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The streamline method was extended to thermal oil-recovery simulation by developing an appropriate heat
transport model based on the streamline method for implemention into a thermal recovery simulator. The heat
transport model consisted of convection from the flowing phases and diffusion terms of gravity, capillary force,
and conduction. An operator splitting technique was applied to decouple the convective and diffusive parts for
separate solution. The convective part, a non-linear one-dimensional hyperbolic equation, was solved by the
implicit single-point upwind scheme along the streamlines. The diffusive part, a non-linear, mixed hyperbolic-
parabolic equation modeling gravity, capillary force and conduction, was solved using finite-difference discretiza-
tion over the three-dimensional grid. The pressures for defining streamlines were obtained by solving the fluid
flow equations with a finite-difference Newton method considering the compressibility, depletion and capillary
forces. Simulations of hot water-flooding in two-dimensional and three-dimensional heavy-oil reservoirs were
conducted to verify the model. The simulation results were compared with those of a commercial thermal simu-
lator, which demonstrated that the streamline approach is a viable alternative to conventional finite-difference

methods for heat transport calculations within a thermal simulator.
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1. Introduction

Fluid transport calculations based on streamlines
have been used successfully for years to model two-
phase incompressible flow simulations?~®. The pres-
sures for defining the streamlines are obtained by
assuming that the reservoir fluids and rock are incom-
pressible and that flow is in the steady state, which
yields a time-independent equation that can be solved
to define the fixed pressure distribution. Streamline
tracking is performed with the pressure field to advance
saturations or compositions. In this approach, the
changing pressure field and the movement of fluids are
not tightly connected, which results in inaccuracies in
the solution.

The streamline approach has recently been extended
to various applications, such as compositional and
black oil problems for updating the composition and
saturation®~ 7. In those cases, a non-linear equation
for the pressure is solved assuming unsteady-state flow
but compressible fluids and rock, followed by solving
the conservation equations in sequence or fully implicitly,
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i.e. the pressure and the saturation equations are solved
together along each streamline. In this approach, most
of the physical parameters that depend on the pressure
changes are accounted for throughout the solution.

The major limitation of the streamline method is that
applicability is restricted to convective problems only.
In practice, the contribution of physical diffusion due to
gravitational and capillary forces must be considered in
modeling a reservoir undergoing a displacement
process. The model including diffusion cannot be
solved using one-dimensional (1D) streamlines. The
operator splitting technique has been proposed to avoid
this restriction”~?. The idea is to isolate the convec-
tive flow from the diffusion due to gravity for separate
solution. The first part is calculated along the com-
mon streamline trajectories and the second part is deter-
mined by the direction of gravity.

Based on recent advances in streamline-based simu-
lation techniques, we have extended the methods to the
thermal oil-recovery simulation. Modeling thermal
processes is difficult due to the many complex mech-
anisms, high degree of non-linearity, and requirements
for appropriate thermodynamic formulation to account
for the changes in properties with temperature and pres-
sure. The present study approached the problem from
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a different angle in the streamline framework. An
operator splitting technique was applied to handle the
heat diffusion due to gravity, capillary, and conduction
effects, and the implicit method was used for solving
the highly non-linear convective streamline and diffu-
sive equations. A practical rule was introduced to
select the time step for pressure updates to reduce the
time-lag effects on the coefficients in the phase conser-
vation equations.

A sequential thermal simulator, which solves the
pressure and heat equations sequentially, was devel-
oped and tested for simulations of hot water-flooding in
heavy-oil reservoirs. First we performed simulation
with a two-dimensional (2D) heterogeneous reservoir
to evaluate the main characteristics of the streamline
method such as the number of streamlines, the grid
refinement along the streamlines, and the time step
size. Then we performed three-dimensional (3D) sim-
ulation to examine how the gravity mechanism affects
the production performance. The solutions obtained
using a commercial thermal simulator'® were used to
compare and validate the developed model.

2. Thermal Oil-recovery Model

This study formulated a three-phase thermal oil-
recovery model. Although the numerical examples
presented in the later section deal with two-phase (hot
water and oil) flow, the derivation in this section is also
valid for three-phase (liquid water, steam, and oil)
flow. Following the previous thermal models!''?),
fluid and heat flow were assumed to obey Darcy’s law
and Fourier’s heat conduction equation, respectively.
Additional assumptions are (1) the hydrocarbon com-
ponent is insoluble in the water phase, (2) the water
component is not allowed to dissolve in the oil phase,
(3) relative permeability and capillary pressures are
independent of temperature, (4) heat flow consists of
convection and conduction only, and (5) heat flow to
and from overburden and underburden does not occur.
Therefore, the specific forms of the mass conservation
equations for the water and oil components are

I(PSwpw)

V- (puw)+ gy = 2 (la)

9(¢Sop0)

—V'(polIo)'i'QO:T (lb)

Equations (1a) and (1b) have identical form because
each phase consists of only one component, and there is
no inter-phase transportation of the components. The
total energy conservation is given as

~V-(pwHwuy + poHol,)
+V-(KuVT)+ qwHY +qoHy )

= %@(SwpwHw +SopoHo)+ (1= 9)p:C:T)
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The flux velocity, ue, is represented by Darcy’s law as

_ kkio
a= Lo
The mass flow rate, gq, of the o phase from a layer k at
wells is given by Peaceman’s formulation'® as

2rAz  kk: w
Go = : oPe (P = pox ) /(AxAyAzy) (4)

Fe, k o
In——+sx K
Fw, k

u (Vpu - paVD) 3)

where p) is the pressure in the wellbore, pax is the
phase pressure in the gridblock, rwx denotes the well-
bore radius, rex is the equivalent radius, and sk repre-
sents the skin factor.

In addition to the conservation equations, certain
ancillary relationships must be specified to calculate
the rock and fluid properties. The water-oil and oil-
gas capillary pressures are assumed to be functions of
phase saturation. Relative permeabilities to water and
gas are dependent on the phase saturation. The poros-
ity is taken to be a linear function of pressure as

¢ = Pre(1 + cr(p = prer)) ®)
The three-phase oil relative permeability is calculated
using the modified Stone’s Model II as

kro = kmcw [(]]:(::: + krw )(% + krg) - krw - krg ] (6)
where krocw = krow(Sw = ch) = kmg(Sg = 0)

The phase densities pw and po are modeled by a correla-
tion function of 7 and p as'®

pa(p, T) = p(sxc . exp[ca(p—psc)
~a(T - Tie) - 0.56(T* — 12|

where cq is the compressibility, and a and b are the
thermal expansion coefficients. The phase viscosity
may be specified using the following correlation'”

Ue: = avis* exp(buis/T) ®)

T is in absolute degrees, whereas avis and bvis are
empirical parameters with values determined from two
viscosity measurements at different temperatures.
The enthalpies of the water, oil, and gas phases are
calculated as follows'?:

)

Co(T) =c1+ c2T + c3T? + c4T? (9a)
Hvap(T) = l’lvap(Tcr - ne“‘P (9b)
Hy(T)=[ C(T)dT (%)

Hi(T) = Ho(T) — Hvap(T), =W, 0 (9d)
Here, C¢(7T) is the heat capacity of the gas phase
expressed by correlation with coefficients c¢1 to cs,
H(T) is the gas-phase enthalpy, H(T) is the water- and
oil-phase enthalpy, and Hv.p(7) is the vaporization
enthalpy expressed by the critical temperature 7cr and
constants hvap and evap. Suggested values of those
parameters for selected components are given in
Reference (10).

The corresponding boundary and initial conditions
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for the system given in Eq. (1) are:
uy(x,7)'n=0, xe€dQ (10)

p(x.0)=p"(x). xeQ

11
Sa(x,0)=5%(x), xeQ (b

where n is the outward unit vector normal to the bound-
ary dQ of the reservoir domain Q, and p refers to the
oil-phase pressure. The boundary and initial condi-
tions associated with Eq. (2) are described later.

3. Sequential Thermal Simulator

The present sequential solution method for thermal
oil-recovery simulation differs in several ways from the
methods reported in the literature'®-'>.  The streamline
method instead of the finite difference method was
applied in the sequential step for solving the energy
conservation equations within a time step. Equations
(1) and (4) are solved simultaneously for pressure and
saturation with a Newton finite difference formulation.
After these equations are solved, new values for pres-
sure and saturation are obtained at grid point x; and the
bottom hole pressure of the k-th zone. The obtained
pressures are then used to define the streamlines. The
algorithm proposed by Pollock'® is used to lace stream-
lines through individual cells. The heat convection is
then calculated along the streamlines using an implicit
single-point upwind scheme to update temperatures fol-
lowed by diffusion term calculations on reservoir grids.
A flow diagram of this simulator is shown in Fig. 1.

The main emphasis of this paper is the streamline
approach for heat transport, so the solution method of
mass transport is not discussed here. Aziz and Settari'”
and Fanchi'® give more details about the solution meth-
ods for fluid transport.

4. Streamline Approach for Heat Transport

A hot-water displacement process was formulated to
demonstrate the applicability of the streamline method
for heat transport. The mathematical model and the
solution procedure are illustrated in the following sec-
tions.

4.1. Streamline Energy Equation

To derive the energy equation for streamlines, the
total velocity was first defined as a sum of Eq. (3) for
the oil and water phases,

kkro
1, (VPo=poVD) (Vpw — puVD) (12)

The oil- and water-phase pressures are related to the
water-oil capillary pressure as
pW:pc_Pcwo (13)
Using Eq. (13), Eq. (12) can be rearranged as

kkrw
m

W

U =
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l Initialize model I
le

I

Solve pressure and saturations
by IFDM (solve Eqgs. 1, 4)

'

Trace streamlines based on total
fluid velocity by Pollock’s algorithm
Te

-

Solve convection term along each
streamline by IFDM (solve Eq. 24)

'

Map intermediate temperature
back to reservoir grids

v

Solve diffusion terms on reservoir
grids by IFDM (solve Eq. 25)

Ate= Aty

Print output
t=t+Afp
y

End

IFDM: implicit finite difference method.
f: specified fraction.

Fig. 1 Flow Chart for Streamline Simulation

1

Vpo = _Tl

(% - A«WVPCWO - ZWPWVD_ lOvaDj(lél)

where  Aw = kiw/UW, Ao =kwolllo, and A=Aw + Jo.
Inserting Eq. (3) into Eq. (2), and eliminating pw and po
by using Egs. (13) and (14), the heat transport equation
becomes,

0 1-¢
E(SWPWHW + SopoHo +TprC,T)
+E'V(prwHw +fop0Ho)

1¢ 1 1 (s)
—V - (kyVPuo)+—-V-G——V - (KyVT
+¢ ( Y )+¢ ) ( h )

1
=$(qWH\},VV +CI0H(\)N)

where
Aa kro | o

=i = =W, 16
L R TR ST (16)
Y= A{“ilo (pwHw _poHo) (17)
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G =ky(pw —po)VD (18)

Since there is no obvious way to represent the term V*
w along the streamline, we assumed V:uc=0 when we
derived Eq. (15).

The streamline method introduces the coordinate
transformation for the convective term in Eq. (15). To
do that, we defined the time-of-flight'®!”, 7, along a
streamline as

s ¢
7(x)=| 7——d 19
)=y, (19)
which leads to rewriting the operator as
d
V=0-— 20
u -V ¢ T (20)
Using the above equation, Eq. (15) can be expressed as
JE OoF 1
W‘FW'FEV'(]C’J/VPCWO)
Av.e-tv. kv 21
¢ ¢
1 w w
= E(QWHW +q0H0 )

Here, E is the total energy per unit volume written as
1-¢
EZSWPWHW +SopoH0 +TprCrT (22)

and F is the energy convective flow defined as

F = fupwHw + fopoHo 23)

The 3D convective problem is now transformed into
the 1D problem to solve the energy equation, Eq. (21),
along the streamlines.

4.2. Streamline Operator Splitting

Equation (21) is recognized as a system of convec-
tion-diffusion equations with the diffusion term consist-
ing of capillary, gravity, and conduction effects. As
stated, the streamlines are less well suited to describe
physical phenomena that transport fluid across the
streamlines. In the streamline method, the fluid flow
along each streamline is treated as independent, and the
effects of the fluid flow transverse to the streamlines
are not represented. However, physical diffusions can
lead to flow transverse to the streamlines. By using
the technique of operator splitting, we split these fac-
tors on a non-orthogonal grid, locally spanned by the
streamlines and by the direction of diffusions. The
advantage of decoupling the terms in Eq. (21) is that
the diffusion can be solved independently and only
solved in regions where they are important.
Variations on this operator splitting approach have
been taken by several authors?? 22,

Next we describe how to perform temperature calcu-
lations with the system given by Eq.(21) using an
operator splitting method. Three steps are taken for
calculating temperatures at the n + 1 time step from the
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temperatures at the n time step.
Step 1: Let T(7, t) = S¢(t)T" be the streamline solution to
the convection part of Eq. (21) that is written as

JE JOF 1 w w\.
W-Fﬁ_a(qWHW +qoHs ),
T(7,0)=T"(t); T(0,7)=Tij, >0

If S«(#) denotes the operator that maps 7" to 7(7, t), we
can define T2 = S¢(Ar) T" as the intermediate solution,
where subscript { stands for the grid spacing of the
streamline solution.

Step 2: Let T(x, t) = Ra(f) 7™ be the finite difference
solution to the diffusion parts of Eq. (21) that is written
as

(24)

E 1
§+EV(/<VPCWO)/)
+%V-G—%V~(KNT)=O (25)

T(x,0)=T""*(x); VT(x,t)-n=0

Equation (25) is solved using Na time steps of length kq,
i.e., kaNa=At. The splitting solution at time ' is
given by T"!'=Ra(A)T'2, where the subscript A
stands for the grid spacing of the finite difference solu-
tion.

Step 3: Then for a time NAt, the approximated solution
of Eq. (21) can be calculated with N-times repeated use
of the operators as

T(x) = [Ra(A?) Sq(AD)] T(x) (26)
4.3. Numerical Solutions

We employed an implicit single-point upwind
scheme along each streamline for Eq. (24) and implicit
finite difference scheme for Eq. (25). Applying the
implicit single-point upwind scheme for the convective
streamline step has some striking advantages. First,
the scheme requires no stability conditions, known as
CFL (Courant-Fredrick-Lewy) conditions, associated
with this method in the sense that time step, At, is not
restricted by the spatial 7 discretization parameter.
Second, this scheme allows Eq. (24) to be solved on the
irregularly spaced 7 grid instead of the regular grid as
when the equation is solved explicitly. On the other
hand, the finite difference scheme to solve Eq. (25)
slows the calculation because the capillary force and
conduction must be solved in three dimensions,
although the gravity equation can be solved over the
gravity lines.

The implicit scheme for Eq. (24) requires calcula-
tions of the accumulation, E, the flux, F, and the fluid
enthalpies, Hy and Hg', for each grid i at k+ 1 time
level as
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S [E ) - E(1)]

1

AT
1 n+l ryw 1 k+1
= gy L 3 (1) + qi 3 (1)) = 0
This is a non-linear equation for T**' which can be
solved using Newton-Raphson’s  procedure!”!®.
Equation (27) may be rewritten in terms of residual, Rc,
which is equal to the left side of Eq. (27), as

RC(Y;kH) =0 (28)

The solution of Eq. (28) is obtained iteratively. For
the first iteration (v = 1), we use 7" = TX, where TF is
known. Subsequent estimates for the updated temper-
atures are found as follows. First, we define the dif-
ference in temperature between two Newton iterations
v+ 1andvas

8]’; — '1';V+1 _ T;V (29)

[F(11) - F(z7) @

OT; at T grid point i can be obtained by performing a
Taylor series expansion of Eq. (28) with the first order
in the small quantity ST,

OR.; )"
v+l _ pv 4 3 30
R™ =R}, (aT ) OT; (30)
The value of &7; that satisfies Eq. (28), RS =0,
obeys the expression
OR.; \’
ci PV, 31

OR.i/dT; is an element of the Jacobian matrix that is
obtained numerically or analytically. Substituting Eq.
(27) into Eq. (31) yields

1 (oEY 1 |(oF) oF\’
Arc(arlg“m{(aflg”‘(wl,“l}

1 n+l aH‘}:’/ ' n+l aH("N ' _ v
_@lQWi ( oT )i +q,i ( oT jljlaﬂ —_Rci

The solution is considered to converge when these
increments of 8T are smaller than the convergence cri-
terion. The updated temperatures resulting from the
solution of Eq. (32) have to be mapped back to the
underlying grid in order to provide the initial condition,
T12(x) = T¥1(x), for solving Eq. (25).

Following the procedure to derive Eq. (32), the dis-
cretized form of Eq. (25) is obtained in terms of the
residual as

(32)
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aE ay n+l
Atd(aT)ST A{(P(E)T) Bwﬂ}

ay n+l
+Ay ¢(8Tj Rwo&:|
| ay et 33
+A., ¢(ar) A P &] (33)
(173G Y Kn

—Ay(% AyST) - A{% AZ&) —_R!

The solution of Eq. (33) gives the approximated solu-
tion of the system described by Eq. (21) at the n+1
time step for node i. The capillary term for x-direc-
tion is discretized as

dy nt
A[¢(3TJA<a¢af}

= TXPci—l/Z (PcwoaT)i_l (34)
—(TXpei-i2 + TX peivij2 )(PowoOT ),
+TXpeirij2 (PewoOT)

Similarly, the discrete version of the conduction term
for x-direction is

i+l

Kn )
Al —— AT | = TX kniz1/26T;—
(¢ Kn2 et (35)

—(TXni-12 + TX &niv1y2 )OT; + TX ki1 0Ti41

The coefficients in Egs. (34) and (35) are given as fol-
lows:

_(kay A
TXpeizi2 = (¢aTlﬂ/2 Axizyn

(K Ay
TX knity2 = (¢),+1/2 Axisi2

A difference approach is applied to the gravity term as

i

1(dG 1 0G
_AZ|:¢(8T1+1/2 (d’ asz 1/2}671

The upstream direction, at which G is to be evaluat-
ed, is dependent on the fluids, and is based on the flow
direction”. For the case of a two-phase water-oil sys-
tem in which the oil is less dense than water, the proper
approximation of (dG/dT)i12 is based on the water
properties at node i and the oil properties at node i + 1.
A similar approach is employed for (dG/0T)i-11.

In actual applications, the iterative calculations for
Egs. (32) and (33) tend to converge quickly. Our
numerical experiments on hot water-flooding showed
that the first approximation, 7%*!, is sufficiently accurate
and that additional approximations are not warranted.

(36)

(37
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Table 1 Data for Simulation

Coefficients of
viscosity calculations

Coefficients of
enthalpy calculations

Phase
avis [Pa-day] byis [K] c1 (&3 c3 c4 Nvap evap
Oil 5.18E-13 5088.9 -22.38 1.939E+0 -1.117E-3 2.528E-7 287.1 0.625
Water 4.36E-11 1610.7 32.24 1.924E-3 1.055E-5 —3.596E-9 25.1 0.38
.. . Coefficient of
Critical properties . .
Phase density calculations
M [kg/gmol] T [°C] per [kPa] p [kg/m?] c [kPa™'] a[°C"] b [°C7]
Oil 0.600 493.8 1.118E+3 972 7.30E-7 3.80E-4 0.00E0
Water 0.018 374.1 2.206E+4 998 4.57E-7 -1.91E-3 0.00E0
Water-oil relative permeability Gas-oil relative permeability
Sw krw krwo Pewo Si krg krog Pecog
0.2175  0.0000  0.7200  0.0000 0.2175 0.0252  0.0000  0.0000
0.2464  0.0018 0.6142 0.0000 0.7715  0.0021 0.0000  0.0000
0.2636  0.0039 0.5635 0.0000 0.7878  0.0019 0.0001 0.0000
0.2976  0.0106 0.4667 0.0000 0.8041  0.0017 0.0011 0.0000
0.3306  0.0194  0.3760  0.0000 0.8205  0.0015 0.0034  0.0000
0.3645  0.0317 0.2923 0.0000 0.8531  0.0012  0.0153 0.0000
0.3989  0.0464  0.2161 0.0000 0.8858  0.0009 0.0409 0.0000
0.4319  0.0640  0.1479 0.0000 0.9021  0.0008 0.0604  0.0000
0.4659  0.0839 0.0890  0.0000 0.9184  0.0007 0.0851 0.0000
0.4828  0.0951 0.0637 0.0000 0.9347  0.0006  0.1157 0.0000
0.5159  0.1186 0.0223 0.0000 0.9511  0.0005 0.1527 0.0000
0.5328  0.1315 0.0079 0.0000 0.9674  0.0004  0.1969 0.0000
0.5500  0.1450  0.0000  0.0000 0.9837  0.0000  0.2417 0.0000
1.0000  0.2923 0.0000  0.0000 1.0000  0.0000  0.7200  0.0000
Rock thermal conductivity  [kJ/(m*sec-°C)] 3.5E-3
Reservoir heat capacity [kJ/(m3-°C)] 2347
Porosity at reference pressure 0.3
Reference pressure [kPa] 6890
Reference temperature [°C] 15.6
Surface pressure [kPa] 100
Surface temperature [°C] 15.6

The crucial point for the numerical solution is the
selection of the time step size. There are two main
time steps in this developed simulator: the time step
elapsed between pressure updates, Eq. (1), and the time
step used in the streamline energy equation, Eq. (21).
As the temperature greatly affects the water and oil
densities and viscosities involved in the coefficients of
the pressure equation, the calculation of pressure
updates is mainly controlled by the magnitude of the
changes in temperature updates. When the maximum
value of the temperature changes exceeds the specified
constraint, a new pressure distribution is calculated.
The time step for solving Eq.(21) depends on the
numerical scheme and the physical parameters consid-
ered in the model. This issue remains for further stud-
ies, though typical values were found to be 0.2 to 1.0
times the pressure time step in the numerical experi-
ments.
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5. Model Performance

A sequential thermal oil-recovery simulator was
developed implementing the streamline-based heat
transport model. Simulations of hot water-flooding in
heavy-oil reservoirs were conducted to examine the
performance of the developed simulator. The simula-
tion results were compared with the results of an exist-
ing commercial thermal simulator (CMG’s STARS) to
verify and evaluate the proposed methods.

5.1. Problem Descriptions

The illustrative problem is a heavy oil reservoir of
14°API oil that underwent conventional (cold) water-
flooding at the reservoir temperature. The modeled
region of the reservoir is a quarter of the repeated five-
spot pattern with an area of 75 X 75 m? and thickness of
5m. The model includes two wells of 0.09 m well-
bore radius, an injection well placed at the lower left

No. 1, 2005



60}
-2616
-26 47
45 -2679
=271
> -2742
-2774
30 2805
-2837
-28.68
: -29 00

15

30 45 60 75
X

15

Fig. 2 Permeability Field Used for 2D Simulation

edge of the region and a production well placed at the
upper right edge. Fluid and rock properties, and the
reservoir and surface conditions are listed in Table 1.
Hot water of 150°C is injected at the constant rate of
100 m3/day cold water equivalent. The producer well
is operated under the minimum bottom-hole pressure
constraint of 100 kPa. We ran the simulator for 300
days or the equivalent of 3.18 pore volume injected
(PVI) with the constraints of the maximum changes in the
basic variables allowed over a time step as (dp)max =
343.2 kPa, (dSw)max = 0.2, and (d7)max = 7.5°C, to moni-
tor pressure updates as well as to control convergence
for solving Eq. (1). This run is named Base-Case.
5.2. Examples of 2D Problem

First we performed a simulation of hot water-flood-
ing in a 2D heterogeneous reservoir to evaluate the
effects of the number of streamlines, the grid refine-
ment on streamlines, and the time step size. A grid
system of 15 X% 15 x 1 was employed. Figure 2 shows
the permeability field generated by the moving window
method assuming the permeability has natural loga-
rithm distribution with mean of —27.631 (0.9869 x 10-'2
m?, or 1000 md) and standard deviation of 0.5. The
values range from 0.2773x 1072 m?> (281 md) to
3.7354 x 1072 m? (3785 md) as depicted by blue to red
colors. The pressure and water saturation distribu-
tions shown in Figs. 3(a) and (b), respectively, were
attained by cold water-flooding, and were used as the
starting conditions for hot water-flooding. The tem-
perature distribution is nearly uniform at 52°C.

Comparisons of oil production rate, water cut, and
oil recovery calculated from this thermal simulator by
streamline (TESIS) and STARS are depicted in Fig. 4.
The STARS solutions of oil rate and water cut are
shown as smooth curves, whereas the TESIS solutions
are shown as ragged curves, especially after 200 days.
The agreements between both numerical methods are
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Fig. 3 Initial Conditions of Pressure and Water Saturation for
2D Case, (a) Initial Oil Pressure (kPa), (b) Initial Water
Saturation
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Fig. 4 Comparison of Production Performances of 2D
Simulation, (a) Oil Rate and Water Cut, (b) Oil
Recovery

considered satisfactory, especially before 200 days.
The departure appears after 200 days when break-
through of the hot water of about 100°C has occurred.
The lower oil rates of TESIS were most likely a result
of the significant contribution of viscosity forces. As
illustrated in Fig. 5 for the viscosity and density of
heavy oil used in this study, the viscosity decreases dra-
matically with a rise in temperature but the density
changes are relatively less. In the sequential method,
the new streamlines were obtained using the tempera-
tures at the start of time step, which made the stream-
line velocity lower. Consequently, the new rate of
heat flow was insufficient to attain the high temperature
breakthrough. This is a known problem associated
with the streamline methods based on an IMPES
sequential approach, which causes unstable behavior
when the fluid properties are a strong function of pres-
sure.

The sensitivity of the solution to the number of
streamlines is also demonstrated in Fig. 4. Figure
4(b) indicates that the solution improve with increasing
number of streamlines. All these streamline solutions
were obtained with the irregularly spaced 7 grid on the
streamlines. The dashed line with square symbol (150
SL-RG) illustrates a solution with the regular 7 grid
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Fig. 5 Viscosity and Density of Heavy Oil Used for
Simulation

using 150 streamlines. The number of nodes for the
regularly spaced 7 was determined as the number of the
grid-blocks that a streamline passed through multiplied
by two?. Transforming onto a regular 7 grid tends to
reduce the computing time of the simulation as con-
firmed by examples, but becomes a source of numerical
diffusion in the streamline method” which would
explain the obtained lower oil recovery among others in
Fig. 4(b). Analysis of the streamline number and the
7 grid size was primarily done to confirm whether the
simulation speed of this model could be improved.

Effects of hot water-flooding to improve recovery in
a heavy oil reservoir can be observed in Fig. 4(a).
The onset of increased oil production coincides with
the breakthrough of heated water to the producer at
about 100 days. The water cut increases significantly
in the early period, and then decreases again consistent-
ly with increase in the oil production.

Figures 6-8 present visual comparisons of the pres-
sure, water saturation, and temperature distributions
obtained by TESIS and STARS. These figures pro-
vide insight into the reasons for the similarities and dif-
ferences depicted by the production performance
curves in Fig. 4. The distortion of the fronts of water
saturation and temperature was caused by the high het-
erogeneity of permeability. The presence of a more
permeable region at the left top caused the growth of
the front zone to deviate from predominant flow direc-
tion and veer to the left. This pattern appears to be
similar in the results of both models.

Until 200 days, hot water injected nearly balanced
total production, but the total production from the
reservoir thereafter exceeded hot water injected by
about 25%. This changed the streamline pattern (see
Figs. 9(a), (b)), and the need for re-mapping of tem-
perature back to the grid after solving on the stream-
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Fig. 6 Comparison of Pressure Distributions of 2D
Simulation, (a) po (kPa) after 60 days or 0.64 PVI, (b)
po (kPa) after 200 days or 2.12 PVI

TESIS STARS

(b) S., after 200 days or 2.12 PVI

Fig. 7 Comparison of Water Saturation Distributions of 2D
Simulation, (a) Sw after 60 days or 0.64 PVI, (b) Sw
after 200 days or 2.12 PVI
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(b) T (°C) after 200 days or 2.12 PVI

Fig. 8 Comparison of Temperature Distributions of 2D
Simulation, (a) T (°C) after 60 days or 0.64 PVI, (b) T
(°C) after 200 days or 2.12 PVI

(b) Streamline Pattern at 200 days

(a) Streamline Pattern at 100 days

Fig. 9 Streamline Patterns Colored by Time-of-flight, (a)
Streamline Pattern at 100 days, (b) Streamline Pattern
at 200 days

lines became apparent. As re-mapping back to the
grid produces smears in the temperature solution, the
material balance in general is not preserved exactly.
This explains the higher total material balance error in
TESIS rather than STARS shown in Table 2. Figures
9(a) and (b) show that the streamline pattern changed
significantly between 100 and 200 days. It is impor-
tant to note that although the streamline pattern is
changed, it consistently reflects the permeability field
of the reservoir.

There are a few missed grid-blocks in Figs. 9(a),
(b). Missed grid-blocks typically have very low flow
rates and thus very large 7's associated with them as
shown by the red color at the edge corner regions in
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Table 2 Comparison of Total Material Balance Error between
TESIS and STARS

Total material balance error

Time
days  TESIS2D STARS2D TESIS3D  STARS 3D
60 1.94E-2 5.48E-5 2.02E-2 1.63E-3
100 2.89E-2 1.75E-5 3.11E-2 1.97E-3
200 5.24E-2 1.64E-4 6.56E-2 2.02E-3
225 5.43E-2 1.71E-4 6.76E-2 2.00E-3
250 5.55E-2 1.86E-4 6.90E-2 1.97E-3
275 5.61E-2 1.85E-4 7.05E-2 1.93E-3
300 5.69E-2 2.04E-4 7.11E-2 1.89E-3
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Fig. 10 Effects of Time Step Size on Production Behavior, (a)
Qil Rate and Water Cut, (b) Oil Recovery

these figures.

Effects of the sequential time step for solving the
mass balance and the energy balance equations are
presented in Fig. 10. In this case, called Case-01, we
ran TESIS and STARS using the numerical control (the
maximum changes in the basic variables allowed over a
time step) as (dp)max =490.3 kPa, (dSw)max =0.2, and
(dT)max = 25°C.  As these values except (dSw)max Were
much larger than those for Base-Case, the time step
size tended to be larger in Case-01 than in Base-Case.
With a larger time step, the lower temperature of the
previous time step is used for calculating mobility, and
this causes still lower streamline velocity. As a result,
the onset of incremental oil production is delayed, and
the oil rate curve is shifted to the right leading to a larg-
er difference between TESIS and STARS. In the
STARS solution, pressure and temperature are solved
implicitly, and completely aligned for each time step.
The oil recovery for TESIS was also lower than for
STARS. As expected, however, the total sequential
iterations observed decreased significantly from 44 in
Base-Case to 22 in Case-01.

5.3. Examples of 3D Problem

We next ran the developed model with a 3D homo-
geneous reservoir of 75X 75 x5 m? to examine how
gravitational effects could be calculated. A grid sys-
tem of 10 x 10 x 2 was employed, and horizontal per-
meability of 1000 md and vertical permeability of 500
md were assigned to all grids. The initial pressure and
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Fig. 12 Comparison of Production Performances of 3D
Simulation, (a) Oil Rate and Water Cut, (b) Oil
Recovery
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(b) T (°C) after 200 days or 2.12 PVI

Fig. 13 Comparison of Temperature Distributions of 3D
Simulation, (a) T (°C) after 60 days or 0.64 PVIL, (b) T
(°C) after 200 days or 2.12 PVI

water distributions are shown in Figs. 11(a) and (b),
respectively. Other data were identical to those used
for the 2D simulation.

The production performance obtained by TESIS is
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(a) S, after 60 days or 0.64 PVI
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(b) S.. after 200 days or 2.12 PVI

Fig. 14 Comparison of Water Saturation Distributions of 3D
Simulation, (a) Sw after 60 days or 0.64 PVIL, (b) Sw
after 200 days or 2.12 PVI

shown in Figs. 12(a), (b) together with the results of
STARS. The major difference is the onset time of
incremental oil production, about 100 days for TESIS
against about 125 days for STARS. The difference is
caused by the gravity under-ride occurring in this dis-
placement process. TESIS modeled this gravity effect
in more detail compared with STARS as shown in Fig.
13. A significant gravity tongue was developed in the
lower layer (see Fig. 13(b)) which led to early break-
through of the injected hot water and caused higher
production. This is also the reason for the higher oil
rates obtained by TESIS than by STARS between 100
and 200 days (see Fig. 12(a)). Comparisons of the
water saturation and pressure profiles shown in Figs.
14 and 15 also provide insight into the early increase of
oil production. The final water saturation distribution
in the upper layer remained low, particularly in regions
with less contact with the injected fluid.

Streamlines also highlight how the fluids move
through a reservoir depending on local conditions.
Figures 16(a), (b), and (c) illustrate the streamlines of
the water, oil, and total flows, respectively. The
streamlines demonstrate how each phase flows.
Water flows to the bottom of the reservoir in advance
towards the production well due to gravity since it is
heavier than oil, whereas oil flows from the bottom to
the top of the reservoir. The total fluid flow demon-
strates the tendency of the fluid to flow to the bottom
resulting in high production rate from the second layer
as discussed above. Figures 16(a) and (b) also indi-
cate the strong contrast in flow velocity between the
water and oil phases caused mainly by the differences
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(b) p, (kPa) after 200 days or 2.12 PVI

Fig. 15 Comparison of Pressure Distributions of 3D

Simulation, (a) po (kPa) after 60 days or 0.64 PVI, (b)
po (kPa) after 200 days or 2.12 PVI
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(a) Streamlines for Water Flow (b) Streamlines for Oil Flow

(c) Streamlines for Total Flow

Fig. 16 Streamline Patterns of Fluid Phases at 250 days, (a)
Streamlines for Water Flow, (b) Streamlines for Oil
Flow, (c) Streamlines for Total Flow

in viscosities. The maximum time-of-flight, 7, of all
the water streamlines, calculated with the pressure field
at 250 days, was estimated to be about 450 days for the
travel between the injector and producer, whereas that
of the oil phase was 26,000 days.
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6. Conclusions

We derived a mathematical model for heat transport
based on the streamline method. A numerical scheme
using an operator splitting technique was applied to
decouple the convection and the diffusions parts for
separate solution. A thermal simulator utilizing
sequential solutions of mass and heat flow equations
was constructed to test this scheme. Simulations of
hot water-flooding in 2D and 3D heavy-oil reservoirs
were conducted to demonstrate the performance of the
developed model.

The results of the 2D simulation compared well with
the results of a commercial thermal simulator.
Excellent agreements were obtained for the oil recov-
ery performance. The solutions for the heat transport
equation were obtained using the irregularly spaced 7
grid not restricted by CFL conditions. The practical
time step was 0.2 to 1.0 times the time step for the pres-
sure solutions. In the 3D simulation, the streamline
method demonstrated in more detail how the gravity
under-ride mechanism affects the production perfor-
mance. The test simulations demonstrated that the
streamline approach could correctly model thermal
transport and therefore is a viable alternative to conven-
tional finite-difference models for the heat transport
calculation within a thermal simulator. TESIS proved
to be no faster than STARS due to inadequate LU
decomposition of the matrix solver used in TESIS.
However, there is potential for speedup. From the
present examples, we found that TESIS required 43
time steps for the 2D model and 40 time steps for the
3D model compared to STARS that required 52 and 63
time steps, respectively. TESIS decoupled the mass
and energy conservation equations as opposed to solv-
ing them simultaneously in STARS, which results in
the smaller time step requirement.

Further work is to implement an appropriate rule of
time-step selection for this numerical scheme, to devel-
op an implicit streamline thermal simulator in which
saturation and temperature are solved simultaneously
along streamlines, and to improve the calculation time.
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Nomenclatures
Ax : cross section x-direction [m?]
cr : rock compressibility [Pa]
Cr : specific heat of rock [kJ/(kg-°C)]
Cy : specific heat of gas phase [kJ/(kg-°C)]
D : depth of gridblock from datum [m]
fa : fractional flow of phase o [fraction]
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Ho  :enthalpy of phase o [kJ/kg]

k : absolute permeability [m?]

ka : time step size for diffusion solution [day]

Kn : total thermal conductivity [kJ/(m*sec-°C)]

kre  :relative permeability of phase o [—1

Na : number of time step for diffusion solution [—1

n : unit vector outward normal to the boundary 0Q [—1]

Pewo  : water-oil capillary pressure [Pa]

pret  : reference pressure [Pa]

P : pressure of phase o [Pa]

qo : source or sink flow rate per unit reservoir volume
[kg/(day )]

K : local streamline coordinate [m]

Sa : saturation of phase o [fraction]

T : temperature [°C]

t : time [day]

Ug : Darcy velocity of phase o [m/day]

X : Cartesian domain, (x, y, 7) [—I]

<Greeks>

At : time step size [day]

Ax : gridblock dimension in x-direction [m]

Az : gridblock dimension in z-direction [m]

4 : spatial distance coordinate along streamline [m]

A : total mobility [(m?-day)/kg]

e :mobility of phase o [(m?-day)/kg]

Ho : viscosity of phase o [Pa-day]

Q : reservoir domain [—1

pr : rock density [kg/m?]

pa  :density of phase o [kg/m3]

T : time-of-flight [day]

[0) : porosity [fraction]

¢rer  : porosity at reference pressure [fraction]

<Subscripts>

c : convection

cr : critical

d : diffusion

g : gas

i, ], k : gridblock indices

inj : injection

o :oil

sc : surface conditions

t : total

vap :vapor

w © water

<Superscripts>

k,n  :number of time step

o : initial conditions

v : number of Newton iterations

w s well
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