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Abstract: Traditional ET( Expression Tree ) -based GEP has a major performance defect: Repetitive ET traverses and calculations. This

paper proposes a novel model called Scale-Based GEP to solve the problem. Variable matrix is used to avoid repetitive calculations and

traversing in ET-based gene evaluation. Experiments show that Scale-based evaluation outperforms ET-based method 3~5 times constantly.

Key words: data mining;gene expression programming;Scale-based gene expression

W AR ATERAXMET AR FEABIEAZH I LT . THARNEAAXMARITRETELITE, B EF Scale
HMERESE, EEEERABLARAFEPHELHE, SHEAN, EL X SHBEL>H TARAEMEERF LT AT Scale 19

ERAFFERET ET 9 X Hf4EH 3 ~5 15,
Tl B BEAT IR KB R ik X442 L T Scale #9 L B & ik
DOI:10.3778/j.issn.1002-8331.2008.14.022

1 Introduction

Gene Expression Programming ( GEP) proposed by Candida
Ferria is one of the latest advances in the family of evolutionary
computation and has wide applications in data mining''~) Howev-
er,current GEP has a major defect greatly affecting the evolution-
ary performance.

Major Defect For each fitness instance, ET needs to be eval-
uated once,which brings severely repetitive traverses and calcula-
tions. To explain this problem,see another example.

Example 1 As is shown in Fig. 1,for each fitness instance,the
sub-tree in region A needs to be traversed and calculated one
time. Suppose there are totally 1 000 fitness instances. So totally re-
gion A will be traversed and calculated 1 000 times. But in fact,only
once is enough for all the instances because region A always results
in (7 +8) =15. Let one node operation( visit or calculation)be one
fundamental operation. The repetitive traverses and calculations take
(3+1) % (1000-1) fundamental operations, i. e. around 57% of
the total fundamental operations( (5 +2) 1000)).

To solve the two performance defects this paper did the fol-
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Fig. 1  Repetitive traverses and calculations
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lowing contributions. (1) A novel structure, Scale, is proposed for
gene expression. Variable matrix is proposed to assistant in the
gene evaluation. (2) Algorithm SEVM is proposed to evaluate
genes without repetitive operations. (3 ) Experiments show that
Scale-based gene evaluation is 3~5 times faster than the current
ET-based method.

2 Preliminaries
GA (Genetic Algorithm ) and GP ( Genetic Programming ) are

two major evolutionary computation models'*® . GEP makes the
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difference by incorporating the advantages of both GA and GP.
(1)GEP adopts GA’ s fixed length gene coding method to main-
tain simplicity and the easiness of mutation. (2) GEP expresses
genes into trees to provide enough capability to describe complex
problems. GEP has wide applications ranging from associations
mining to clone selection'*"!.

GEP expresses individuals into Expression Trees ( ETs) . To
avoid dead genes generation, all genes abide by the form of “K-ex-
pression” . For the binary operators, if gene head length is h, its
tail length should be h +1 as shown in Formula (1).

0123456789

+/Q*c-abde (1)

By putting the gene elements from top to down, from left to

right ,the gene can be easily expressed into a tree. Gene( 1) is ex-

pressed into the ET(Fig. 2(a) ).
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Fig. 2 The Expression Tree( ET) ,the fitness instances
and the fitness function
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3 Scale-Based Genes Evaluation

To overcome the problem of dynamically generating and re-
leasing ET( Defect 1) ,a novel structure, scale, is introduced.
3.1 The Introduction of Scale

Definition 1 A Scale is a linear table either (1) composed of
a centre unit and two sub-level scales, namely, the left sub-level
scale and the right sub-level scale or (2) composed of the centre
unit only, where

(1) The centre unit positions at the centre of the scale.

(2) The left and right sub-level scales of a scale are scales
themselves with equal length.

(3)The scale’ s centre unit stores the coordinates of the cen-
tre units of both its left sub-level scale and its right sub-level scale
if it has.

(4)For any scale at any level,only the centre unit stores an
item (including operator, variable , constant and coefficient) .

A scale is composed of a series of smaller scales at different
levels. The lengths of lower level sub-scales scale down (is half,
1/4,1/8 -+ ,of the current level scale). The scales at the lower-
most level are single centre units. All these scales of different lev-
els reside in the highest level scale,level-0 scale,as is shown in

Example 2.

Example 2 Fig. 3 shows a sample scale with length L, the
centre unit lies in the middle of the scale. Fig. 4 shows scales at
subsequent different levels. The scale at level O is the scale of the
highest level, which is composed of three parts: (1) the centre
unit pointed by C,, (2) the left scale of level 1, starting from 0 to
Cy—1 of the highest-level scale, and (3) the right sub-scale,
i. e. the right scale of level 1, ranging from Cy +1 to L-1 of the
highest-level scale.

the centre unit

A
V..

L
Fig. 3 A Scale with its centre unit
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Fig. 4 A Scale and its sub-level Scales
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In order to efficiently express the gene segments into proper
scale places, fast positioning of sub-level centre units is re-
quired. Benefited from the careful design of scale,we have Theo-
rem 1.

Theorem 1 Suppose C, is the centre unit coordinate of a n-
level scale,and the length of the scale is L. Then the centre units
coordinates of its left and right sub-level scales are C,~[ L/47] and
C,+[ L/4 ], respectively.

Proof ( Omitted). O
3.2 The Initialization of Scale

With Theorem 1 ,the centre units of the left and right sub-lev-
el scales can be calculated just from the centre unit position, C,,
when the length of level-0 scale, L, is given. Before gene expres-
sion,scale has to be initialized. Algorithm 1 initializes scale.

Algorithm 1 Initialize_Scale

Input; Length of gene head,h

Output ; Initialized Scale

Steps

1LL=2"+1; // Set scale length based on h

2. Scale = (struct scale_unit * ) malloc (L s sizeof ( struct scale_unit) ) ;
3.C,=[L2] // Centre unit of level- 0 scale

4. Scale[ Cy]. L=Cy - [ L/47; // Theorem 1

5. Scale[ Cy]. R=[Cy] +[ L/47]; // Theorem 1

6. anotate(0,Cy—1,Scale[ Cy]. L) ; // Recursive

7. anotate( Co +1,L,Scale[ Cy]. R) ; // Recursive

void function anotate( B, ,Bg,C)
8.L=By-B, +1;
9.if(L=3) |

// Calculate sub — level scale length
// Whether still has sub-level scale
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10.  Scale[C].L=C-[L/47; // Theorem 1
11. Scale[C].R=C+[L/47; // Theorem 1
12.  anotate(B,,C-1,Scale[ C]. L) ;
13.  anotate( C +1,By,Scale[ C]. R) ;
14. |

// Recursive

// Recursive

Problem complexity determines gene head length, h. After h
is set,scale length is decided (line 1, Algorithm 1). Scale is ini-
tialized to the maximized possible length 2" + 1 (line 2, Algorithm
1). So for any operator in the gene its left and right gene segment
operands have been preserved with corresponding places. Then any
gene with head length A can be expressed into the same scale with
no dynamical construction and release. Therefore, scale is initial-
ized once, keeps static and can be used permanently for all genes
to be expressed. Simultaneously, according to Theorem 1, sub-level
scale centers are pre-computed and annotated in scale( line 4~7,
function annotate) .

Time consumption of Algorithm 1 is independent of popula-
tion size, P, generations, G, and number of runs, R. The time cost
is trivial (usually below 0.2 seconds).

3.3 Scale-Based Gene Evaluation

This section provides a Naive gene evaluation approach based
on scale. It gives the general skeleton of scale-based gene evalua-
tion.

Algorithm 2 Naive Evaluation

Input: A Scale with length L;centre point C containing an expressed
gene; A fitness instance.

Output : The value of the gene

Steps

1.P=C;

2. return evaluate( P) ;

// Set the evaluation entry point

// Recursive

double function evaluate(int P) |

3. if(Scale[ P]. item is an operator Op) // Deepen

4. return op( Op,evaluate( Scale[ P]. L) ,evaluate( Scale[ P]. R) ;
// Recursive

5. else return Scale[ P]. item; // Recursion exit

6. |

double function op( char Operator ,double L,double R) |

7. switch( Operator) | // General case 2 operator

8. case + ;

9. return(L + R) ; // Direct plus
10. case ‘ -’

11. return(L - R) // Direct minus

12. case ‘ =’

13. return( L = R) ; // Direct multiply

14.  case ‘/’;

15. return( L/R) ; // Direct divide
16.  default:

17. printf( “error in %o c\n” , Operator) ;
18. exit(1);

19. |

20. |

Scale-based gene evaluation starts from the centre unit ( line
1~2). If the centre unit contains only a data item, it is returned as

the current scale’ s value(line 5). If it contains an operator, Op,

op (left sublevel scale’ s value,right sub-level scale’ s value) is re-
turned as the scale’ s value(line 3 ~ 4, function op). Further, re-
cursive procedure is called to deep-first calculate the left and right

sub-level scale’ s values(function evaluate) .

4 Gene Evaluation with Variable Matrix

Variable matrix is a matrix containing fitness instances and
gene value defined below.

Definition 2 ( Variable Matrix) Let N be the number of fit-
ness instances, M be the number of variables in the
genes. Ay, (3., is called a variable matrix if it satisfies the follow-
ing conditions.

(1) Each column from 1 to M in Ay, ., is an assignment
vector for the i-th variable of the fitness instances.

(2) The next to last column is the function value (f;, Fig. 4)
vector of the fitness instances.

(3) The last column is the evaluated value (g, , Fig. 4 ) vector
for the fitness instances.

Ay, w41y 1s actually a copy of the fitness instances. The differ-
ences of the last two columns are the evaluation errors (1 g~f; 1,
Fig. 4) The fitness can be calculated through the last two columns.

With variable matrix single value calculation can be trans-
formed to vector calculation. The fitness instances are no longer
looked on as a series of samples that need to be considered one by
one, but only a set of vectors that can be used to evaluate genes by
only 1 traverse of the scale. With the introduction of variable ma-
trix, Algorithm 2 evolves into Algorithm 3.

Algorithm 3 SEVM

Input: A Scale containing an expressed gene, with length L, centre unit
at C;

Variable matrix Ay, (.23

Fitness function f

Output : The gene’ s fitness value;

Steps :

1.P=c;

2. Ay usny L1IM +1] = SEVM_Evaluate(P) ;

3.return f( Ay, ooy LIIM] Ay s iy LIIM+1]) 5

double * function SEVM_Evaluate(int P) |

4. if(Scale[ PJis an operator Op)
5. if(SEVM_Evaluate( Scale [ P]. L) is a full-value vector,

AM (M+2)[] [m] ) f
6. if(SEVM_Evaluate( Scale [ P]. R) is a full-value vector,

AN* (M +2) [ ] [ﬂJ )

7. for(i=1;i<N;i++)

Ay ey LilIm] =op(Ay, pany LIl Im ] Ay iy [i1[0]) 5
8. else
9. for(i =15i<N5i +) Ay, a4y Li][m] =0p(Ay s 410y Li][m],

(Scale[P]. R)[1]);

10, return Ay, (y.0) [ 1[m];

11. |

12. else if ( SEVM _ Evaluate ( Scale [ P]. R) is a full-value vector,
AI\'*(M+2) [1[n]){

13, for(i=1;0<N5i ++ Ay, 10y [11[n] =0p((Scale[P]. L)[1],
As\‘*(wl+2>[i]["]);
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14. return A,w(ﬂnz) [1[n];

15.

16. else

17. return op( ( Scale[ P]. L)[1],(Scale[ P].R)[1]);

18. else if(Scale[ P]. item is a variable with reference m)

19, return Ay, (yy40) [ 1[m];

20. else return Scale[ P];
21. |

Theorem 2 Algorithm 3 has no problem of repetitive traver-
sing and calculation.

Proof Function SEVM _ Evaluate recursively traverses the
scale (line 5,6,11,Algorithm 3) till the sub-level scale is a vari-
able or coefficient ( line 16, 18, Algorithm 3) . The function is
called only once in gene fitness value calculation (line 3, Algo-
rithm 3 ). Therefore, algorithm SEVM traverses scale only
once. For any level scales computed by two single-value vectors
(line 15, Algorithm 3) , only one calculation is performed. The cal-
culation among purely single-value vectors is done only
once. Therefore , there is no repetitive calculation. O

Example 3 We evaluate the gene in Fig. 2 with variable vec-
tors. As is shown in Fig. 5,the number of calculation operations is
1000 +1=1001. The number of node traverses ( visit ) is
5. Therefore , the total number of operations is 1 006. While in ET-
based method, the number is 7 000, almost 7 times as many as

scale-based method.

Genel[] | 7

+
=)

AN

60

105

Fig. 5 SEVM Evaluation
K5 SEVM if4l

5 Experiments and Performance Study

This section reports the incipient results on scale-based gene
expression and evaluation compared with traditional ET-based
methods. All algorithms are implemented with Visual C++ 6. 0. on
a PC with 2. 6 GHz Intel CPU,256 M memory, running Microsoft
Windows XP Professional. The genes are generated randomly by a
gene generator function. The user can control the gene head length
h,the proportion of operators 5, and the proportion of variables
(. The user can set the population size P, number of generations
G, and number of runs R, etc. Since genes are generated randomly,
even for the same environments the experiments results may differ
to some extent. Therefore, each experiment was conducted 3 times
and only the average value was recorded.

Fig. 6 shows the time variances of scale-based evaluation
compared with ET-based method. As number of fitness instances
increases, ET-based method grows abruptly while scale-based
method grows very smoothly. As fitness instances grows from 100

to 500, scale-based evaluation almost keeps steady at 8 seconds,

—#— Scale-Based Evaluation
—4— ET-Based Evaluation
45 | —*— Repetitive Operations

42.23

33.01

8.21

0 200 400 600

Number of fitness instances
Gene head length,h =10, variable proportion,{ =20% ,
number of expression, N =1 M
Fig. 6  Effect of fitness instances
Vel 6 38 L JEE “SE451) 5 10 5% Wi
while ET-based evaluation doubles,and the time in repetitive op-
erations grows from 13. 65 seconds to 33. 01 seconds.

In Fig. 7, we fixed the number of fitness instances at 500,
gene head length at 10 and number of expressions at 1 M. ET-
based evaluation goes up and down around 55 seconds. When the
variable proportion is 80% , scale-based evaluation costs 15. 68

seconds ,29% that of ET-based method.

—#— Scale-Based Evaluation
70 - | —*— ET-Based Evaluation

—— Repetitive Operation
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Number of fitness instances, M =500, gene head length,
h =10 ,number of expression, N =1M
Fig. 7 Effect of proportion of variables ¢
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Fig. 8 displays the experiments results on the increase of gene
head length, h. All 3 lines go up as h increases, because larger
gene length leads to larger expression. Larger ET results in worse
repetitive traverses and calculations, so time consumption of ET-

based evaluation grows much faster than that of scale-based evalu-

—&— Scale-Based Evaluation
70 | —=— ET-Based Evaluation

€0 —— Repetitive Operation
50 b 57.5
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40
R4 37.16
230+
&
20 [ 26.22 17.6
10 L 60 f
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0 5 10 15 20 25

Gene head length
Number of fitness instances M =500, variable
proportion { =20% ,number of expression N =1 M
Fig. 8 Effect of gene head length
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ation. When gene head length is 5, scale-based evaluation takes
7.69 seconds,20% that of ET-based evaluation. As gene head
length reaches 20 ,scale-based evaluation spends 17. 6 seconds in

the evaluation process,31% that of ET-based evaluation.

6 Conclusion

Traditional ET-based gene evaluation has a major perform-
ance defect, I. e. repetitive traverses and calculations of the
ET. This paper proposes a novel model,scale-based GEP with var-
iable matrix. Variable matrix is used to avoid repetitive calculation
in gene evaluation. Experiments show scale-based evaluation out-

performs ET-based method 3 ~5 times constantly.
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