Journal of the Japan Petroleum Institute, 49, (6), 321-325 (2006)

[Regular Paper]

Improved Ultrasonic Offshore Oil Pipeline Thickness Accurate Detection
Using Hilbert-Huang Transform and Elman Neural Network

Qi ZHANG* and Peiwen QUE

Inst. of Automatic Detection, Dept. of Information Measurement Technology & Instruments,
Shanghai Jiaotong University, Shanghai 200240, P.R. CHINA

(Received March 8, 2006)

Pipeline flaw detection and safety evaluation are very important because of internal corrosion usually caused by
the presence of the water (salty or not), and external damage by anchors or other equipment. Any possibility of
leakage must be detected before leakage occurs and preventive action should be taken to avoid losses of oil and
ecological disasters. The ultrasonic method is the most commonly used to detect material loss and/or cracking
of the pipeline. The ultrasonic intelligent pig is used to detect the pipeline thickness, but the complicated off-
shore and pipeline environment, especially the variable sensor lift-off (distance between ultrasonic probe and
pipeline wall under detection), reduces the accuracy of pipeline thickness measurement. The Hilbert-Huang
transform was used to extract the signal features, then the Elman neural network applied to eliminate the effect of
lift-off variation to improve the flaw detection accuracy. Experiments showed that the accuracy of detected time
of flight between the transmitted pulse and echo from the pipeline wall as well as the thickness of the pipeline
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wall were clearly improved.
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1. Introduction

Offshore oil pipelines are built with carbon steel
pipes, and can extend to uninterrupted lengths of hun-
dreds of kilometers"”. These steel pipes are prone to
internal corrosion, usually caused by the presence of
water (salty or not), and external damage by anchors
and other equipment. More and more pipelines have
been buried with the increase in offshore oil and gas
exploitation in China. Therefore, inspection and
maintenance methods for the pipelines are urgently
needed and offshore oil pipeline safety evaluation is
very important in China.

Ultrasonic inspection is the most commonly used
method to detect material loss and/or cracking of the
pipeline?. Ultrasonic inspection provides quantitative
results such as extension and depth of the defect with
accuracy of mm, because of the pulse-echo mode with
rather high repetition frequency. The ultrasonic sen-
sor transmits the ultrasonic pulse and then receives the
echo reflected from the specimen. The echo signal at
the flaw is highly complex due to the interference of
multiple signals with random amplitude and phase.
Therefore, one of the most difficult tasks faced by the
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data interpreter is the recognition of suspect flaw
regions in the ultrasonic signals.

The ultrasonic intelligent detection device is usually
called the ultrasonic pig. The ultrasonic intelligent pig
has six components: driver robot, system controller,
power supply, ultrasonic measuring head, data acquisi-
tion and processing device, and position tracer.
Figure 1 shows the simplified structure of the ultrasonic
inspection device.

In recent years, neural networks have been widely
used in science, engineering, medicine, and economics
because of their powerful pattern recognition ability.
The application of neural networks to nondestructive
testing focuses mainly on recognizing and classifying
the presence of flaws in the material. The classifica-
tion of the flaws has been discussed much more exten-
sively than the recognition of flaws¥ ™59, The ART2
network and fuzzy neural network have been used to
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Fig. 1 Simplified Structure of the Ultrasonic Inspection Device
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classify the flaws®.

The main parameter for evaluating pipeline flaws is
the thickness of the pipeline. In theory, if the time in-
terval between the transmitted pulse and the echo signal
from the pipeline wall is known, the thickness of the
pipeline can be calculated easily. However, in the real
complex detection environment, the lift-off value (the
distance between the ultrasonic sensor and the pipeline
inner wall) is changed for every detection location.
There are many complex reasons for the variation in the
lift-off value. For example, vibration of the detection
equipment and wax or rust adhering to the pipeline wall
can reduce the amplitude of the ultrasonic echo. If the
defect is smaller than the ultrasonic sensor diameter, the
echo signal is difficult to analyse at the edge of the de-
fect. These factors all greatly influence the detection
accuracy. The lift-off value is showed in Fig. 2. To
eliminate the effect of the lift-off value, we must find a
reasonable method to resolve this problem.

The present study applied the Elman neural network
to detect the pipeline depth by eliminating the influence
of the lift-off value to increase the detection accuracy.
The Elman neural network” is a partial recurrent net-
work model first used in speech processing®, and has
certain unique dynamic characteristics over static neu-
ral networks, such as multilayer perceptions and radial-
basis function networks.

2. Proposed Method

Figure 3 shows the scheme of the pipeline thickness
detection. The ultrasonic signal is first processed by
empirical mode decomposition and the external features
calculated to extract the main features. Then some
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Fig. 2 Explanation of the Lift-off Value
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useful features are selected. Finally, the features are

combined as the inputs of the Elman neural network.

2.1. Feature Extraction of the Pipeline Ultrasonic
Signal

Figure 4 shows an example ultrasonic signal which
includes the transmitted pulse and flaw echo signal
from the pipeline. Using all ultrasonic data as the in-
put of the Elman neural network will require too much
operating time, so the main features are extracted from
the ultrasonic echo signal.

Flaw recognition depends on the selected features of
the echo signal. Features can be extracted by many
approaches. We selected features such as time of
flight information, maximum amplitude of the echo,
echo energy, and frequency information”. Figure 5
shows the echo signal external features.

Good feature selection is the essential step in flaw
recognition. The feature selection algorithms use split
spectrum processing and wavelet transform. Split
Spectrum processing is used to create frequency-di-
verse signal features'”. Wavelet transform is used to
obtain the scale-time information features'".

This study used the Hilbert-Huang transform to ob-
tain instantaneous frequency information features.
The Hilbert-Huang transform, or empirical mode de-
composition (EMD), was recently proposed as a signal
processing technique suitable for nonlinear and nonsta-
tionary series'?. The Hilbert-Huang transform mainly
includes two steps, empirical mode decomposition in
which complicated data are decomposed into a finite
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Fig. 5 Flaw Signal External Features

number of component, called intrinsic mode functions
(IMF), and application of the Hilbert transformation to
the IMFs to obtain the instantaneous frequency.
Because the IMF instantaneous frequency is narrow
band, the mean of all IMF instantaneous frequencies
was calculated as the inputs of the Elman neural net-
work.

The algorithm of empirical mode decomposition can
be summarized as follows!?:
(1) Identify all extrema of x(n).
(2) Interpolate (here we use spline interpolation) be-
tween minima (resp. maxima), ending up with some
“envelope” emin(n) (resp. emax(n)).
(3) Calculate the average m(n) = (emin(n) + emax(n))/2.
(4) Extract the detail d(n) = x(n) — m(n).
(5) Iterate on the residue r(n).

In practice, the above procedure has to be refined by
a sifting process which amounts to first iterating steps
(1)-(4) on the detail signal d(n), until it can be consid-
ered as zero-mean according to termination criterion SD
(standard deviation, calculated from two consecutive

sifting results!?,

SD = i{dﬂk-l) (n)=d (n)] ] <¢

dj?(k—l) (n)

N is the total data length and & is a threshold
set in advance (we here set £= 0.25). di(n) is the kth
sifting result of jth mode. Once this is achieved, dji(n)
is considered as the jth effective mode cj(n), the corre-
sponding residue is calculated and step (5) is applied.

IMFs can be obtained after empirical mode decom-
position. The Hilbert transform is applied to each
IMF, and the instantaneous frequency of each IMF cal-
culated. The detail of the calculation method is given
elsewhere!?.

2.2. Elman Neural Network

Figure 6 shows the basic Elman neural network
which contains four layers: input layer, hidden layer,
context layer, and output layer. xi(k) (i =1, -, m)is
the inputs of the Elman neural network. yik) (j =1,
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Fig. 6 Elman Neural Network

- -+, n) is the outputs of the Elman neural network.

hi(k) (=1, -+, r) is the hidden of the Elman neural
network. ciuk) (I=1, - - -, r) is the output of the con-
text node 1.

The outputs in each layer can be given by

i (k) = F[iwl,—,jx,- (k)+iw2,—,jci (k)j

C,‘(k) Zh,' (k—l) "

Vi (k) = G(ZW&',]‘XI' (k)j
i=1

where, F and G are the output functions of the hidden
layer and output layer. wl; ; is the weight from the in-
put layer to the hidden layer. w2; ; is the weight from
the context layer to the hidden layer. w3; ; is the
weight from the hidden layer to the output layer. The
training algorithm for the Elman neural network is the
standard back-propagation (BP) learning algorithm'>.
2.3. Process of the Algorithm

In summary, the algorithm can be implemented by
the following procedure:
(1) Calculate the external features of the flaw signal,

Vol. 49, No. 6, 2006



324

such as time of flight information, maximum amplitude
of the echo, and echo energy,

(2) Decompose the flaw signal with empirical mode de-
composition to obtain the IMF.

(3) Apply the Hilbert-Huang transform to every IMF to
obtain the instantaneous frequency.

(4) Calculate the mean of the instantaneous frequency
of every IMF.

(5) Select the main features as inputs of the Elman neu-
ral network.

(6) Train the network.

(7) Test the network.

3. Experimental Results

In this experiment, the diameter of the pipeline was
219 mm, and the thickness of the pipeline was 12 mm.
Rectangular flaws made in the laboratory (Fig. 7) were
detected using the proposed algorithm to judge the
thickness of the pipeline. Table 1 shows the partial
size of the artificial pipeline rectangular flaws with
length from 6 to 15 mm, width from 6 to 15 mm, depth
from 0.8 to 5 mm. The total was 15 rectangular flaws.
Experimental pulse-echo signals were obtained using a

Fig. 7 Partial Flaws Made in the Laboratory

circular ultrasonic probe, using longitudinal wave,
5 MHz center frequency and 6 mm diameter.
Sampling frequency was 100 MHz.

The echo signal at the artificial flaws was detected
many times. Forty samples were obtained. The flaw
depth was from 1.5 to 5 mm. We selected 30 samples
as training sample sets, and 10 samples as testing sets.
The training sample sets included all flaw depths.

The inputs of the Elman neural network were time of
flight information, maximum amplitude of the echo,
echo energy, and four means of instantaneous frequen-
cy. The node number of the hidden layer was twelve.
The node number of the output layer was one. The
output layer was the wall thickness.

Table 2 shows the results. The relative error of
calculating value directly between transmitted pulse
and flaw echo was bigger than that of the recognition
value using the neural network. Detection precision
was enhanced for various reasons. When the inspec-
tion device is crawling in the pipeline, the vibration of
the detection equipment and wax or rust adhering to the
pipeline wall can lead to reduce the amplitude of the ultra-
sonic echo, so it is difficult to calculate the wall thick-
ness according to the ultrasonic echo. If the size of
defect is smaller than the size of the ultrasonic sensor
diameter, the echo signals at the edge of the flaw may
overlap, so we can use Hilbert-Huang transform to sep-
arate these overlapped echo signals'¥. Then, we iden-
tified features of the echo signal as training inputs for
the neural network. The proposed method is better
than the method of calculating value between echoes.

4. Conclusion

The Hilbert-Huang transform was used to extract the
instantaneous frequency features, then the Elman neural
network applied to train features for the pipeline thick-
ness. With the proposed algorithm, the effect of the

Table 1 Partial Size of Artificial Pipeline Defects
Flaw number ~ Pipe number Length [mm)] Width [mm]  Depth [mm]  Gradient [°] Shape
1 1# 6 6 0.8 90 rectangle
2 2# 8 6 1.5 90 rectangle
3 2# 10 10 3 90 rectangle
4 3# 15 10 4.5 90 rectangle

Table 2 Comparison of Results between Two Different Methods

Calculating value

Data analysis Real value Relative error Recognition Relative error
number [mm)] between echoes [%] value [mm)] [%]
[mm]
1 11.2 104 7.2 10.8 35
2 10.5 9.8 6.6 10.1 3.8
3 9.0 8.7 3.7 8.7 33
4 8.0 7.5 6.2 7.7 3.7
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lift-off value was greatly reduced and the detection pre-
cision enhanced. In fact, the number of the experi-
ments was not sufficient because of the limits of the ex-
perimental condition. The flaws were only
rectangular, and the number of the flaws was limit.
The number of experiments should be much greater,
and all shapes of flaws included to improve the accura-
cy of the method.
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