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Abstract. The overall structure is one of the most important properties
of block ciphers. At present, the most common structures include Feistel
structure, SP structure, MISTY structure, L-M structure and Gener-
alized Feistel structure. In [29], Choy et al. proposed a new structure
called GF-NLFSR (Generalized Feistel-NonLinear Feedback Shift Regis-
ter), and designed a new block cipher called Four-Cell which is based on
the 4-cell GF-NLFSR. In this paper, we first study properties of the n-
cell GF-NLFSR structure, and prove that for an n-cell GF-NLFSR, there
exists an (n? 4 n — 2) rounds impossible differential. Then we present an
impossible differential attack on the full 25-round Four-Cell using this
kind of 18-round impossible differential distinguisher together with dif-
ferential cryptanalysis technique. The data complexity of our attack is
21115 and the time complexity is less than 2235 encryptions. In addi-
tion, we expect the attack to be more efficient when the relations between
different round subkeys can be exploited by taking the key schedule al-
gorithm into consideration.

Key words: GF-NLFSR structure, Four-Cell block cipher, Impossible
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1 Introduction

The overall structure is one of the most important properties of block ciphers,
and it plays important roles in the round number choice, software and hard-
ware implementation performances and so on. At present, the most often used
structures include Feistel structure, SP structure, MISTY structure, L-M struc-
ture and Generalized Feistel structure. Feistel structure was introduced by H.
Feistel in the design of Lucifer block cipher and later got famous since it was
used in the design of DES. Feistel structure can transfer any function (usually
called round function F') to a permutation. Now there are a lot of block ciphers
employing the Feistel structure, such as Camellia, FEAL, GOST, LOKI, E2,
Blowfish, RC5 and so on. The security of Feistel structure against differential
and linear cryptanalysis was evaluated by many researchers, for example [1-3],
and meanwhile there are many results such as [4-10] about the pseudorandom-
ness of Feistel structure. Besides the Feistel structure, the other most often used
structure is the SP structure, the well known block ciphers such as AES, Serpent
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and ARIA all employ the SP structure. In each round of the SP structure, first
a layer of key-dependent inversive function named S is applied to the input,
and then applies a permutation or an inversive linear transformation named P.
Hence the SP structure is very simple and clear, and S is usually called the con-
fusion layer which achieves confusion in the cipher and P is usually referred to
as the diffusion layer which diffuses efficiently. MISTY structure is another kind
of important structures which was proposed by M. Matsui in [11], and it was
used in the design of the block ciphers MISTY [12] and KASUMI [13]. There
are many results about the security analysis of the MISTY structure such as
in [14-17]. S. Vaudenay et al. named the structure of the block cipher IDEA
as the L-M structure or Lai-Massey structure [18], and the FOX [19] cipher
also employs a variant of the L-M structure. The generalized Feistel structure
was first introduced by B. Schneier and J. Kelsey which can be considered as
an unbalanced Feistel structure, and then many variants of generalized Feistel
structure are proposed such as CAST-256-type Feistel structure, MARS-type
Feistel structure, CLEFIA-type Feistel structure, SMS4-type Feistel structure
and so on. All these kinds of generalized Feistel structures have similar advan-
tages such as decryption - encryption similarity and the inverse of round function
is not necessary in decryption. Furthermore, this can make the design of round
function more simple and flexible. The security analysis of generalized Feistel
structure is very important when they are used to design new block ciphers, and
there are many results [25-28] about the security of different kinds of generalized
Feistel structures against the differential and linear cryptanalysis and also their
pseudorandomness.

In [29], Choy et al. proposed a new structure called GF-NLFSR (Generalized
Feistel-NonLinear Feedback Shift Register). It can be considered as an n-cell
extension of combining the MISTY structure and Generalized Unbalanced Feis-
tel Network together. The security of the structure against many attacks such
as differential, linear, impossible differential and integral cryptanalysis are also
considered in [29]. For an n-cell GF-NLFSR, an upper bound for the differential
and linear hull probabilities for any n + 1 rounds are given, and a 2n — 1 rounds
impossible differential distinguisher and a 3n — 1 rounds integral distinguisher
on the n-cell GF-NLFSR, are demonstrated. Furthermore, a new block cipher
called Four-Cell which is based on the 4-cell GF-NLFSR was designed in [29)].
The block and key size of Four-Cell are both 128-bit, and there are 25 rounds
in total.

Impossible differential cryptanalysis [30] was first proposed by Biham, Biryukov
and Shamir in 1999, and it was applied to analyze the Skipjack block cipher.
Unlike differential cryptanalysis which exploits differentials with the highest
possible probability, impossible differential cryptanalysis uses the differentials
which hold with probability 0, which can thus be called impossible differen-
tial. The impossible differentials can usually be built in a miss-in-the-middle
manner. Recently, impossible differential cryptanalysis had received worldwide
attention, and its application to block ciphers such as AES, Camellia and MISTY
all achieved very good results [31-35].
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In [29], Proposition 3 stated that for an n-cell GF-NLFSR, there exist at
most 2n — 1 rounds impossible differential distinguishers using the U-method
proposed in [36]. However, we examine the property of n-cell GF-NLFSR struc-
ture and demonstrate that there exists a (n?+n—2) rounds impossible differential
distinguisher. Then we present an impossible differential attack on the full 25-
round Four-Cell using this kind of 18-round impossible differential distinguisher
together with differential cryptanalysis technique.

This paper is organized as follows. In Section 2, we give a brief description
of the n-cell GF-NLFSR structure and Four-Cell block cipher. In Section 3,
we describe some useful properties of the n-cell GF-NLFSR structure and the
(n? + n — 2) rounds impossible differential. Then in Section 4, we present our
impossible differential attack on the full 25-round Four-Cell block cipher. Finally,
in Section 5 we summarize this paper.

2 The n-Cell GF-NLFSR Structure and Four-Cell Block
Cipher

2.1 The n-Cell GF-NLFSR Structure

In this section, we will give a brief description of the n-cell GF-NLFSR structure,
and Fig. 1 below illustrates one round of GF-NLFSR.

For an n-cell GF-NLFSR structure, suppose the size of the internal sub-block
is m-bit, and then we can denote the mn-bit input block as (z1, 2,23, ..., T,) €
({0,1}™)™. If we denote the round subkey as sk, then the output of one round
n-cell GF-NLFSR transformation is defined as follows.

T2 = T2,
T3 = I3,
Tn = Tn,

Tnt1 = f(x1,8k) D22 ® x3... D )

where the output block is denoted as (2,3, ..., Tn, Tnt1) € ({0,1}™)". Note
here the symbol @ is used to denote finite field addition (XOR) over GF'(2)™, and
the function f : {0,1}™ x {0,1}* — {0,1}™ is the round function. Specifically,
for each fixed round key sk, the round function f(-, sk) : {0,1}™ — {0, 1} must
be a permutation, or else the n-cell GF-NLFSR structure is not able to decrypt
correctly. Therefore, in our later analysis, we will assume the round function f
is a permutation when the round key is fixed.

2.2 Four-Cell Block Cipher

The block and key size of Four-Cell are both 128-bit, and it uses the 4-cell GF-
NLFSR structure. Since the designers only give a rough suggestion for the key
schedule algorithm, namely using a similar cipher with 26 rounds to generate
the round keys needed. Hence in this paper, we will omit the key schedule and
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Fig. 1. One Round of n-Cell GF-NLFSR structure

just assume that the round keys are randomly chosen. The encryption algorithm
of Four-Cell can be described briefly as follows.

Let the plaintext be denoted by P = (z1, 72, z3,74) € ({0,1}3?)%, then after
applying the full 25 rounds encryption, the 128-bit ciphertext can be denoted
by C. Let (24, Zit1, Tiva, Tivrs3) € ({0,1}32)* denote the input of the i-th round,
then the output of the i-th round can be computed as follows.

Tit1 = Ti+1,
Ti42 = Ti42,
Ti4+3 = Li+3,
Tiyq = fi(wi, ski) © Tiv1 © Tiva O Tiy3.

For rounds ¢ = 1,2,..,5 and ¢ = 21,22, .., 25, the round keys are denoted as
sk; € {0,1}32 and the round function is defined as f;(z;, sk;) = MDS(S(z; ®
sk;)). For rounds ¢ = 6,7, .., 20, the round keys are denoted as sk; = (skio, ski1) €
({0,1}3?)2, and the round function is defined as f;(x;, sk;) = S(MDS(S(x; ®
Sk’io)) D Skil).

Here in each round function, S : ({0,1}*)* — ({0,1}%)* is four parallel
8 x 8 s-boxes, and the s-box is similar with the s-box used in the SubBytes
operation in AES. The transformation M DS : ({0,1}%)* — ({0,1}8)* is a 4-byte
to 4-byte maximal distance separable transform with optimal branch number
5, and it is similar with the MixColumn operation in AES. In the end, the
output after 25 rounds is XORed with a 128-bit post-whitening key Ko =
(k‘26)1,k26’2,k26,3,k‘26)4) to get the ciphertext, namely C = (1‘26 ©® k‘26,1,x27 (&3]
kae,2, xag ® kos 3, T29 ® kag.a)-
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3 Differential Property of the n-Cell GF-NLFSR
Structure

For the n-cell GF-NLFSR structure, we can express the mm-bit input as n
words which consists of m bits each. Suppose we have a pair of plaintexts
X = (21,22, T3, ...,x,) and X* = (27, x5, 2%, ..., 2}), and their difference is de-
noted by AX = (Axq, Axg, ..., Azy,), where Az = 21 @ 27, ..., Az, = x, © z).
Note the symbol 0 in the difference AX = (Azy, Azg, Axs,0,...,0) means that
the corresponding byte difference is zero.

Lemma 1. For the n-cell GF-NLFSR structure, there exists the following n
rounds differential characteristic whose probability is equal to 1.

(Al‘l, AIQ, ceey Al‘i_l, Axi,O, ceey 0) wib—) (Ayl, Ayg, ceey Ayi, Ayi+1, 0, ceey 0)

We denote this kind of differential characteristic as A;, where 1 < i <n —1,
and these differential characteristics A; satisfy the following two properties.

2. If Ax; # 0, then Ay;11 # 0.

Proof. Let the round function of Round ¢ be fq, (z;) = fi(zi, sk;). Then when
the round key sk; is fixed, the round function fs, must be a permutation, or else
one can not decrypt correctly for the n-cell GF-NLFSR structure. According to
the structure of the n-cell GF-NLFSR, we can get the following equations which
is illustrated in Table 1.

Ayt = for, (1) B fory (1 B Azy) ® Azo & ... & A, (1)
Ay = fsiy (@) B for, (i ® Az;) & Ay1 & ... & Ay;—q. (2)
Ayipr = Ay1 & ... & Ay;—1 & Ay;. (3)

Table 1. The n rounds differential characteristic of the n-cell GF-NLFSR structure

Round\Diff. Axq Axo o Azxi_q Az; 0 o 0
1 Axo Axs o Ax; 0 . 0 Ayr
i —1 Aml 0 [N 0 0 Ay1 PN Ayl;l
7 + 1 0 O Ay1 N Ayi,1 Ayl Ayi+1
1+ 2 0 Ay1 - AyFl Ayi Ayi+1 0
n Ayr Ayo . Ay; Ayig 0 . 0
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According to Equ. (3), the following one round differential characteristic will
hold with probability 1.

(Oa ) 07 Ayla EE) Ayi—la Ayla Ayi-‘rl) ﬂd_) (07 ) 07 Ayla EES) Ayzv Ayi+170)'

Similarly, we can know that all the differential characteristics from Round (i +2)
to Round n in Table 1 hold with probability 1. Therefore, for the n-cell GF-
NLFSR structure, there exists the following n rounds differential characteristic
and its probability is equal to 1.

(Axlv Aan ey A'ri—la A'riv Oa ey O) Lundb} (Aylv Ay27 ceey Ayia Ayi-‘rla 07 70)

Then according to Equ. (3), we can easily get the first property, i.e. Ay; @
Ays @ ... & Ay; & Ay; 1 = 0. Therefore, in the following we only need to prove
the second property.

According to Equ. (2) and Equ. (3), we can get the following equation.

AYip1 = Ay1 @ ... ® Ayi—1 © Ay = for, (@) © fsr, (s © Axy).

When Az; # 0, we can conclude that fsg, (2;) @ fs, (; & Ax;) # 0 since the
function fsr, is a permutation. Therefore, we get the second property, namely if
Aﬂﬁi 7é 0, then Ayi-i-l 7é 0. O

Lemma 2. For the inverse of the n-cell GF-NLFSR structure which is denoted
as the n-cell GF-NLFSR™! structure, there exists the following (2n — 2) rounds
differential characteristic whose probability is equal to 1.

(8,3,0, ...,0) 22=2romds (92 by by, 0).

We denote this kind of differential characteristic as Agl, where the symbol 7
denotes an unknown difference and (3, by, by denote non-zero differences.

Proof. According to the structure of the n-cell GF-NLFSR™!, we can get the
following one round differential characteristic which holds with probability 1,
and this kind of differential is illustrated in Table 2.

(67 6a07 70) ﬂ) (O7ﬂu/8707 70)

Similarly, all the differential characteristics from the Round 2 to Round (n—1)
in Table 2 all hold with probability 1. Then in the Round n, if we denote the
round function as g,, then b; = ¢,(2) ® gn(z ® 3). Because the difference g is
non-zero and the function g, is a permutation, we can conclude that b; # 0.
Similarly, in the (n + 1)-th round we have bs = g,41(w) & gni1(w & by), and
thus we can conclude that by # 0 since by # 0.

Finally, according to the property of the n-cell GF-NLFSR™! structure, the
differential characteristics from Round (n + 2) to Round (2n — 2) in Table 2 all
hold with probability 1. Therefore, for the n-cell GF-NLFSR ™! structure, there
exists the following differential characteristic whose probability is equal to 1.

(ﬁvﬁ707“'70) 2n2 rounds (?7"'7?7b27b1;0)-
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Table 2. The (2n — 2) rounds differential of the n-cell GF-NLFSR ™" structure

Round\Diff. 8 8 0 0 o 0
1 0| B3| B8] 0 0
n—2 0] o 0 B | B
n—1 0 0 ... 0 0 B

n b1 0 0 0 0
n+1 bo b1 0 0 0

2n — 2 ? e ? b b1 0

Theorem 1. For the n-cell GF-NLFSR structure, there exists the following kind
of (n® +n —2) rounds impossible differential where o and 3 are non-zero differ-
ences.

2
(a,0,...,0) LEn2rounds, g3 6 0).

Proof. This kind of (n? + n — 2) rounds impossible differential is constructed
using the miss-in-the-middle technique. First we construct an n(n — 1) rounds
differential characteristic of the encryption direction and an (2n — 2) rounds
differential characteristic of the decryption direction whose probabilities are both
equal to 1. Then if these two differential characteristics contradict each other in
the middle, we get the (n? +n — 2) rounds impossible differential. In Table 3 we
illustrate this kind of impossible differential in detail.

When we choose the input difference as (,0,...,0), we can construct an
n(n — 1) rounds differential with probability 1 as follows. First of all, based
on Lemma 1, we can construct the following n rounds differential A; whose
probability is equal to 1.

(a,0,...,0) 222 (A2 A2 0, ... 0).

Since the input difference « is non-zero, according to property 1 and 2 of Lemma
1, we know that Az3 is also non-zero and Ax? @ Ax3 = 0.

Then, we start with the input difference of (Az?, Ax3,0, ...,0), and according
to Lemma 1, we can construct again an n rounds differential Ay whose proba-
bility is 1 as follows.

(AZ‘%, Aac%,O, 70) Lunds) (AJ??, Al‘g, Aacg,O, 70)

Since Az3 is non-zero, we know that Azj # 0 and Az} & Az & Az = 0.
Similarly, we can construct the i-th (3 < ¢ <mn — 1) n rounds differential A; in
turn. In the end, the (n — 1)-th n rounds differential A,,_; is as follows, and we
can conclude that Az} # 0 and Az} ¢ Azy & Axf & ... § Az = 0.
(At 1 Azl AatTh 0) LI (Agn Az Aal . Ax).

n
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By concatenating the above differentials together, we can get the following
n(n — 1) rounds differential whose probability is equal to 1 and Az’ is non-zero.

n(n—1) rounds
—

(,0,...,0) (Azx?, Axl, Azy, ..., Ax)).

n

Table 3. The (n?+4n—2) rounds impossible differential of n-cell GF-NLFSR, structure

Round\Diff. e 0 0 e 0 0
1 0 0 0 .. 0 Ax?
2 0 0 ... 0 AzxT | Azl

3 0 0 Az | Ax3 0

n Ax? | Ax3 0 ... 0 0
n+1 Az3 0 0 .. 0 Az
n-+2 0 0 . 0 Axd | Azl
n+3 0 - 0 Axd | Az | Azl

2n Axd | Azl | Azl 0 e 0

n(n — 2) AP Azy Az~ .0 JAxPZ [ 0
n(n —1) Azt | Az | Axy . Axyy | Az

7 e ? b2 b1 0

nn—1)+1 ? b2 b1 0 0

n? -3 ba b 0 0 0

n? —2 b 0 0 .. 0 0

n? —1 0 0 0 0 B

nZ 0 0 0 B 8

n+n—3 0 3 ¢} 0

n’+n-2 || B | B | 0 | \ | o0 |

In the decryption direction, considering the inverse structure n-cell GF-
NLFSR™!, we get the following 2n — 2 rounds differential characteristic with
probability 1 according to Lemma 2.

(8,8,0,...,0) 22=2romds, 92 by by, 0).
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If we concatenate the above n(n — 1) rounds differential of the encryption
direction and the (2n—2) rounds differential of the decryption direction together,
we can construct the following (n? 4+ n — 2) rounds impossible differential since
they contradict each other at Ax].

(n?4n—2) rounds

(CY,0,0,...,O) 7L’ (5;67()’"'70)‘

4 Security Analysis of Four-Cell Block Cipher

According to Theorem 1, for Four-Cell block cipher which employs the 4-cell GF-
NLFSR structure, there exists an 18 rounds impossible differential as follows.

18 rounds

(2,0,0,0) 4 (8,5,0,0)

By setting the 18-round impossible differential distinguisher in the middle rounds,
we can present an impossible differential attack on the full 25-round Four-Cell by
analyzing the first 4 rounds before and the last 3 rounds after the distinguisher.
Note the round functions of the first 5 rounds and the last 5 rounds are all de-
fined as f;(x;, sk;) = MDS(S(xz; @ sk;)). The attack procedure is illustrated in
Fig. 2 in Appendix A.

Let the plaintext be X = (21,72, 23,74) € ({0,1}3?)%, then the intermediate
state after 3 rounds and 4 rounds encryption can be denoted as (x4, x5, ¢, T7)
and (5,2, 7, 2s) respectively. Furthermore, the intermediate state after 22
rounds encryption can be denoted as (223, a4, Ta5, T2g) and the 128-bit cipher-
text should be C' = (Cl, Cg,C3, C4) = (3326@]{12671, 5827@]{12672, $28@k26,3, ng@k2674).
Suppose we choose another plaintext X* = (z7, 3, 25, 23) € ({0,1}32)%, and the
plaintext difference can be denoted as Ax; = x; & z}.

Then for the last three rounds of Four-Cell, we have the following equations.

To7 = MDS(S(.Z'Q?, D Sk23)) ©® T24 D T25 O €26,
xog = MDS(S(x24 ® skaa)) P Ta5 B Tap & To7,
Xog = MDS(S(xa5 @ skas)) B xog ® 27 D Tos.

If we denote rkas = kag,1 ® Koe,2 © kos,3 @ k26,4, then the input of the Sbox layer
for Round 25 can be computed as follows.

Y25 = S_I(MDS_l(Cl b Co b C3 & Cq b T‘k25)) = X25 D Sk25.

Similarly, we can denote rkgs = skas @ kag,1 D kae,2 @ k26,3, and compute the
input of the Sbox layer for Round 24 as follows.

Yous = STHMDS H(c1 @ ca @ c3 D yas © rkoy)) = o4 D skoy.
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Finally, for Round 23 the output of the round function is ¢; @ co @ Y24 B Y25 B
Sk25 D Sk24 D k26,1 (&) k2672. If we denote ’I"kgg = Sk24 D Sk25 D k2671 D k26727 then
the input of the round function can be computed in a similar way.

Yoz = STH(MDS (1 @ co D you © yo5 © Tko3)) = Taz © skoa.

Therefore, considering that Axos = Ayas, Axoy = Ayoy, Axos = Ayos and
Axgg = Acy, we can obtain the values of (Axaz, Axay, Axas, Axgg) by just com-
puting the values of ya5, y24 and yo3 for a pair of ciphertexts C' = (c1, ¢a, 3, ¢4)
and C* = (¢f, ¢4, c5,¢5).

For the first four rounds of Four-Cell, if we choose the plaintext difference as
(Axq, Axg, Axs, Azy) = (0,0,0, «), then we can get the following equations.

Axs = a,
A.Tﬁ = 0,
A{E7 = 0,

Axg = MSD(S(x4 ® sks)) ® MSD(S(xs ® o ® sky)) @ a.

Here, Azg = 0 holds if and only if S(x4®sks) DS (x4 Da®sks) = MDS~(a).
Because the branch number of M DS is 5, there is at most one passive byte of
a. For simplicity, we can assume the last byte of « is passive.

Let a = (a1, a9,a3,a4) € ({0,1}%)* and 8 = (B1, B2, 83,01) € ({0,1}%)%,
and then we will use the symbol « RN 0 to express that there exists z; =
(w41, Tio, i3, Ti4) € ({0,1}8)% such that S(x;) ® S(z; © a) = .

Therefore, we can choose a set A which is defined as follows.

A= {a = (a1,a,03,0) € ({0,1}%)*|a <> MDS ™ (a)}.

Note here the necessary condition for « & MDS_l(a) is that aq, as, and ag
should satisfy a linear relation (e.g. for the MDS used in AES, the linear relation
is0b-a; ®0d-as ®09-az = 0). Furthermore, for the Sbox of Four-Cell, the

probability of a; AN B; holds is about 271 for V3; € {0, 1}8. Therefore, the set
A contains about |[A| & (28 —1) x (28 —1) x 271 x 271 x 271 ~ 213 possible values.
We also test this estimation using computer program, and with the same MDS
and the Sbox used in AES, our searching result shows that the set A contains
7965 = 212-96 possible values of o which is very close to the theory estimation.

After analyzing the first four rounds and the last three rounds of Four-Cell,
we can set the 18-round impossible differential at Round 5 to Round 22 and
apply an impossible differential attack on the full 25-round Four-Cell. The attack
procedure consists of three steps, and we will utilize impossible differential attack
technique together with some properties of the structure.

The first step of the attack is data collection. We first choose appropriate
plaintext structures defined as follows.

SP = {(a17a27a37x4)}7

where a1, a9,a3 are 32-bit constants and the last byte of x4 is also an 8-bit
constants, namely x4 = (41, T42, T4, as4) € ({0, 1}%)%, 24, € {0,1}%. Therefore,
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each structure contains 22 plaintexts and they can construct about 224 x 213 /2 ~
236 useful pairs whose plaintext differences satisfy the conditions listed above.

The second step of the attack is data filtering, in which we will discard
all the useless pairs which do not satisfy the corresponding ciphertext differ-
ence. Note the output difference after the impossible differential distinguisher is
(Azxog, Axoy, Aoy, Axsg) = (0, 3,0,0), and according to the structure of Four-
Cell, the ciphertext difference (Acy, Aca, Acs, Acy) = (Axag, Azar, Axag, Axag)
should satisfy the following two conditions.

ACl = O,
Acy @ Acy @ Acs @ Acy = 0.

Therefore, the probability of a pair remains after this filtering is about 2764,

The third step of the attack is key recovery. First of all, for each guess of
(skq1, Skao, skyz) we can partially encrypt Round 4 to check if a pair satisfies
the distinguisher. Note for each plaintext pair X = (21,29, x3,24) and X* =
(21,25, x5, x4 ), a useful pair must satisfy that the output difference of the round
function in Round 4 equals to the input difference x4 @ . Therefore, based on
this property we can discard some useless pairs to reduce the complexity in the
following steps, and the probability of a pair remains after this filtering is about
2721, Then for all the remained pairs, we guess the values of rkys and rkoy to
decrypt Round 25 and Round 24 respectively. At last we recover the value of
rkog by differential techniques. Then we can discard all the wrong subkey guesses
using the impossible differential sieving techniques.

In the following, we will describe the attack procedure in detail.

1. Data Collection: Choose 2™ structures and each structure is constructed as

follows:
T = am,
T2 = a2,
T3 = as,

Ty = (9641, T42,T43, a44),

where (a1, as, a3) are 32-bit constants, a4y is 8-bit constant and the 3 bytes
(741, T42, 243) take all the possible values of ({0,1}%)3. Then each structure
contains 22 plaintexts, which can generate about 224 - 213 /2 = 236 plaintext
pairs. Therefore, 2 structures can generate about 2136 plaintext pairs.
2. Data Filtering: According to the property of ciphertext difference, for a useful

pair the difference (Acy, Aca, Acs, Acy) should satisfy the following condi-
tions.

ACl = 07

Aci @ Acg @ Acs @ Acy = 0.

Therefore, after this test the expected number of remaining pairs is about
27n+36 . 2—64 — 27n—28.

3. For each guess of the 24-bit subkey (ska1, sk4a, skas), proceed as follows:
(a) List all the possible values of ko3 as a table L.
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(b) For each of the remaining plaintext pair X = (x1, z2, x3,24) and X* =
(a1, x5, x5, x}), partially encrypt Round 4 to compute the following val-
ues respectively.

v = (s(xa1 ® skar) D s(xf; D ska1), s(xas P skaa) B s(xfy ® skaa),
8(1'43 D 8k43) D S(ng () 81643)7 0)
A= MDS 1 (z, @ 3}).

Then check if v = A holds, and if this is not the case, discard the cor-
responding plaintext pair. After this test, there remains about 2m~28 .
2721 — 9m—49 plaintext pairs.

(¢) Guess the value of rkas = kag1 @ kas 2 @ kas,3 D kas 4, and for each of
the remaining pair, whose ciphertexts are denoted as (c1, ¢z, ¢3,¢4) and
(cf, ¢35, 5, c) respectively, do as follows.

i. Compute the value of yo5 as follows.

Yo = Sil(MDsil(Cl DcgDesDeyg D T‘k25)).

Note for the remaining pairs we have Ayss = 0, and y3; = S~H(M DS 1(ci®
ch BB Prkas)) = yos.

ii. For each guess of the value rkay = skos ®kag,1 Dkae,2 D k2e,3, continue
to compute the values of yo4 and y;, as follows.

Yoa = STHMDS  (c1 ® o ® c3 ® yo5 ® Tka4)),
Y34 = STHMDS(c] @ c3 @ c§ © y35 ® rkaa)).

ili. If we denote the decryption function of Round 23 as g(z,rkes) =
STHM DS (2 @ rka3)), then for each remaining pair the inputs of
g are ¢1 P co B youa P Y25 and cf & 5 P y5, P ys5 respectively, and
the output difference of g should be y24 @ y3,. Therefore, by making
use of the difference distribution table of Sbox we can compute the
corresponding value of subkey rkso3. Discard it from the table L.

iv. If the table L is not empty after analyzing all the remaining pairs,
we can output the value of rks3 remained in table L together with
the corresponding guess of (sky1, skas, skas), Tkas and rkoy as the
correct subkey.

If we choose m = 2875, then the number of useful pairs remained after the
data filtering in Step 2 is about 2°9°. Hence there remains about 233 pairs
after the test of Step 3.b). In Step 3.¢), according to the difference distribution
table of Sbox, each pair can discard about one candidate of rksz. Since there
are 232 possible values of rkes in table L, then after analyzing all the 23%°
remaining pairs, the probability of a subkey guess of rkog still remains in L is
about (1 — 2732)2"° ~ ¢=2"" Therefore, in Step 3.c.iv) the probability of a
wrong subkey guess still remains after all the tests is about 2120 x 2" < 211
and this means that only the correct subkey will be output.

The data and time complexities of the attack can be estimated as follows.
First of all, we choose 2875 structures which contains 22* plaintexts each, and
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thus the data complexity of the attack is about 224 x 2875 = 21115 chosen
plaintexts.

The time complexity of each step can be estimated roughly as follows. In Step
1, we need about 2'!1'® encryptions. In Step 2 we have to check if the pair satisfies
the ciphertext difference for all the 2!23-5 pairs. Note the time needed for filtering
is rather small which can be estimated as 273-round encryption. Therefore, the
time complexity of Step 2 is about 21235 x % x 273 < 21159 encryptions. In
Step 3.b), we need to encrypt one round for each pair, which means that the
time complexity is about 224 x 259-5/25 > 2789 encryptions. Similarly, the time
complexities of Step 3.c.i) and Step 3.c.ii) are 224 x 232 x 2385 1/25 < 2899
encryptions and 224 x 232 x 232 x 2385 2/25 < 21229 encryptions respectively. In
Step 3.c.iii), the operation to recover subkey rko3 from the difference distribution
table of Sbox is rather simple and can be estimated as 1-round encryption. Then
the time complexity of this step is about 224 x 232 x 232 x 2385 x 1/25 < 21219
encryptions. Therefore, the total time complexity of the attack is less than 2123-3
encryptions.

5 Conclusion

n [29], Choy et al proposed a new structure called GF-NLFSR (Generalized
Feistel-NonLinear Feedback Shift Register), and also examined the security of the
structure against many attacks such as differential, linear, impossible differential
and integral cryptanalysis. Furthermore, they designed a new block cipher called
Four-Cell which is based on 4-cell GF-NLFSR structure. In this paper, we proved
that for n-cell GF-NLFSR structure there exists (n? +n — 2) rounds impossible
differential. Then using this kind of 18-round impossible differential distinguisher
together with some novel differential and impossible differential cryptanalysis
techniques, we presented an impossible differential attack on the full 25-round
Four-Cell. The data complexity of our attack is 2''15 and the time complexity
is less than 2'235 encryptions. In addition, we expect the attack to be more
efficient when the relations between different round subkeys can be exploited by
taking the key scheduling algorithm into consideration.

Compared with the other kinds of generalized Feistel strucutres, the n-cell
GF-NLFSR structure has some obvious advantage such as the ability of being
parallel. However, if it is used to design a new block cipher, more work still need
to be done about the security of the structure against various cryptanalysis and
its pseudorandomness.
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Fig. 2. Impossible Differential Attack on the Full 25-Round of Four-Cell



