
Turk J Elec Engin, VOL.8, NO.2 2000, c© TÜBİTAK
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Abstract

A hybrid method consisting of employing the mode matching method in conjunction with the Fourier

transform technique is used to analyze the radiation of the dominant TEM-wave from an impedance

loaded parallel-plate waveguide. The hybrid method that we adopt here reduces the related boundary

value problem to a scalar modified Wiener-Hopf equation of the second kind. The solution involves

infinitely many unknown constants satisfying an infinite system of linear algebraic equations susceptible

to a numerical treatment. Some computational results illustrating the effects of various parameters on

the radiation phenomenon are also presented.

1. Introduction

An open-ended waveguide is not normally used as an antenna by itself because of its low directivity. However,
waveguides are frequently used as the primary feed to illuminate a paraboloidal reflector, so it is of interest
to examine their radiation characteristics. One of the most important open-ended waveguides is the parallel-
plate waveguide, which has been subjected to numerous investigations (for example see [1]). In order to secure
greater directivity and greater efficiency, generally corrugations are made on the walls of a parallel-plate
waveguide. Hence, it is important to investigate the radiation characteristics of a parallel-plate waveguide
with corrugations. In this context, Rulf and Hurd [2] investigated the radiation from an open waveguide
with reactive walls, which is a canonical model simulating an impedance loaded horn and horn type surface
wave launchers. Later, this work was generalized by Büyükaksoy and Birbir [3].

In the present work, the radiation of the dominant TEM mode from a corrugated parallel-plate
waveguide shown in Fig. 1a. is analyzed rigorously.
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Figure 1a. Geometry of the Parallel-Plate Waveguide with Finite Length of Corrugations
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To simplify the analysis, the corrugated surface can be modeled as a constant impedance surface with
surface impedance [4]

Z = −i
√
µ0

ε0

w

w + t
tankd,

w

w + t
' 1

provided that the teeth of the corrugations are vanishingly small. Here w is the width, d is the slot depth
and t is the width of the teeth, which are assumed to satisfy the following conditions:

w < λ/10 t < w/10
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Figure 1b. Equivalent Impedance Loaded Parallel-Plate Waveguide

Hence, the geometry in Fig. 1a is reduced to the configuration shown in Fig. 1b.

By expanding the scattered field into a series of eigen-modes in the waveguide region and using the
Fourier transform elsewhere, we get a modified Wiener-Hopf equation of the second kind. The solution
involves infinitely many constants satisfying an infinite system of linear algebraic equations. A numerical so-
lution of this system is obtained numerically for various values of the impedance simulating the corrugations
and the length of the corrugations wherefrom the effects of these parameters on the radiation phenomenon
is studied.

A time factor e−iωt with ω being the angular frequency is assumed and suppressed throughout the
paper.

2. Analysis

We consider the radiation of the dominant TEM mode from the perfectly conducting parallel plates de-
fined by S1 = {x ∈ (−∞, 0) , y = b, z ∈ (−∞,∞)} , and S2 = {x ∈ (−∞, 0) , y = −b, z ∈ (−∞,∞)} . The

parts x ∈ (−`, 0) , y = ±b ∓ 0 of the inner surfaces of the plates are assumed to be characterized by the

same constant surface impedance Z (Fig. 1b). For the sake of mathematical convenience we will as-
sume that the surface impedance is purely reactive, that is, Z = iηZ0 with η ∈ R and Z0 being the
intrinsic impedance of free space. Because of the symmetry with respect to the x−axis, we will confine
the following analysis to the parallel-plate region formed by an infinite perfectly conducting ground plane
S0 = {x ∈ (−∞,∞) , y = 0, z ∈ (−∞,∞)} and the half-plane S1 (Fig. 1c).
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Figure 1c. Problem Equivalent to Figure 1b for Incident Dominant TEM Mode

The configuration is two-dimensional and, with the assumed incident field, only three field components,

namely, Hz = u(x, y), Ex = i
ωε0

∂
∂yu(x, y) and Ey = − i

ωε0

∂
∂xu(x, y), are nonzero.

For analysis purposes, it is convenient to express the total field as follows:

u (x, y) =


u1 (x, y) , y > b, x ∈ (−∞,∞)
u

(1)
2 (x, y) + ui (x, y) , y ∈ (0, b) , x < −`
u

(2)
2 (x, y) , y ∈ (0, b) , x ∈ (−`, 0)
u

(3)
2 (x, y) , y ∈ (0, b) , x > 0

(1a)

Here, ui is the incident TEM field given by

ui (x, y) = eikx (1b)

with k being the free space wave number.

Total field u(x, y), which satisfies the Helmholtz equation(
∂2

∂x2
+

∂2

∂y2
+ k2

)
u(x, y) = 0, (2)

is to be determined with the aid of the following boundary and continuity conditions:

∂

∂y
u1 (x, b) = 0, x < 0 (3a)

∂

∂y
u

(1)
2 (x, b) = 0, x ∈ (−∞,−`) (3b)

∂

∂y
u

(1)
2 (x, 0) = 0, x ∈ (−∞,−`) (3c)

(
∂

∂y
+ kη

)
u

(2)
2 (x, b) = 0, x ∈ (−`, 0) (3d)

∂

∂y
u

(2)
2 (x, 0) = 0, x ∈ (−`, 0) (3e)

∂

∂y
u

(3)
2 (x, 0) = 0, x ∈ (0,∞) (3f)
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u1 (x, b) = u
(3)
2 (x, b) , x > 0 (3g)

∂

∂y
u1 (x, b) =

∂

∂y
u

(3)
2 (x, b) , x > 0 (3h)

u
(1)
2 (−`, y) + e−ikl = u

(2)
2 (−`, y) , y ∈ (0, b) (3i)

∂

∂x
u

(1)
2 (−`, y) + ike−ikl =

∂

∂x
u

(2)
2 (−`, y) , y ∈ (0, b) (3j)

u
(2)
2 (0, y) = u

(3)
2 (0, y) , y ∈ (0, b) (3k)

∂

∂x
u

(2)
2 (0, y) =

∂

∂x
u

(3)
2 (0, y) , y ∈ (0, b) (3l)

2.1. The Wiener-Hopf Equation

Since u1 (x, y) satisfies the Helmholtz equation in the range x ∈ (−∞,∞), its Fourier transform with respect
to x gives [

d2

dy2
+
(
k2 − α2

)]
F (α, y) = 0 (4a)

with

F (α, y) = F− (α, y) + F+ (α, y) (4b)

where

F±(α, y) = ±
±∞∫
0

u1(x, y)eiαxdx (4c)

By taking into account the following asymptotic behaviors of u1 for x→ ±∞

u1(x, y) = O
(
eik|x|

)
, x→ ±∞ (5)

one can show that F+(α, y) and F−(α, y) are regular functions of α in the half planes =m (α) > =m (−k)

and =m (α) < =m (k) respectively. The general solution of (4a) satisfying the radiation condition for y →∞
reads

F− (α, y) + F+ (α, y) = A (α) eiK(α)(y−b) (6)

In the Fourier transform, domain (3a) takes the following form

Ḟ−(α, b) = 0 (7)
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where the (·) specifies the derivative with respect to y . By using the derivative of (6) with respect to y and

(7), we get

Ḟ+ (α, b) = iK (α)A (α) . (8)

Here, the square root function K (α) =
√
k2 − α2 is defined in the complex α -plane, cut along α = k to

α = k∞ and α = −k to α = −k∞ such that K (0) = k .

In the region 0 < y < b and x > 0, u(3)
2 (x, y) satisfies the Helmholtz equation(

∂2

∂x2
+

∂2

∂y2
+ k2

)
u

(3)
2 (x, y) = 0, x > 0 (9)

The half-range Fourier transforms of (9) yields[
d2

dy2
+K2(α)

]
G+ (α, y) = f (y) − iαg (y) (10a)

with

f (y) =
∂

∂x
u

(3)
2 (0, y), g (y) = u

(3)
2 (0, y) (10b,c)

G+ (α, y) , which is defined by

G+(α, y) =

∞∫
0

u
(3)
2 (x, y)eiαxdx (11)

is a function regular in the half-plane =m (α) > =m (−k). The general solution of (10a) satisfying (3f) at
y = 0 reads

G+ (α, y) = D (α) cosKy +
1
K

y∫
0

[f (t)− iαg (t)] sinK (y − t) dt (12)

Using (3h), D (α) can be solved uniquely to give

D (α) = − 1
K sinKb

Ḟ+ (α, b)−
b∫

0

[f (t)− iαg (t)] cosK (b− t) dt

 (13)

Replacing (13) into (12) we get

G+ (α, y) = − cosKy
K sinKb

Ḟ+ (α, b)−
b∫

0

[f (t)− iαg (t)] cosK (b− t) dt



+
1
K

y∫
0

[f (t)− αg (t)] sinK (y − t) dt (14)
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Although the left-hand side of (14) is regular in the upper half-plane =m (α) > =m (−k) , the regularity of
the right-hand side is violated by the presence of simple poles occurring at the zeros of K sinKb , namely

αm =

√
k2 −

(mπ
b

)2

, m = 0, 1, 2, ... (15)

These poles can be eliminated by imposing the condition that their residues are zero. This gives

Ḟ+ (αm, b) = (−1)m
b

2
[fm − iαmgm] (16a)

Where Km , fm and gm stand for

Km = K (αm) (16b)

[
fm
gm

]
=

2
b

b∫
0

[
f (t)
g (t)

]
cosKmtdt (16c)

Consider now the continuity relation (3g) which reads in the Fourier transform domain

F+ (α, b) = G+ (α, b) . (17)

Taking into account (6), (12) and (17) one obtains

Ḟ+ (α, b)
K2M (α)

− F− (α, b) =
1

K sinKb

b∫
0

[f (t)− iαg (t)] cosKtdt (18a)

with

M (α) =
sinKb
K

eiKb (18b)

Owing to (16c), f (t) and g (t) can be expanded into cosine series as follows:[
f (t)
g (t)

]
=
∞∑
m=0

1
pm

[
fm
gm

]
cosKmt (19a)

pm =
{

2, m = 0
1, m 6= 0 (19b)

Substituting (19a) in (18a) and evaluating the resultant integral, one obtains the following modified Wiener-

Hopf equation valid in the strip =m (−k) < =m (α) < =m (k)

Ḟ+ (α, b)
K2M (α)

− F− (α, b) = −
∞∑
m=0

[fm − iαgm]
pm

(−1)m

α2 − α2
m

(20)

The formal solution of (20) can easily be obtained through the classical Wiener-Hopf procedure [5]. The
result is

Ḟ+ (α, b)
(k + α)M+ (α)

=
∞∑
m=0

[fm + iαmgm]
pm

(−1)m (k + αm)M+ (αm)
2αm (α+ αm)

(21)
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Here, M+ (α) is the split function, regular and free of zeros in the upper half-plane =m (α) > =m (−k),

resulting from the Wiener-Hopf factorization of the functions M (α) as

M (α) = M+ (α)M− (α) , M− (α) = M+ (−α) (22a,b)

The explicit expressions of M+ (α) is given in [5] as follows:

M+ (α) =

√
sin kb
k

exp
{
ibK

π
ln
(
α+ K

k

)}

× exp
{
ibα

π

(
1− C + ln

(
2π
kb

)
+ i

π

2

)} ∞∏
m=0

(
1 +

α

αm

)
e
iαb
mπ (23)

where C is Euler’s constant given by C=0.57721....

2.2. Determination of the Constants fm and gm

Consider now the waveguide region y ∈ (0, b) , x < 0. By using the boundary conditions in (3b,c) the

scattered field u
(1)
2 (x, y) can be expressed in terms of normal modes as follows:

u
(1)
2 (x, y) =

∞∑
n=0

an
pn
e−iαnx cosKny (24)

Similarly, the series expansion of u(2)
2 (x, y) in the region y ∈ (0, b) , x ∈ (−`, 0) can be obtained by taking

into account the boundary conditions in (3d,e). The result is

u
(2)
2 (x, y) =

∞∑
n=0

[
bne

iβnx + cne
−iβnx] cos γny (25a)

where ±βn are the symmetrical roots of the characteristic equation

L (±βn) = 0, (25b)

with

L (α) = K sinKb− kη cosKb, (25c)

and

γn = K (βn) . (25d)

Note that the solution of the Wiener-Hopf equation in (21) involves two sets of unknown constants, fm
and gm . In order to determine these constants, consider finally the continuity relations (3i-l) with (10b,c).

From these relations, using (24), (25a) and (19b), one obtains

∞∑
n=0

[
bne
−iβn` + cne

iβn`
]

cos γny =
∞∑
m=0

ame
iαm` cosKmy + e−ikl (26a)
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−
∞∑
n=0

iβn
[
bne
−iβn` − cneiβn`

]
cos γny =

∞∑
m=0

iαmame
iαm` cosKmy + ike−ikl (26b)

∞∑
n=0

[bn + cn] cos γny =
∞∑
m=0

gm
pm

cosKmy (26c)

∞∑
n=0

iβn [bn − cn] cos γny =
∞∑
m=0

fm
pm

cosKmy (26d)

qn =
b

2

[
1 +

sin2 γnb

kηb

]
(26e)

Let us multiply both sides of (26a,d) by cos γny, n = 0, 1, 2, ... and integrate from y = 0 to y = b to get

qn
[
bne
−iβn` + cne

iβn`
]

=
∞∑
m=0

ame
iαm`

(−1)m γn
γ2
n −K2

m

sin γnb+ e−ikl
sin γnb
γn

(27a)

βnqn
[
bne
−iβn` − cneiβn`

]
= −

∞∑
m=0

αmame
iαm`

(−1)m γn
γ2
n −K2

m

sin γnb+ ke−ikl
sin γnb
γn

(27b)

qn [bn + cn] = γn sin γnb
∞∑
m=0

gm
pm

(−1)m

γ2
n −K2

m

(27c)

iβnqn [bn − cn] = γn sin γnb
∞∑
m=0

fm
pm

(−1)m

γ2
n −K2

m

. (27d)

The elimination of bm and cm between (27a,d) yields

∞∑
m=0

[fm + iβngm]
ipm

(−1)m

γ2
n −K2

m

= −
∞∑
m=0

ame
i(αm+βn)` (−1)m

βn + αm
− ei(βn−k)l

βn − k
n = 0, 1, 2, 3, ... (28a)

eiβnl
∞∑
m=0

[fm − iβngm]
ipm

(−1)m

γ2
n −K2

m

= −
∞∑
m=0

ame
iαm`

(−1)m

βn − αm
− e−ikl

βn + k
n = 0, 1, 2, 3, ... (28b)

On the other hand, by substituting α = αn in (21) and using (16a), we obtain the following result:

b

2
(−1)n [fn − iαngn]
(k + αn)M+ (αn)

=
∞∑
m=0

[fm + iαmgm]
2αm (αn + αm)

(−1)m (k + αm)M+ (αm)
pm

n = 0, 1, 2, 3, ... (29)

The unknown constants fn, gn and an can now be determined by solving (29) together with (28a,b).
This infinite system of linear algebraic equations is solved approximately by truncating the expansion series.
In the numerical results, the truncation number N of n is taken as N = 10.
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3. Analysis of The Field

The radiated field in the region y > b can be obtained by taking the inverse Fourier transform of F (α, y).

By using (8) we write

u1 (x, y) =
1

2π

∫
L

Ḟ+ (α, b)
iK (α)

eiK(α)(y−b)e−iαxdα (30)

where L is a straight line parallel to the real axis lying in the strip =m (−k) < =m (α) < =m (k) . The

asymptotic evaluation of the integral in (30) through the saddle point technique yields for the radiated field

u1 (x, y) = −e
iπ/4

√
2π
Ḟ+ (−k cosφ, b)

eikρ√
kρ

(31a)

which can also be written as

u1 (x, y) = −e
iπ/4

√
2π

∞∑
m=0

(−1)m
[fm + iαmgm]

pm

(k + αm) (k − k cosφ)M+ (αm)M+ (−k cos φ)
2αm (αm − k cosφ)

eikρ√
kρ

(31b)

where Eq. (21) has been taken into account. In the above expressions, (ρ, φ) stands for the cylindrical polar
coordinates defined by

x = ρ cos φ, y − b = ρ sinφ. (31c)

4. Numerical Results

In this section, some graphics displaying the results obtained in this paper and showing the effects of
various parameters such as the waveguide width, the corrugation length and the impedance simulating the
corrugation on the radiation phenomenon are presented.

Fig. 2a and Fig. 2b show the effect of the impedance on the radiated field for b < λ/2 and b > λ/2,
respectively. In the first case, only the dominant TEM mode is present in the corrugated region, while in the
second case, in addition to the TEM mode, the TE01 mode is also excited. It is observed that for negative
values of the reactance the directivity increases, i.e., the main beam becomes narrower with increasing values
of |η| . However, one should note that over a certain reactance value, the side lobe also becomes significant

(see Fig. 2b).
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Figure 2a. Radiated field for b < λ/2 versus observa-
tion angle
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Figure 2b. Radiated field for b > λ/2 versus observa-
tion angle

Fig. 3a and Fig. 3b depict the effects of the corrugation length on the radiated field for η > 0 and
η < 0, respectively. It is observed that the length of the corrugation affects the radiation pattern. Indeed,
for η > 0 the directivity can be increased by increasing ` . For η < 0 the same effect is observed but in this
case the side lobes become important.
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Figure 3a. Radiated field for η > 0 versus observation
angle
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Figure 3b. Radiated field for η < 0 versus observation
angle
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5. Concluding Remarks

In this work a rigorous analysis is carried out to obtain the radiation characteristics of a parallel-plate
waveguide with finite corrugations. By simulating the corrugations by a constant surface reactance, the
boundary value problem is formulated as a modified Wiener-Hopf equation involving three sets of unknowns
satisfying three infinite systems of linear algebraic equations. These equations are solved numerically
and some computational results showing the effects of the reactance simulating the corrugations and the
corrugation length on the radiation pattern are presented. It can be easily checked that for η = 0, the
results obtained in this work reduce those related to the perfectly conducting parallel-plate waveguide.
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