
1. Introduction

Combinatorial catalysis is now commonly used as a
promising tool for catalyst research and development.
Various tools were demonstrated in special issues of
Catalysis Today1) and Applied Catalysis A2) in 2003.
Combinatorial and rapid library synthesis with high-
throughput screening (HTS) is the main technology
accelerating every step of the R&D of catalysts.
Considering the complexity of advanced materials,
however, the two tools are not sufficient. If 76 non-
radioactive elements can be applied to the catalysts,
there are 2,850 binary but 18,474,840 quinary combina-
tions of these elements3). Such a number of combina-
tions is clearly too much for even the most advanced
HTS system at present. Therefore, data mining tools
such as the artificial neural network (ANN) and genetic
algorithm (GA) are used to compensate.

We reported optimization of the Cu_Zn oxide cata-
lyst for methanol synthesis using HTS with 96 parallel
reaction lines4), ANN to correlate catalyst parameters
with activities, and GA5)～8) or a grid search (formerly
reported as all-encompassing calculation9)～11)) to find

the global maximum on the artificial neural network.
Random parameters for the catalyst were used in these
previous experiments to obtain training data for the
ANN because such dispersed data were thought to give
better networks. Rather large numbers of datasets are
necessary in this method and additional data are some-
times required for re-training of the ANN for more pre-
cise prediction. A better and well-designed dataset for
effective training of ANN is necessary.

Statistical design of the experiment was applied for a
few catalysts to identify the important factors among
catalyst composition, preparation parameters and reac-
tion conditions12)～15). The quantitative influence of the
parameters was estimated using a polynomial model
and a regression technique14). The apparent complexi-
ty of the statistical method can be simplified by the
Taguchi method13),15),16). The orthogonal array can
reduce the number of necessary experiments, while
maximizing the amount of information derived from
the reduced experiment set. Such arranged datasets
seem suitable for ANN training17)～19). The resulting
ANN gives good predictions for the output parameter
of the ANN such as activity and selectivity. The glob-
al optimum on the ANN was found rapidly with the
assistance of a grid search18)～20). More precise predic-
tions are of course possible by ANNs trained by a large
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numbers of datasets if HTS is available at data-gather-
ing. Otherwise, the combination of DOE, ANN and a
grid search can be applied as a substitute for HTS.

Experimental design with an orthogonal array was
implemented to identify better conditions of Co_MgO
preparation for high pressure dry reforming of methane
in this study. The reaction converts greenhouse gases
(methane and carbon dioxide) at the same time to use-
ful syngas with a low hydrogen/carbon monoxide ratio,
which is suitable for the oxo-reaction and Fischer-
Tropsch synthesis. Dry reforming of methane should be
carried out under high pressure for correct evaluation of
the catalyst because methane pressure is high in a natural
gas field and Fischer-Tropsch synthesis is performed at
high pressure21). If the experiment is run at high pres-
sure, rate of carbon formation is high and the most seri-
ous problem with the dry reforming of methane is car-
bon deposition, which causes catalyst deactivation,
plugging of the reactor, and breakdown of the catalyst.
Only a few catalysts, such as Ni_CaO_MgO22), Mo, W
carbide23), Ni_MgO24), Co/TiO225), and Co_MgO26) are
effective non-noble metal catalysts under pressure.
The Co_MgO catalyst prepared by the oxalate co-pre-
cipitation method showed high activity26a), whereas the
H2/CO ratio of the product gas was about 0.8, lower
than that expected from the stoichiometry of dry
reforming because of the reverse water gas shift reac-
tion26b). Furthermore, we found carbon deposition on
the Co_MgO catalyst was suppressed if prepared using
the citric acid method. Preparation parameters for this
method were evaluated to obtain a catalyst with higher
activity and lower carbon deposition.

2. Experimental

2. 1. Catalyst Preparation
Cobalt nitrate and magnesium nitrate were dissolved

in melting citric acid monohydrate in a beaker heated
on a hot-plate. The resulting mixture was treated in a
vacuum oven at 70°C for 3 h and then calcined in air at
170°C for 1 h and at 400-700°C for 4 h.
2. 2. Activity Tests

Dry reforming of methane was conducted in a fixed
bed flow reactor. A reactor tube made of quartz was
inserted in a stainless steel tube. Catalyst was packed
inside the quartz tube to prevent direct contact of the
reaction gas with the stainless tube. Nitrogen was fed

between the two tubes. After the catalysts were
reduced with H2 at 850°C for 10 min under 0.1 MPa,
reactant gas (CH4/CO2 = 1) was introduced into the cat-
alyst bed at 750°C under 1 MPa, and the SV (space
velocity) was set to 400,000 ml/g/h. Analysis of the
reaction products was performed with an on-line gas
chromatography (micro-GC, M-200, Agilent Technol-
ogies, Inc.). The catalytic activity was indicated as
the yield of CO (CO production rate/CH4 + CO2 feed
rate). The amounts of carbon depositions on the cata-
lysts were quantified by carbon dioxide produced dur-
ing temperature programmed oxidation (TPO) in an air
flow after the reforming reaction.

3. Methodology

3. 1. Design of Experiment (DOE)
An L9 orthogonal array as shown in Table 1 was

used for DOE16). Only nine experiments as shown in
Table 2 are necessary for four factors with three levels
instead of 81(= 34) experiments. One of the advan-
tages of the Taguchi method is the modest requirement
for experiments. The three levels of each parameter
are listed in Table 2.
3. 2. Artificial Neural Network (ANNs)

Artificial neural networks were applied to correlate
the preparation parameters with the catalytic activity.
Among the many types of ANNs, the back propagation
network (BPN) has been applied successfully to cata-
lyst design. The BPN is a supervised learning and
feed-forward type network which is modified by an
epoch-by-epoch backward calculation minimizing errors
between the target and predicted data. The important
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Table 1 L9 Orthogonal Array

No.
Level of Parameter

A B C D

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Table 2 Parameter Levels for DOE and Intervals for a Grid Search

Parameter
DOE Grid search

Level 1 Level 2 Level 3 Range Interval Samples

A. Co content [mol%] 7 10 12 7-12 0.5 11
B. Calcination temp. [°C] 400 550 700 400-700 10 31
C. Citric acid [eq.] 1.0 1.5 2.0 1-2 0.1 11
D. Pelletization [kg/cm2] 0 300 600 0-600 100 7



checkpoint of BPN application is to avoid overtraining,
which causes loss of generalizability of the BPN.
Usually extra validation data is used to avoid the over-
training and the structure of the BPN is optimized to
reduce the errors. Recently, the radial basis function
network (RBFN) has also attracted much attention as
an optimization tool in a variety of engineering fields
because it is robust and suffers only slightly from over-
training. The apparent structure of the RBFN is simi-
lar to that of the BPN with only one hidden layer, in
which a radial basis function is used instead of an S-
shaped sigmoid function. During training, the center
points of the radial basis functions are decided by train-
ing data, so the input datum for the RBFN is a vector.
Then weights between the hidden layer and the output
layer are determined to fit the output data to the train-
ing data. The RBFN was constructed using STATIS-
TICA Neural Network 6.0 software (StatSoft).
Normalized catalyst preparation parameters, such as Co
content, amount of citric acid, calcination temperature,
and pelletization pressure, were given to the input
layer. Catalytic performance, such as CO yield and
carbon deposition after 4 h reaction, were issued from
the output layer. The number of nodes in a hidden
layer was set as identical to that of the training data.
We determined 9 catalyst parameter sets for RBFN
training as described above.
3. 3. Optimization Using the ANN

A grid search20) was conducted using the macro com-
mands of STATISTICA to find the global maximum of
the ANN9)～11). All combinations of parameters were
generated. Calculation intervals for Co content, calci-
nation temperature, amount of citric acid, and pelletiza-
tion pressure were 0.5 mol%, 10°C, 0.1 equivalent, and
100 kg/cm2, respectively, as shown in Table 2. The
number of possible combinations was 26,257. Then
the trained ANN predicted CO yields using each
parameter set. The global maximum could then be
predicted. Similar methods have been reported as
“all-encompassing calculation”9～11) or “computational

scanning”18). Then the predicted CO yields were plot-
ted as a function of a key parameter. The plots repre-
sent the activity envelope from the view point of the
key parameter and the optimum key parameter for the
global maximum catalyst, and the shape around the
maximum can easily be displayed. The next impor-
tant feature of the target catalyst is carbon deposition
during dry reforming of methane. Therefore, the opti-
mum catalyst will be discovered among catalysts with
small amounts of carbon deposition. Catalysts with
more than 5 mg/g carbon deposition and less than 30%
CO yield were removed from the 26,257 catalysts
formed by a grid search and then the same optimization
procedure was repeated to find the optimum catalyst.

4. Results and Discussion

The results of activity test using a conventional fixed
bed reactor are summarized in Table 3. Training of
the RBFN was easily achieved and the all-encompass-
ing calculation was performed using the RBFN. All
the predicted 26,257 CO yields are plotted as functions
of Co content, calcination temperature, citric acid, and
pelletization pressure in Fig 1. The optimum Co con-
tent for the highest activity in the RBFN was found
quite easily as 8.5 mol%. In the same way, other opti-
mum parameters could be identified. Carbon deposi-
tion on the catalysts is shown in Fig 2. The effect of
preparation parameters on carbon deposition can be
predicted from these figures. However, the relation-
ship between CO yield and carbon deposition is rather
complicated as shown in Fig 3. To identify the prep-
aration conditions for high activity and low carbon
deposition, parameters for catalysts with CO yield less
than 30% and carbon deposition more than 5 mg/g
were removed from Fig 1. The result is illustrated in
Fig 4. Preparation conditions for the optimum cata-
lysts are very limited by the above constraints. From
Fig 4(a), for example, it is clear that all catalysts con-
taining more than 11 mol% Co yield more than 5 mg/g
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Table 3 Activity of Catalysts Prepared According to DOE

Co content
Calcination

Citric acid
Pelletization

CO yield
Carbon

No. temperature pressure deposition
[mol%]

[°C]
[eq.]

[kg/cm2]
[%]

[mg/g]

1 7 400 1.0 0 24.2 63
2 7 550 1.5 300 16.5 19
3 7 700 2.0 600 0 95
4 10 400 1.5 600 22.3 47
5 10 550 2.0 0 32.2 244
6 10 700 1.0 300 0 106
7 12 400 2.0 300 23.9 70
8 12 550 1.0 600 28.6 2332
9 12 700 1.5 0 0 55

10 9 400 1.7 0 33.8a) 52a)

a) Predicted values were 35.8%, 1.2 mg/g, respectively.



carbon deposition. The predicted optimum catalyst is
listed in Table 3 (No. 10), and the activity and carbon
deposition were experimentally verified according to
the prediction.

Usually an active catalyst with a high CO yield tends
to develop a large amount of carbon deposition as
shown in Fig 3 and in Fig 4. The optimized catalyst
shown as the closed circle in Fig 5 achieved both high
activity and low carbon deposition at the same time.
We previously reported that CO yield and carbon depo-
sition after 4 h reaction of 7 mol% Co_MgO prepared
by an oxalate co-precipitation method was 37% and
630 mg/g, respectively, under the same reaction condi-
tions26c). The result shows that modification of the
preparation conditions of the citric acid method suc-
ceeded in preparing an active catalyst with much less
carbon deposition. The surface area of MgO prepared
by the citric acid method was increased if excess citric
acid was used27). The target catalyst (No. 10 in Table
3) was prepared with excess citric acid over the stoi-

chiometric amount, so high surface area of the catalyst
may be the cause of the high activity. More detailed
experiments, however, are necessary for understanding
the mechanism of high activity and low carbon deposi-
tion5).

5. Conclusion

Development of a Co_MgO catalyst for dry reform-
ing of methane was conducted using a DOE, an ANN
and a grid search. The preparation parameters such as
Co loading, amount of citric acid, calcination tempera-
ture, and pelletization pressure were evaluated to devel-
op a catalyst with a high activity and low carbon depo-
sition. The nine sets of preparation parameters were
designed using an L9 orthogonal array. After perform-
ance of the nine catalysts were measured in a conven-
tional pressurized fixed bed reactor, an ANN was con-
structed to find the global maximum with low carbon
deposition by a grid search. The resulting catalyst
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Fig. 1 Projected CO Yield for All Catalysts against (a) Co Content, (b) Calcination Temperature, (c) Citric Acid,
(d) Pelletization Pressure



was verified by experiment. The activity was higher
than those of the nine catalysts designed by DOE, and
the carbon deposition was at the lowest level except
two. The ANN trained by the DOE data identified a
superior catalyst to those prepared based on the DOE
data. DOE combined with ANN and a grid search is
useful for catalyst development.
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Open square: DOE catalysts, closed circle: optimum catalyst.

Fig. 5 Comparison of Catalytic Performance
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要　　　旨

実験計画法, 人工ニューラルネットワーク, グリッドサーチによる

メタンの高圧ドライリフォーミング用 Co-MgO触媒の開発
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メタンのドライリフォーミング反応は温暖化ガスを合成ガス

へ転換する反応として注目されるが，高圧における炭素析出の

抑制が課題となっている。高活性低炭素析出の Co_MgO触媒

が得られるクエン酸調製法の調製条件を実験計画法，人工ニュ

ーラルネットワーク（ANN），グリッドサーチにより探索した。

コバルト含有量，クエン酸量，焼成温度，成型圧力を L9直交

表により設定し，9種類の触媒を調製し，高圧固定床流通式反

応装置により活性と炭素析出量を測定した。その結果を ANN

で学習してグリッドサーチにより ANN中の最適点を得た。さ

らに，高活性低炭素析出の触媒が得られたことを実験的に検証

した。これら三つの手法の組合せにより触媒の迅速な改良が可

能となった。


