
1.　Introduction

Offshore oil pipelines are built with carbon steel 
pipes, and can extend to uninterrupted lengths of hun-
dreds of kilometers1).　These steel pipes are prone to 
internal corrosion, usually caused by the presence of 
water (salty or not), and external damage by anchors 
and other equipment.　More and more pipelines have 
been buried with the increase in offshore oil and gas 
exploitation in China.　Therefore, inspection and 
maintenance methods for the pipelines are urgently 
needed and offshore oil pipeline safety evaluation is 
very important in China.

Ultrasonic inspection is the most commonly used 
method to detect material loss and/or cracking of the 
pipeline2).　Ultrasonic inspection provides quantitative 
results such as extension and depth of the defect with 
accuracy of mm, because of the pulse-echo mode with 
rather high repetition frequency.　The ultrasonic sen-
sor transmits the ultrasonic pulse and then receives the 
echo refl ected from the specimen.　The echo signal at 
the flaw is highly complex due to the interference of 
multiple signals with random amplitude and phase.　
Therefore, one of the most diffi cult tasks faced by the 

data interpreter is the recognition of suspect flaw 
regions in the ultrasonic signals.

The ultrasonic intelligent detection device is usually 
called the ultrasonic pig.　The ultrasonic intelligent pig 
has six components: driver robot, system controller, 
power supply, ultrasonic measuring head, data acquisi-
tion and processing device, and position tracer.　
Figure  1 shows the simplifi ed structure of the ultrasonic 
inspection device.

In recent years, neural networks have been widely 
used in science, engineering, medicine, and economics 
because of their powerful pattern recognition ability.　
The application of neural networks to nondestructive 
testing focuses mainly on recognizing and classifying 
the presence of flaws in the material.　The classifica-
tion of the fl aws has been discussed much more exten-
sively than the recognition of fl aws3)～5),9).　The ART2 
network and fuzzy neural network have been used to 
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Pipeline fl aw detection and safety evaluation are very important because of internal corrosion usually caused by 
the presence of the water (salty or not), and external damage by anchors or other equipment.　Any possibility of 
leakage must be detected before leakage occurs and preventive action should be taken to avoid losses of oil and 
ecological disasters.　The ultrasonic method is the most commonly used to detect material loss and/or cracking 
of the pipeline.　The ultrasonic intelligent pig is used to detect the pipeline thickness, but the complicated off-
shore and pipeline environment, especially the variable sensor lift-off (distance between ultrasonic probe and 
pipeline wall under detection), reduces the accuracy of pipeline thickness measurement.　The Hilbert-Huang 
transform was used to extract the signal features, then the Elman neural network applied to eliminate the effect of 
lift-off variation to improve the fl aw detection accuracy.　Experiments showed that the accuracy of detected time 
of fl ight between the transmitted pulse and echo from the pipeline wall as well as the thickness of the pipeline 
wall were clearly improved.
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Fig.  1　Simplifi ed Structure of the Ultrasonic Inspection Device



classify the fl aws6).
The main parameter for evaluating pipeline fl aws is 

the thickness of the pipeline.　In theory, if the time in-
terval between the transmitted pulse and the echo signal 
from the pipeline wall is known, the thickness of the 
pipeline can be calculated easily.　However, in the real 
complex detection environment, the lift-off value (the 
distance between the ultrasonic sensor and the pipeline 
inner wall) is changed for every detection location.　
There are many complex reasons for the variation in the 
lift-off value.　For example, vibration of the detection 
equipment and wax or rust adhering to the pipeline wall 
can reduce the amplitude of the ultrasonic echo.　If the 
defect is smaller than the ultrasonic sensor diameter, the 
echo signal is diffi cult to analyse at the edge of the de-
fect.　These factors all greatly infl uence the detection 
accuracy.　The lift-off value is showed in Fig.  2.　To 
eliminate the effect of the lift-off value, we must fi nd a 
reasonable method to resolve this problem.

The present study applied the Elman neural network 
to detect the pipeline depth by eliminating the infl uence 
of the lift-off value to increase the detection accuracy.　
The Elman neural network7) is a partial recurrent net-
work model first used in speech processing8), and has 
certain unique dynamic characteristics over static neu-
ral networks, such as multilayer perceptions and radial-
basis function networks.

2.　Proposed Method

Figure  3 shows the scheme of the pipeline thickness 
detection.　The ultrasonic signal is first processed by 
empirical mode decomposition and the external features 
calculated to extract the main features.　Then some 

useful features are selected.　Finally, the features are 
combined as the inputs of the Elman neural network.
2 .1.　Feature Extraction of the Pipeline Ultrasonic 

Signal
Figure  4 shows an example ultrasonic signal which 

includes the transmitted pulse and flaw echo signal 
from the pipeline.　Using all ultrasonic data as the in-
put of the Elman neural network will require too much 
operating time, so the main features are extracted from 
the ultrasonic echo signal.

Flaw recognition depends on the selected features of 
the echo signal.　Features can be extracted by many 
approaches.　We selected features such as time of 
flight information, maximum amplitude of the echo, 
echo energy, and frequency information9).　Figure  5 
shows the echo signal external features.

Good feature selection is the essential step in flaw 
recognition.　The feature selection algorithms use split 
spectrum processing and wavelet transform.　Split 
Spectrum processing is used to create frequency-di-
verse signal features10).　Wavelet transform is used to 
obtain the scale-time information features11).

This study used the Hilbert-Huang transform to ob-
tain instantaneous frequency information features.　
The Hilbert-Huang transform, or empirical mode de-
composition (EMD), was recently proposed as a signal 
processing technique suitable for nonlinear and nonsta-
tionary series12).　The Hilbert-Huang transform mainly 
includes two steps, empirical mode decomposition in 
which complicated data are decomposed into a finite 
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Fig.  2　Explanation of the Lift-off Value

Fig.  3　Scheme of Flaw Recognition

Fig.  4　Example Ultrasonic Signal of the Pipeline



number of component, called intrinsic mode functions 
(IMF), and application of the Hilbert transformation to 
the IMFs to obtain the instantaneous frequency.　
Because the IMF instantaneous frequency is narrow 
band, the mean of all IMF instantaneous frequencies 
was calculated as the inputs of the Elman neural net-
work.

The algorithm of empirical mode decomposition can 
be summarized as follows12):
(1) Identify all extrema of x(n).
(2) Interpolate (here we use spline interpolation) be-
tween minima (resp. maxima), ending up with some 
“envelope” emin(n) (resp. emax(n)).
(3) Calculate the average m(n)＝ (emin(n)＋emax(n))/2.
(4) Extract the detail d(n)＝x(n)－m(n).
(5) Iterate on the residue r(n).

In practice, the above procedure has to be refi ned by 
a sifting process which amounts to fi rst iterating steps 
(1)-(4) on the detail signal d(n), until it can be consid-
ered as zero-mean according to termination criterion SD
(standard deviation, calculated from two consecutive 
sifting results12),
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In Eq. (3), N is the total data length and N is the total data length and N ξ is a threshold 
set in advance (we here set ξ＝0.25).　djkdjkd (n) is the kth kth k
sifting result of jth mode.　Once this is achieved, djkdjkd (n) 
is considered as the jth effective mode cjcjc (n), the corre-
sponding residue is calculated and step (5) is applied.

IMFs can be obtained after empirical mode decom-
position.　The Hilbert transform is applied to each 
IMF, and the instantaneous frequency of each IMF cal-
culated.　The detail of the calculation method is given 
elsewhere12).
2. 2.　Elman Neural Network

Figure  6 shows the basic Elman neural network 
which contains four layers: input layer, hidden layer, 
context layer, and output layer.　xi(k) (i＝1, ･･･, m) is 
the inputs of the Elman neural network.　yjyjy (k) (j) (j) ( ＝1, 

･･･, n) is the outputs of the Elman neural network.　
hl(k) (l＝1, ･･･, r) is the hidden of the Elman neural 
network.　cl(k) (l＝1, ･･･, r) is the output of the con-
text node l.

The outputs in each layer can be given by
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where, F and F and F G are the output functions of the hidden 
layer and output layer.　w1i, j is the weight from the in-
put layer to the hidden layer.　w2i, j is the weight from 
the context layer to the hidden layer.　w3i, j is the 
weight from the hidden layer to the output layer.　The 
training algorithm for the Elman neural network is the 
standard back-propagation (BP) learning algorithm13).
2. 3.　Process of the Algorithm

In summary, the algorithm can be implemented by 
the following procedure:
(1) Calculate the external features of the flaw signal, 
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Fig.  5　Flaw Signal External Features

Fig.  6　Elman Neural Network



such as time of fl ight information, maximum amplitude 
of the echo, and echo energy,
(2) Decompose the fl aw signal with empirical mode de-
composition to obtain the IMF.
(3) Apply the Hilbert-Huang transform to every IMF to 
obtain the instantaneous frequency.
(4) Calculate the mean of the instantaneous frequency 
of every IMF.
(5) Select the main features as inputs of the Elman neu-
ral network.
(6) Train the network.
(7) Test the network.

3.　Experimental Results

In this experiment, the diameter of the pipeline was 
219 mm, and the thickness of the pipeline was 12 mm.　
Rectangular fl aws made in the laboratory (Fig.  7) were 
detected using the proposed algorithm to judge the 
thickness of the pipeline.　Table  1 shows the partial 
size of the artificial pipeline rectangular flaws with 
length from 6 to 15 mm, width from 6 to 15 mm, depth 
from 0.8 to 5 mm.　The total was 15 rectangular fl aws.　
Experimental pulse-echo signals were obtained using a 

circular ultrasonic probe, using longitudinal wave, 
5 MHz cen t e r f r eq u en cy an d 6 m m d i am e t e r.　
Sampling frequency was 100 MHz.

The echo signal at the artificial flaws was detected 
many times.　Forty samples were obtained.　The fl aw 
depth was from 1.5 to 5 mm.　We selected 30 samples 
as training sample sets, and 10 samples as testing sets.　
The training sample sets included all fl aw depths.

The inputs of the Elman neural network were time of 
flight information, maximum amplitude of the echo, 
echo energy, and four means of instantaneous frequen-
cy.　The node number of the hidden layer was twelve.　
The node number of the output layer was one.　The 
output layer was the wall thickness.

Table  2 shows the results.　The relative error of 
calculating value directly between transmitted pulse 
and flaw echo was bigger than that of the recognition 
value using the neural network.　Detection precision 
was enhanced for various reasons.　When the inspec-
tion device is crawling in the pipeline, the vibration of 
the detection equipment and wax or rust adhering to the 
pipeline wall can lead to reduce the amplitude of the ultra-
sonic echo, so it is diffi cult to calculate the wall thick-
ness according to the ultrasonic echo.　If the size of 
defect is smaller than the size of the ultrasonic sensor 
diameter, the echo signals at the edge of the fl aw may 
overlap, so we can use Hilbert-Huang transform to sep-
arate these overlapped echo signals14).　Then, we iden-
tified features of the echo signal as training inputs for 
the neural network.　The proposed method is better 
than the method of calculating value between echoes.

4.　Conclusion

The Hilbert-Huang transform was used to extract the 
instantaneous frequency features, then the Elman neural 
network applied to train features for the pipeline thick-
ness.　With the proposed algorithm, the effect of the 
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Fig.  7　Partial Flaws Made in the Laboratory

Table  1　Partial Size of Artifi cial Pipeline Defects

Flaw number Pipe number Length [mm] Width [mm] Depth [mm] Gradient [°] Shape

1
2
3
4

1#
2#
2#
3#

  6
  8
10
15

  6
  6
10
10

0.8
1.5
3

4.5

90
90
90
90

rectangle
rectangle
rectangle
rectangle

Table  2　Comparison of Results between Two Different Methods

Data analysis
number

Real value 
[mm]

Calculating value 
between echoes 

[mm]

Relative error 
[%]

Recognition 
value [mm]

Relative error 
[%]

1
2
3
4

11.2
10.5
  9.0
  8.0

10.4
  9.8
  8.7
  7.5

7.2
6.6
3.7
6.2

10.8
10.1
  8.7
  7.7

3.5
3.8
3.3
3.7



lift-off value was greatly reduced and the detection pre-
cision enhanced.　In fact, the number of the experi-
ments was not suffi cient because of the limits of the ex-
pe r imen ta l cond i t i on .　The f l aws we re on ly 
rectangular, and the number of the flaws was limit.　
The number of experiments should be much greater, 
and all shapes of fl aws included to improve the accura-
cy of the method.
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要　　　旨

Hilbert-Huang変換と Elmanニューラルネットワークを用いた海洋パイプライン肉厚の超音波による精密検知

Qi Zhang, Peiwen Que

Inst. of Automatic Detection, Dept. of Information Measurement Technology & Instruments, 

Shanghai Jiaotong University, Shanghai 200240, P.R. CHINA

海洋パイプラインの維持管理においてラインの探傷およびそ
の安全性の評価は非常に重要な項目である。パイプライン内面
は水の存在により腐食を受け，一方，外面はアンカー等による
機械的損傷を受ける傾向がある。輸送原油の逸失および環境破
壊を避けるためにパイプラインの漏洩が生じる前にその漏洩の
可能性のある部位を正確に検知する必要がある。パイプライン
のダメージを探る方法として超音波探傷が一般的に広く行われ
ているが，その肉厚測定に超音波インテリジェントピグを使う

場合，複雑な海底地形およびパイプライン敷設環境のためパイ
プラインの壁面と超音波測定用プローブが離れてしまうセン
サーリフトオフ現象が生じることがあり，この場合には肉厚の
正確な測定が困難となることがある。このリフトオフ問題に対
応するために超音波信号形状の抽出に Hilbert-Huang変換を使
用するとともにリフトオフの種々の影響を抑えるために Elman

ニューラルネットワーク手法を適用することにより，精密な超
音波検知結果が得られることが本検討により示唆された。


