no numerical
modelling of this effect at this stage, the above
explanation is consistent with the behaviour of such
coupled models, incorporating the non-steady response
to increased rates of erosion and the associated induced
lower-crustal flow, such as have been applied elsewhere
in Turkey (e.g., Westaway et al. 2004, 2006¢). However,
having established the potential significance of this study
region for demonstrating such a chain of cause and effect
in this pilot study, we prefer to postpone quantitative
modelling until more data pertaining to age-control has
been collected.

Although less well constrained, an analogous cause-
and-effect explanation may be applicable for the
~4.5-4.2 Ma end of lacustrine deposition in the eastern
part of the Elazi§ region (evidenced from the mammalian
evidence at Hacisam) and the ~4.1 Ma volcanism in the
adjacent Karakocan area (Sanver 1968), or indeed to the
early Middle Miocene Yamadag volcanism (see above; also
Leo et al. 1974; Arger et al. 2000) following the start of
erosion accompanying the emergence of the region above
sea-level.

Potential Alternative Explanations for the Surface
Uplift and Volcanism in the Study Region

Regarding the question of whether the vertical crustal
motions in eastern Anatolia are being caused by plate
motions or by surface processes, we note the following
observations. First, there is no reason why the present
geometry of plate motions should cause uplift in this
region. The EAFZ and eastern NAFZ are well-known to be
good approximations to transform fault zones, slip on
which requires no vertical crustal motion. The left-lateral
EAFZ steps to the right in the vicinity of Celikhan, which
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requires localized transpression and thus a localized
component of surface uplift, but this area is ~100 km
away from the Elazi§ volcanism (Figure 2). This
volcanism is indeed located ~40 km or more from the
nearest point on the EAFZ (Figure 2); thus, any direct
cause-and-effect connection between this faulting and the
volcanism seems unlikely. Second, as has already been
noted, recent studies (e.g., Keskin 2003; Sengor et al.
2003; Barazangi et al. 2006) have argued that
delamination of the mantle lithosphere can explain the
uplift of eastern Anatolia. However, again as already
noted, such an arbitrary explanation is difficult to test; in
addition, it is evident (again from earlier discussion) that
to explain the geochemistry of the Elazi§g basalts requires
the presence of mantle lithosphere beneath the region.
Furthermore, the topography of eastern Anatolia is
roughly as expected for continental crust of the observed
thickness in isostatic equilibrium, and thus provides no
basis for inferring that delamination has occurred.
Second, it is now evident from recent detailed studies, at
Diyarbakir (Bridgland et al. 2007; Westaway et al. 2008)
and Birecik (Demir et al. 2008) in southeast Turkey and
in the Raqga-Deir ez Zor area of NE Syria (Demir et al.
2007), that the Arabian Platform is experiencing regional
surface uplift. As Demir et al. (2007) argued, it is thus
reasonable to conclude that eastern Anatolia is also
experiencing regional uplift. It is, however, difficult to
test this hypothesis by numerical modelling (as has been
done in the Arabian Platform and in western Anatolia)
due to a lack of suitably detailed evidence. The present
study indeed forms part of the process of gathering the
necessary evidence to undertake such a test for eastern
Anatolia in future. Third, it has recently become apparent
that the uplift histories of many other localities in and
around the Mediterranean region are better explained in
terms of the isostatic consequences of erosion than in
terms of plate motions (e.g., Champagnac et al. 2007;
Westaway & Bridgland 2007; Bridgland & Westaway
2008). There is no reason to assume that eastern
Anatolia is any different, but (as noted above) the
evidence required to demonstrate this is currently
unavailable.

Likewise, by analogy with other regions, alternative
explanations for the Elazi§ volcanism could in principle be
proposed, in terms of either decompression melting of
the mantle lithosphere associated with transtension (e.qg.,
Rocchi et al. 2003; Putirka & Busby 2007) or heating as
a result of partial delamination of the mantle lithosphere
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(e.g., Trua et al. 2006; Azzouni-Sekkal et al. 2007).
Some studies (e.g., Cooper et al. 2002; Putirka & Busby
2007) have indeed noted that either of these explanations
could in principle explain the basaltic volcanism in a given
locality. However, the first of these potential explanations
can be excluded for the present study region, given that
the EAFZ is not transtensional; plus, as noted above, the
distance between it and the Elazi§ volcanic field would
seem to preclude any direct cause-and-effect connection.

Although complete loss of the mantle lithosphere can
also be excluded as a viable explanation of this volcanism
(see above), thinning of it, whether by partial
delamination or as a result of the loading by the thickened
continental crust ‘squeezing’ part of it outward from
beneath the thickened region, warrants careful
consideration. Thinning of the mantle lithosphere will
(like thickening of the continental crust) act to increase
the temperature within the remaining mantle lithosphere.
Thinning of the mantle lithosphere will also result in a
decrease in pressure at mantle depths, relative to the
pressure that would exist following crustal thickening
alone. Thinning of the mantle lithosphere will thus result
in conditions more conducive to re-melting of material
from within the mantle lithosphere, and thus will enhance
the feasibility of the proposed explanation for the Elazig
volcanism. However, the key problem with such an
explanation is that no evidence exists to prove that the
mantle lithosphere beneath eastern Anatolia has indeed
thinned during the Late Cenozoic.

In a recent modelling study, Seyrek et al. (2008) have
investigated the crustal and lithospheric conditions that
have led to the development, since the Mid-Pliocene, of
the topography of the northern Amanos Mountains in the
area of southern Turkey SW of Kahramanmaras (Figure
1), where small-scale basaltic volcanism, petrologically
and geochemically similar to that in the Elazi§ area, has
erupted in and around the valley of the River Ceyhan. The
crust of the Amanos Mountains was inferred by Seyrek et
al. (2008) to have thickened as a result of transpression
along the northern Dead Sea Fault Zone, but the isostatic
response within the mantle lithosphere in this region is
not a priori clear. Seyrek et al. (2008) thus considered
two sets of modelling solutions, both consistent with the
available constraints (e.g., from gravity anomalies). In
one set of solutions it was assumed that the Moho
maintained a constant depth, the mantle lithosphere
thickening through the development of a root; in the
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other set of solutions it was assumed that the base of the
lithosphere maintained a constant depth and the mantle
lithosphere thickened by deflecting the Moho upward.
The second set of solutions thus involved much less
thickening of the mantle lithosphere than the first.
However, the observational consequences of these two
fundamentally different assumptions about the nature of
isostatic equilibrium within the mantle lithosphere were
shown by Seyrek et al. (2008) to be minimal; the faster
uplift predicted for a given set of parameters in any
solution of the second type could be replicated, within the
limits of precision imposed by the data, by a solution of
the first type but with one model parameter (say, Moho
temperature, and thus, the effective viscosity of the lower
continental crust) adjusted to a slightly different value. By
analogy, it is likely to be very difficult to establish in
future, by modelling of this type, whether the mantle
lithosphere beneath eastern Anatolia has thinned or not.

Conclusions

As the first stage of a programme of research aimed at
improving understanding of the interrelationships
between vertical crustal motions, regional kinematics, and
landscape evolution in eastern Anatolia during the Late
Cenozoic, we have undertaken a pilot project to date
some of the Plio—Pleistocene basalt flows associated with
lacustrine deposits of the Karabakir Formation in the
Elazi§ region, together with a reappraisal of the history
of lacustrine sedimentation in the adjacent Malatya Basin.
The Malatya Basin experienced a prolonged history of
lacustrine deposition, probably spanning the Middle-Late
Miocene and much of the Pliocene. This lacustrine system
expanded eastward across the Elazi§ region, reaching its
maximum extent at ~4 Ma, dated using mammalian
biostratigraphy. The eastern margin of this lake basin
subsequently retreated westward, consistent with overall
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