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Abstract We introduce and analyze the following variants of the Borda rule: median Borda rule,
geometric Borda rule, Litvak’s method as well as methods based on forming linear combinations
of entries in the preference outranking matrix. The properties we focusupon are the elimination
of the Condorcet loser as well as several consistency-type criteria.
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1. Introduction

In a paper delivered in the French Academy of Sciences in 1770Jean-Charles de
Borda introduced a point voting system, nowadays known as the Borda Count (BC, for
brevity), for electing best candidates in multi-member voting bodies (Borda’s memoir
has been translated into English and reprinted in Black (1958) as well as McLean and
Urken (1995)). Borda’s proposal was specifically designed to replace the then (and
now) widespread plurality rule which gives each voter one vote and elects the candi-
date with larger number of votes than any other candidate.

Despite its initial success in the French Academy, BC has notbeen widely used
in elections involving candidates. Some critics have pointed to BC’s vulnerability to
strategic voting especially under circumstances where voter groups have information
about the popularity of various candidates. Others have taken issue with BC’s failure
to guarantee the election of an eventual Condorcet winner, i.e. a candidate who is not
defeated by any other candidate in pairwise comparisons. Inmore recent times, the
significance of the latter failure has been called into question (Saari, 1995).

Our focus is on some variations of BC in settings involving decision making by
expert groups. The setting is admittedly a special one and ignores the wider context
in which most group decisions are made. So, questions like who determines the set of
alternatives or criteria to be used in comparisons are overlooked. Similarly, we do not
consider strategic behavior by the individuals. Our focus is more narrow, but nonethe-
less important. We deal with various conceptualizations ofthe notion of “socially best
alternative” or “the most defensible collective preference ranking of alternatives”. We
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shall look at BC variations from the viewpoint of improving upon BC: are the varia-
tions significantly superior to BC in expert group choice settings? As an example of
such a setting is the choice of projects to be funded by a funding organization (e.g. EU)
on the basis of their evaluation by a group of experts (referees). We are considering
ways of utilizing the expert information in richer ways thantoday is often the case in
funding organizations where the experts are asked which applications are acceptable
or which are the best. Some of our criteria also pertain to decentralized settings where
the experts form subgroups each considering the same set of applications. Some other
BC variations have been discussed in an earlier article (Nurmi, 2007).

The relevance of the following discussion extends wider than group choice settings.
To wit, all of what is going to be said regarding experts or voters can be translated
into another setting involving multiple performance criteria. Substituting criteria for
experts or voters we can discuss multiple criterion decision problems using the same
techniques. Hence even decision settings where one decision maker is assigned the
task of selecting best projects or other alternatives usingseveral criteria of evaluation
fall within the range of our discussion. The main assumptionto be made is that the
evaluation of the alternatives on each criterion allows forordinal measurement. This
is a quite common setting since typically only part of the criteria can be measured by
ratio or absolute scales of measurement. Hence, the aggregation problem involving
ordinal measurement is frequently encountered.

The setting which we are focusing upon – i.e. the choice by a set of experts – is in
fact more in line with what the founding fathers of social choice had in mind than the
election of candidates to political offices. Condorcet and Borda were preoccupied with
jury decision making, i.e. a setting where one aims at a correct choice assuming that
each decision maker has some expertise in the issue to be decided. Also C. L. Dodgson
was interested in non-political decision making: awardingscholarships to students in
Oxford colleges of the 19th century (Black, 1958). In these settings it is quite natural
to assume that the experts, judges, referees or evaluators are able to form a priority
ranking over the applicants or alternatives and the task is to aggregate those rankings
into collective ones in a logically defensible manner. Since the experts, referees, judges
etc. are expected to use their specific expertise in forming their opinion on the decision
alternatives at hand, it is very important that the information provided by the experts is
aggregated in a way that is non-arbitrary and satisfies plausible criteria of consistency
and adequacy.

Among ordinal aggregation methods BC provides a useful benchmark in utilizing
fully the information contained in preference or performance rankings. Many other
methods – e.g. plurality or antiplurality rules – use only partially the information given
in rankings. We will use BC itself as a kind of benchmark method among the posi-
tional systems, i.e. among rules that determine the “electability” of an alternative on
the basis of its average position in the experts’ preferenceschedules. The way the so-
cial preference ranking is determined on the basis of the individual rankings is very
straight-forward in BC: each rank position is assigned a value in a scale so that the dif-
ference of values of two consecutive positions equals unity. Prima facie, it is a logically
defensible method. BC or slight variations of it are used in Eurovision song contests,
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making nomination proposals for the offices of university chancellors, bishops etc. In
political elections, BC is used in the Pacific island state ofKiribati.

In a way, BC is well-suited as a benchmark system among the positional ones since
it provides a neutral and anonymous treatment of all rank positions and individuals.
Unless one has a specific reason to put more weight to some positions or individual
judges, this seems a reasonable way to proceed. That BC may end up with Condorcet
failures – i.e. not rank the Condorcet winner first in the collective preference – may
then come as an unpleasant surprise. Hence, one might look for ways of improving
the performance of BC by making some modifications in its operating principles. And
indeed, more than a hundred years ago Nanson proposed a system that guarantees the
choice of an eventual Condorcet winner while otherwise exhibiting the crucial features
of BC (Nanson, 1883). It later turned out that the improvement came with a cost:
Nanson’s rule is non-monotonic, while BC is monotonic. In other words, in Nanson’s
method an improvement in an alternative’s ranking, ceterisparibus, may worsen its
position in the collective ranking. This is not possible under BC.

Observations like this made us curious: are there any positional systems “close”
to BC that would improve upon its properties while retainingits plausible features?
Since BC is based on arithmetic average positions of alternatives, we ask whether BC
modification in terms of geometric averages would be an improvement. Similarly,
we ask whether replacing averaging by looking at median positions would improve
the performance of BC. These are but two possible modifications of BC which are
intuitively “close” to BC proper. Together with results on other BC variations, our
results, summarized in Table 10, suggest that BC is indeed superior to its modifications
among positional systems.

We start by introducing the notation and basic definitions. We then define the
modifications of BC to be studied. The criteria of evaluationof the modifications are
then discussed.

2. Preliminaries

A preference aggregation problemis a tripleA = (N,X,RN), whereN is a nonempty
finite subset of natural numbersN = {0,1. . .}, X is a nonempty finite set, andRN =
(Ri)i∈N is a profile of preferences Ri on X. A preferenceR on X is a binary relation
satisfyingtransitivity (xRyandyRzimpliesxRz) andcompleteness(xRyor yRzfor all
x,y∈ X). As usual, we denote the membership relation in this context by xRyinstead
of (x,y)∈R. The strict part of a preferenceR is denoted byP (xPyiff xRyand notyRx),
and the indifference is denoted byI (xIy iff xRyandyRx). A preferenceR is strict or
linear, if xRyandyRximpliesx= y, for all x,y∈ X. We denote the set of all preference
aggregation problems (or simply problems) byA .

An interpretation of the model is thatN is the set of agents,X is the set of states of
alternatives, andxRiy means that agenti prefers at least weakly the alternativex to the
alternativey.

An aggregation ruleis a function f such thatf (A) is a preference onX for each
aggregation problemA ∈ A . The interpretation is thatf (A) is the social preference
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representing the tastes of the of the agents in the problemA. There is no shortage of
aggregation rules. For example, letd(A) be the least index inN for any aggregation
problemA, and definef (A) = Rd(A). This is one form of adictatorial rule. The
celebrated Arrow’s impossibility theorem states that all aggregation rules, satisfying a
set of apparently plausible axioms, are dictatorial. Arrowformulated his theorem for
problems with a fixed setN of agents, but the result can be extended to the domain of
problems with variable agent sets.

Given a problemA = (N,X,RN) ∈ A , let bi(x) = |{y∈ X | xRiy}|, for eachi ∈ N
andx∈ X. Thenbi(x) is the number of alternativesy that in i’s opinion are at most as
good asx, in a given problemA (the dependence ofbi on A is not explicitly displayed
unless absolutely necessary). TheBorda rule fB is defined by

f B(A)(x) =
1
n ∑

i∈N
bi(x) (1)

for eachx∈ X, for eachA = (N,X,RN) ∈ A . We may callbi(x) theBorda pointgiven
to alternativex by agenti. Then f B(A)(x), the Borda scoreof alternativex, is the
average of individual Borda points. Sometimes the Borda scores are defined by taking
the sum of individual Borda points, and sometimes the Borda point bi(x) is defined
as the number of alternatives that are strictly worse thanx. Often the Borda rule is
defined only for problems with linear preferences. For all practical purposes these
different variants of the Borda rule are the same.

Given a problemA= (N,X,RN) ∈A , let n(x,y) = |{i ∈ N | xRiy}|, for eachx∈ X,
for eachA = (N,X,RN) ∈ A . Thenn(x,y) is the number of agents in the problem
A who preferx to y at least weakly (the dependence ofn(x,y) on A is not explicitly
displayed unless absolutely necessary.) It is well known that

f B(A)(x) =
1
n ∑

y∈X
n(x,y) (2)

for eachx∈ X, for eachA = (N,X,RN) ∈ A . This means that the Borda score of the
alternativex is actually the average number of individuals who weakly prefer x to y,
asy runs through the alternatives inX. A simple way to see that equations (1) and (2)
are equivalent is the following. Let̃Ri be an|X|× |X| matrix whose rows and columns
are indexed by members ofX, and whose(x,y)-cell R̃i(x,y) is 1 if xRiy and 0 other-
wise. Thenbi(x) = ∑y R̃i(x,y) is the number of 1’s in thex’th row. Therefore by (1),
f B(A)(x) = (1/n)∑i ∑y R̃i(x,y). This is the same as constructing first theoutranking
matrix R̃≡ ∑i R̃i , the sum of theR̃i-matrices, and then taking the average of the cells
of thex’th row of the outranking matrix. But this in turn isf B(A)(x) as calculated in
equation (2).

Instead of taking arithmetic averages of the Borda pointsbi(x) or the numbers
n(x,y) as in (1) and (2), we could take the medians or geometric averages of these
numbers. Given anm-dimensional vectory (or an indexed set{yi | i ∈ I , |I | = m}),
the median ofM(y) of y is calculated as follows. Index the coordinates ofy by the
numbers 1, . . . ,mso thatyi ≤ y j if i ≤ j, i, j ∈ {1, . . . ,m}. If m is odd, thenm= 2k+1
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for somek ∈ N, andM(y) = yk+1. If m is even, thenm = 2k for somek ∈ N, and
M(y) = (yk + yk+1)/2. The geometric averageG(y) of the coordinates ofy is G(y) =
m
√

∏i yi , if all numbersyi are nonnegative, where∏i yi is the product of the numbersyi .
For all problemsA = (N,X,RN), let b(x) be the vector(bi(x))i∈N and letn(x)

be the vector(n(x,y))y∈X. Applying the median, we define the rulesf Mb and f Mn

by f Mb(A)(x) = M(b(x)) and f Mn(A)(x) = M(n(x)), for all x ∈ X, for all problems
A = (N,X,RN). Applying the geometric average, we define the rulesf Gb and f Gn

by f Gb(A)(x) = G(b(x)) and f Gn(A)(x) = G(n(x)), for all x ∈ X, for all problems
A = (N,X,RN).

Another variant of the Borda count is obtained upon considering again the|X|×|X|
outranking matrixR̃ of the problemA and focusing on the smallest entry on each
row. This is obviously the minimum support an alternative receives in all pairwise
comparisons. The order of those minima gives us a ranking over all alternatives. More
formally, denote the entry on the rowx and columny by R̃(x,y). For eachx∈ X let

rx = miny R̃(x,y) and Mm(A) = {x∈ X | rx ≥ rz,∀z∈ X}.

This is the well-known Simpson-Kramer maximin rule (Simpson, 1969; Kramer, 1977).
Other variations can easily be cooked up. Following the intuition that in decision

theory goes under the name Hurwicz’s rule, we can fix a numberα ∈ [0,1] and define
for eachx∈ X (Milnor, 1954):

rx = maxy R̃(x,y) to get h′(x) = αrx +(1−α)rx.

Then, the choice set can be obtained as:

H(A) = {x∈ X | h′(x) ≥ h′(x),∀z∈ X}.

In other words, one maximizes the weighted sum of maximum andminimum entries
on each row. Withα = 1,H(A) = Mm(A). Obviously, bothMm(A) andH(A) allow for
ranking over all alternatives, so a social preference can beformed. Both utilize essen-
tially less information about voter preferences than the Borda count and its geometric
average variation.

A choice method devised by Litvak (1982) is very much in the spirit of the Borda
count. Consider two individuals and their rankings overX. The individuals disagree
about the priority of the alternatives to the extent their rankings differ. One way of
measuring this disagreement is to sum up the Borda point differences, i.e.

dis(R1,R2) = ∑
x∈X

|b1(x)−b2(x)|

The values of thedis measure range from 0 to∑k
i=0[(k− 1)− (2i)], wherek is the

number of alternatives. Litvak’s method looks for a consensus ranking over alternatives
that is closest to the expressed opinions (ranking) of individuals in the sense of thedis
measure. To wit, given a preference profileRN of n voters, define the distance of a
fixed rankingRandRN as follows:
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dis(RN,R) = ∑
j∈N

∑
x∈X

| b j(x)−bI (x) | .

wherebI (xi) denotes the Borda points assigned tox by the rankingR.
Let R be the set of all rankings overk alternatives. GivenRN, Litvak’s method

results inR∈ R where

L(A) = {R∈ R | dis(R,RN) ≤ dis(R′,RN),∀R′ ∈ R}.

Variations of Litvak’s method can easily be envisioned. Forexample, the city-block
metric could be replaced by the Euclidean one. Or, one could focus only on the first
rank of the consensus ranking and sum up, for each alternative, the difference between
the alternative’s position and the first rank. This variation, however, leads us back to the
Borda count (Nitzan 1981). This shows not only that with varying consensus profiles
and distance measures one is able to construct different methods, but also that choice
rules can be expressed in several ways.

Further variations are based on certain entries in the outranking matrix, such as
two smallest and two largest ones, two entries closest the the mean one etc. Similarly,
the weights assigned to various entries can be varied to end up with new variations.
Instead of defining these largely ad hoc rules, we shall focusour analysis on the rules
explicitly defined above. Our basic interest is in finding outwhether any of these can
be considered an improvement over the original version, viz. the Borda count.

3. Properties of Borda variations

3.1 Eliminating Condorcet losers

Arguably the primary motivation for BC was the fact that it never elects the eventual
Condorcet loser in the reported profile. In other words, whenever the profile expressed
by the voters contains an alternative that would be defeatedby all other alternatives in
pairwise majority comparisons, this alternative is not theBC winner. Had Borda been
introduced to the median Borda countf Mb, he would, therefore, have been largely
unimpressed since it turns out that this system may end up with a Condorcet loser. The
following 7-voter profile is illustrated in Table 1. Here B isthe Condorcet loser and is
at the same time thef Mb-winner.

Table 1. Median BC f Mb may elect a Condorcet loser

1 voter ABCDE
1 voter CBADE
1 voter DBEAC
1 voter EBADC
1 voter ADCEB
1 voter ACDEB
1 voter CDEAB
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Let there bek alternatives andn voters. When all voter preferences are strict and
the number of voters odd, we can form ak× k matrix T = [txy], x,y ∈ X, of 0’s and
1’s so that a 1 in rowx and columny means that alternativei is preferred to alternative
j by more than 50% of voters. Otherwise, the entry is 0. Ifn is odd and all voter
preference strict,txy = 1 implies thattyx = 0 whenx 6= y. Thus, the number of 1’s inT
is w = k× (k−1)/2.

We now show that the median Borda systemf Mn based on outranking numbers
does not result in an eventual Condorcet loser being elected.

Proposition 1. Let n be odd and all preferences strict. If T contains a row x sothat
∑y txy ≥ k/2, then the Condorcet loser cannot win if fMn is used.

Proof. The proof is immediate upon observing that if the number of 1’s is at leastk/2,
the median entry in rowx of the corresponding outranking matrix is strictly larger than
n/2, while the median entry on the row corresponding to the eventual Condorcet loser
is strictly less thann/2. Hence, the Condorcet loser is not chosen when thef Mn system
is used.�

Proposition 1 establishes a sufficient condition for the Condorcet loser not being chosen.
The next proposition shows that whenever there is a Condorcet loser, the condition is
satisfied.

Proposition 2. Assume that n is odd and all preferences are strict. If there is a Con-
dorcet loser in the problem A= (N,X,RN), then there is a row x such that∑y txy≥ k/2.

Proof. Suppose to the contrary that for allx, ∑y txy < k/2, and so∑y txy ≤ (k−1)/2.
Therefore

∑
x

∑
y

txy ≤ k× (k−1)/2 = w.

But this must be satisfied as an equality by the definition ofw. So∑y txy ≥ (k−1)/2
and there is no Condorcet loser, a contradiction.�

The maximin method, in contrast, may end up with a Condorcet loser, as shown
in the example of Table 2. Here D, the Condorcet loser, gets the minimum support of
14 which exceeds that of all other alternatives. Litvak’s method can also lead to the
choice of a Condorcet loser (Nurmi, 2004, p. 9).

Consider now the maximax method, i.e. a method that results in the choice of the
alternative with the largest maximal element in its row in the outranking matrix. It
is apparent that whenever there is a Condorcet loser in the observed profile, it cannot

Table 2. Maximin method may elect a Condorcet loser

10 voters DABC
8 voters BCAD
7 voters CABD
4 voters DCAB
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Table 3. Both f Gb and f Gn may elect a Condorcet loser

1 voter ABCDEFGHIJ
1 voter JABCDFEGHI
1 voter IJABCFDEGH
1 voter HIJABFCDEG
1 voter GHIJAFBCDE
1 voter EGHIJFABCD
1 voter DEGHIFJABC
1 voter CDEGHFIJAB
1 voter BCDEGFHIJA

be elected under the maximax method. This follows from the definition of Condorcet
loser. Since it is defeated by a majority by every other alternative, this means that every
other alternative has a larger element in its row than any element in the Condorcet
loser’s row. Consequently, the latter cannot win.

Now, since the maximin may lead to the choice of a Condorcet loser, while the
maximax method never ends up with one, it follows there are Hurwicz type methods,
i.e. ones based on weighted average of the minimum and maximum entries on each
row of the outranking matrix, that necessarily exclude the Condorcet loser and also
methods of the same type that may choose the Condorcet loser.

Consider next the method of forming the social preference bycomparing geometric
averages of either the rows of the outranking matrix (f Gn) or the Borda points given to
alternatives by the voters (f Gb). It turns out that the Condorcet loser may be selected
as the unique socially best alternative by both methods. Take a look at Table 3, where
the strict preferences of nine voters over ten alternativesare depicted.

The alternative F is a Condorcet loser, every other alternative beats it by votes 5 - 4.
So the row of the 10×10 outranking matrix corresponding to alternative F consists of
nine 4’s and one 9 (F is at least as good as itself in the eyes of all voters). The product
of these numbers is therefore 49×9. The other rows of this matrix consist of the whole
numbers from 1 to 9, the number 5 appearing twice. The productof these numbers is
9!×5. Since 49×9> 9!×5, the Condorcet loser is on the top of the social preferences
when geometric averages of the rows of the outranking matrixare compared, i.e. when
the f Gn rule is used.

Now bi(F) = 5 for all votersi, and the product of these numbers is 59. For all other
alternatives x the Borda pointsbi(x) are all natural numbers between 1 and 10 except
5. So the product of Borda points for all alternativesx 6= F is 10!/5. Since 59 > 10!/5,
the Condorcet loser is on the top of the social preferences when geometric averages of
the Borda points of alternatives are compared, i.e. when thef Gb rule is used.

3.2 Consistency-related properties

The properties we shall focus upon areseparability(Smith, 1973),consistency(Young,
1974),faithfulness(Young, 1975) andpositive involvement(Saari, 1995, p. 216).

Separability requires that if two voter groupsV1 andV2 both prefer alternativea to

116 AUCO Czech Economic Review, vol. 2, no. 2



More Borda Count Variations for Project Assesment

alternativeb, then so does the combined groupV = V1∪V2. Moreover, if one of the
group preferences is strict, this is also the case for the preference ofV.

Consistency states that if two disjoint groups of individuals,V1 andV2 when choos-
ing from the same set of alternativesX, choose the same alternativesX′ (and possibly
some others as well), then the groupV = V1 ∪V2 should chooseX′. Young points
out that consistency is a version of Pareto optimality for subgroups sinceX′ only is
preferred to all other alternatives by the subgroupsV1 andV2 considered as individuals.

Faithfulness is an intuitively compelling property (Young, 1974). It states that if
the voting body consists of only one individual, then the social preference ranking is
identical with the individual’s preference ranking. Now, if a system is both faithful and
consistent, then it also satisfies unanimity or Pareto condition, i.e. in profiles where all
individuals agree on the first ranked alternative, this alternative is chosen.

A procedure is positively involved if, whenevera is chosen byV, it is also chosen
if a group of voters, with identical preferences so thata first ranked, joinsV.

The above properties are pretty close to each other, but by nomeans equivalent.
Saari (1995, p. 218) shows that any scoring rule that is faithful and consistent is also
positively involved, but not all faithful and positively involved scoring rules are con-
sistent.

It is known that BC is faithful and consistent (Young, 1974).Hence it is also
positively involved and satisfies the Pareto condition. Themedian BCf Mb, in contrast,
is not consistent. This is illustrated by Table 4, where the profile above the middle
horizontal line denotes the profile ofV1 and that below the line depictsV2’s profile.
The choice sets are{A,B} and{A}, respectively. Their intersection is obviously{A},
but f Mb specifies{A,B} as the choice set inV1∪V2.

The other median Borda variation,f Mn is not consistent either. This is shown by
Table 5. The choice set from the profile above the middle line is{A} and{A,C} from
the profile below it, while the entire profile of 6 voters ends up with {A,C}.

Young’s (1975) theorem on social choice scoring functions states that all anony-
mous, neutral and consistent procedures fail on the Condorcet winning criterion. Hence,
if the maximin method – which is anonymous and neutral – were consistent, it would
have to fail on the Condorcet winner criterion. Maximin is, however, not a scoring
rule. So, even though it fails on the Condorcet winner criterion, we are not entitled to

Table 4. f Mb is not consistent

1 voter ABCD
1 voter ABDC
1 voter BACD
1 voter BCDA

1 voter ABCD
1 voter ABDC
1 voter DABC
1 voter CDBA
1 voter CDAB
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Table 5. f Mn is not consistent

1 voter ACBD
2 voters BACD

1 voter ACBD
2 voters CABD

Table 6. Maximin is not consistent

4 voters ABC
3 voters BCA
3 voters CAB

5 voters ACB
4 voters CBA

the conclusion that it is inconsistent. Table 6, however, shows by way of an example
that it is inconsistent. The maximin choice set in the upper and lower parts consists of
A, while the choice from the entire 19 voter profile is C.

Maximax rule is not consistent either. This is shown in Table7. The maximax
choice sets are{C} and{A,C}, but the choice from the combined profile is{A}.

Both geometric BC variations,f Gb and f Gn, in turn, are consistent. This results
from the observation that whenever the product of the Borda scores or outranking num-
bers are largest inV1 and inV2, the product of those products must also be larger than
the corresponding product for any other alternative.

Also Litvak’s method turns out to be inconsistent as shown bythe example of
Table 8. Denote the part above the middle line asV1 and that below the middle line as
V2. Then the choice sets ofV1, V2 andV are{B}, {A,B} and{A}, while consistency
would dictate{B} as the choice set fromV.

Turning to faithfulness we observe that BC satisfies this property (Young, 1974).
So doesf Mb since the individual’s highest ranked alternative has trivially the highest
median Borda score, the second-ranked the next highest and so on. In contrast,f Mn

is not faithful. This can be seen by considering a 3-alternative case and ignoring the
diagonal entries of the outranking matrix. Thef Mn choice set consists of the first and
second ranked alternatives, a contradiction with faithfulness.

One of the geometric Borda variations is not faithful, viz.f Gn. This is easily seen

Table 7. Maximax is not consistent

3 voters ABC
3 voters BCA
3 voters CAB
1 voter CBA

2 voters ACB
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Table 8. Litvak’s method is not consistent

5 voters ABC
4 voters ACB
2 voters BAC
5 voters BCA
3 voters CBA

2 voters ABC
2 voters BAC

since all rows in the outranking matrix contain at least one zero with the sole exception
of the row that represents the first-ranked alternative. Hence, the f Gn ranking is a
dichotomous one: first-ranked alternative first with the rest forming a tie. The other
geometric variationf Gb, on the other hand, is faithful since the collective ranking
coincides with that of the only individual forming the collectivity.

The maximin method fails on faithfulness as well since all rows except that corre-
sponding to the first-ranked alternative contain a zero, whereby all these alternatives
tie for second place even in cases where the individual has a ranking without any ties.
Similarly, the maximax is not faithful either.

Litvak’s method, in its turn, is faithful as the individual’s ranking is at the shortest
distance from itself. Thus, this ranking is also the collective one.

Positive involvement is satisfied by BC since it is a scoring rule and satisfies faith-
fulness and consistency. The geometric Borda rulef Gb – the rule that maximizes the
geometric average of the product of Borda points given to each alternative – is also
positively involved since adding an individual with preference ranking that coincides
with the collective one entails multiplying the score of thewinning alternative with the
largest individual Borda score, the second-ranked alternative with the second largest
Borda point etc. Hence the new score of the winning alternative is larger than that of
any other alternative.

The other geometric versionf Gn is also positively involved. For suppose thata is
the first ranked alternative in a profile ofV1 and then a groupV2 of individuals with
identical preferences anda first ranked joins the profile. In the outranking matrix ofV1

alternativea’s column consists of zeros only. This is also the case inV2’s outranking
matrix. This means that the only row with non-diagonal entries all greater than zero in
V1∪V2 is a’s row. The product of its entries is then the only one that differs from zero.
Hence,a is elected byV1∪V2.

The median Borda variation,f Mb, is not positively involved. This is shown in
Table 9. The upper part represents theV1 profile whereC wins. Adding now the lower
part profile whereC is first ranked yieldsA the winner.

The median Borda variationf Mn, in contrast, is positively involved. This follows
from the fact that the winning alternativea’s row elements in the outranking matrix
will be added by the number of individuals inV2. This means that the median entry on
a’s row in the outranking matrix ofV1∪V2 is added by the number of individuals inV2.
In other rows the entries will be added by|V2| or not at all. In these rows the median
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Table 9. f Mb is not positively involved

2 voters AFCDBEG
1 voter EDCABFG
2 voters BGCDEAF

2 voters CABDEFG

entries will be no larger than the corresponding median values inV1 plus |V1|. Hence
the choice off Mn remains the same after a group of identically minded individuals
with a their first ranked alternative joinsV1. Thus, f Mn is positively involved.

Litvak’s method is positively involved. The proof can sketched as the following
reductio ad absurdumargument. Assume thata is the Litvak winner (i.e. first ranked)
in V1. Assume, moreover, thatV2 consists of individuals with identical preference
rankings so thata is first in this consensus ranking. Finally, assume that the ranking
R wherex 6= a is the one that is at the minimal (Litvak) distance from the rankings
in V1 andV2. The trick is to show thatR can be improved upon, i.e. that it is not in
fact the ranking that is closest to theV1 andV2 rankings. This is seen by switching
a andx in R to obtainR′ and observing thatR′ is closer to the rankings ofV1 andV2

thanR. Hence,R is not at minimal distance. Hence, the claim that Litvak’s method is
positively involved follows.

Also the maximin method is positively involved. Ifa wins inV1 and is joined by
V2 of individuals with identical preferences so thata is first ranked, each entry ofa’s
row in the outranking matrix ofV1∪V2 is added by|V1∪V2|, while only some entries
of other rows are similarly added. Hence, the minimal entry on a’s row remains the
largest.

Similar argument shows that the maximax method is also positively involved.

4. Conclusion

Table 10 summarizes the results of the preceding. The main overall conclusion is that
BC beats the other systems discussed in this paper hands downin terms of the criteria
we have dealt with. A reader with a more “binary” or “Condorcetian” persuasion might
wonder why we haven’t included the Condorcet winning criterion into the picture.
This well-known condition states that if there is a Condorcet winner in the profile
under investigation, this alternative should be chosen. Saari’s (e.g. Saari, 1995; Saari,
2006) works have cast a shadow over this criterion and, hence, we have not used it
here. Another reason is that the Condorcet winning criterion often plays a crucial
role in various incompatibility results – such as incompatibility of Condorcet criterion
and invulnerability to the no-show paradox (Moulin, 1988) or of Condorcet criterion
and nonmanipulability (G̈ardenfors, 1976). Therefore, if the Condorcet criterion isin
doubt, much of the practical importance of these results is swept away.

Of course, it is not necessary to conduct project evaluations with BC or any of
its modifications. We re-emphasize, however, the intuitively appealing features of BC
in these contexts: all alternatives are handled neutrally,all voters anonymously and
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Table 10.Summary assessment of methods

Criterion method C-loser exclusion Consistency Faithfulness Positive involvement

BC yes yes yes yes
f Mb no no yes no
f Mn yes no no yes
f Gb no yes yes yes
f Gn no yes no yes
maximin no no no yes
maximax yes no no yes
Litvak no no yes yes

all positions have an equal value attached to them. Moreover, the difference between
values of two consecutive positions is constant. The well-known drawback of BC that
it is vulnerable to introduction of “phantom” options (irrelevant alternatives) can in the
project evaluation contexts be largely ignored since the contestant project set is usually
fixed before the expert evaluation begins.
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