基于 Fuzzy-PID 的 MOCVD 温度控制方法

过润秋,解宝辉

(西安电子科技大学 机电工程学院 陕西 西安 710071)

摘要:针对 MOCVD 系统反应室温度的特性和对温度控制的要求,提出了一种基于 Fuzzy-PID 的温度控制方案,即利用模糊控制求得归一化的 PID 参数变化系数,从而实现 PID 参数的在线自调整. 与 Smith 预估控制相比,Fuzzy-PID 具有更好的控制效果,较好地解决了系统中存在的"非线性"、"大滞后"、"物理模型不精确"等问题,满足 MOCVD 控制系统温度控制要求.

关键词: MOCVD 温度控制 模糊 PID 控制

中图分类号:TP273 文献标识码:A 文章编号:1001-2400(2005)04-0504-04

Research on MOCVD temperature control based on Fuzzy-PID

GUO Run-qiu , XIE Bao-hui

(School of Mechano-electronic Engineering , Xidian Univ. , Xi'an 710071 , China)

Abstract: According to the temperature characteristics of the reactor and the requirements for temperature control in the MOCVD system , a kind of Fuzzy-PID temperature controller is proposed. Fuzzy-PID can realize the PID parameters on-line self-regulation , normalizing varying PID parameter coefficients into the range between 0 and 1 by using fuzzy control. In addition , the corresponding simulation is given. The results indicate that the Fuzzy-PID controller has better control performance (such as non-linearity , hysteresis and unprecision physical model) than the Smith controller , and can meet the design requirements for the MOCVD temperature controller.

Key Words: MOCVD temperature control Fuzzy-PID control

MOCVD(Metal Organic Chemical Vapor Deposition) 金属有机化合物化学气相淀积)是一种高质量半导体材料生长技术,以 MO 化合物为材料源,在合适的淀积温度下,利用易挥发的 MO 化合物转移相对稳定的金属原子,进行材料的淀积^[1]. MOCVD 技术主要应用于半导体材料、纳米材料等材料生长领域,具有很高的应用价值及广阔的应用前景.

温度控制是 MOCVD 控制系统中的重要部分,直接影响材料生长的质量. 在材料生长的整个过程中,始终需要对反应室的温度进行精确控制.

1 MOCVD 温度控制系统特点

MOCVD 系统中温度控制系统的特点为:

- (1) 在材料生长的过程中,石墨基座处于旋转状态,用来测温的热电偶不随之旋转.
- (2) 热电偶上端与石墨基座的下表面之间存在一段"空气"间隙 ;涉及到的"散热"是充斥其间的气体的辐射散热.
 - (3) 在实际材料生长的过程中 反应室密封 测温热电偶测得的温度与石墨基座下表面的实际温度有一定'延迟':
- (4) 用于生长材料的蓝宝石衬底放在石墨基座上;由于石墨是热的不良导体,所以基座下表面的温度相对于上表面的温度也有一定的"延迟".
 - (5) 在实际材料生长的过程中,密封反应室内部在不同阶段有不同浓度、不同种类的载流气体流过,上述

收稿日期 2004-08-11

两种影响较大"延迟"的精确物理模型很难得到.

由此可见 ", 大滞后 "、" 非线性 "、" 时变 "与" 难以得到较为精确的物理模型 "是 MOCVD 温度控制系统 的主要特点.

如果控制系统的鲁棒性比较好,可以较好地弥补系统中或者是系统外非线性、时变等因素对系统的影响. 但是 MOCVD 温控系统存在大时滞现象,该类型系统一直都是工业控制界控制的一个难题. 大量资料显示表 明 若控制对象纯滞后时间常数 τ 与过程惯性时间常数 T 之比 即 $\tau/T \ge 0.3$,则一般的控制规则难以有较好的 控制效果. 在 MOCVD 温控系统中 ,7/T 高达 0.75 所以采用常规控制器无法满足系统的控制要求.

PID 控制与模糊控制

2.1 PID 控制

PID 控制器将误差的比例(P),积分(I)和微分(D)通过线性组合构成控制量,对被控对象进行控制. PID 控制器的数学模型表达式为

$$U(K) = K_p \, \epsilon(K) + K_i \, T_0 \, \sum_{i=1}^{n} \, \epsilon(i) + K_d \, \Delta \epsilon(K) / T_0 \quad , \tag{1}$$

式中U(K)为系统控制信号A(K)是系统参考值和系统实际输出之间的误差 $\Delta e(K) = e(K) - e(K-1)$, T_0 为控制器采样周期.

PID 控制 根据被控对象的不同 适当调整 PID 参数 ,可以获得比较满意的控制效果. 因为其算法简单 , 参数调整方便 稳定性好 河靠性高 实时性强等特点 所以成为当前最为普遍采用的控制算法. 但是当被控 系统对象具有明显的非线性或者负载发生变化时 固定参数的常规 PID 控制就不能适应系统的动态变化 其 动态稳定性能难以对系统实现较优调节 因而影响系统的控制质量.

2.2 Fuzzy 控制

模糊控制是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制. 该方法的优点 是无须建立被控对象的数学模型,对被控对象的时滞、非线性和时变性具有一定的适应能力等,同时鲁棒性 较好. 但是 模糊控制器本身消除系统稳态误差的性能比较差 难以达到较高的控制精度[2].

2.3 Fuzzy-PID 控制

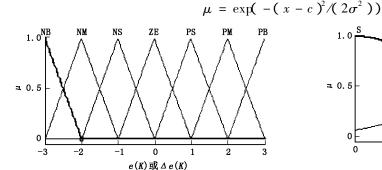
Fuzzy-PID 控制 不仅保持了 PID 原有的结构 还增加了灵活性来应对复杂的情况[3]. MOCVD 温度控制 系统具有较大的滞后性、非线性、时变性 ,单纯采用 PID 控制或模糊控制都不能达到较好的控制效果. 采用 Fuzzy-PID 复合控制方式控制温度,既可发挥模糊控制鲁棒性强、动态响应好、上升时间快、超调小的特点,又 具有 PID 控制器的动态跟踪品质和稳态精度^[2]. 所以此温度控制系统采用了模糊控制与 PID 控制相结合的 方法 利用模糊控制器在线调整 PID 参数 实现对 MOCVD 温度控制系统的精确控制.

MOCVD 温度控制系统 Fuzzy-PID 算法设计

3.1 系统结构

通过对误差和误差变化率进行模糊处理 得到 0 ,1 间归一化的 PID 参数变化系数 K_{0} K_{0} K_{0} ,根据公式 (2)~(4)在线实时求解 PID 参数 K_{i} K_{i} 的值 然后对反应室温度进行 PID 调节.

$$K_p = K_{pmin} + (K_{pmax} - K_{pmin}) \times K_p'$$
 , (2)
 $K_i = K_{imin} + (K_{imax} - K_{imin}) \times K_i'$, (3)
 $K_d = K_{dmin} + (K_{dmax} - K_{dmin}) \times K_d'$, (4)
其中[K_{pmin} , K_{pmax}] , [K_{imin} , K_{imax}] , [K_{dmin} , K_{dmax}] 分别为 K_p ,


 K_i K_d 的变化范围.

3.2 模糊化

选择误差 (K)和误差变化率 $\Delta (K)$ 作为语言输入变

图 1 MOCVD 温度控制系统结构图

量 $其隶属函数如图 2 所示. 语言输出变量 <math>K_{n}$ K_{d} 的隶属函数如图 3 所示 \mathbb{Z} 图中采用公式(5)所述的非线性隶 属函数高斯曲线函数(Gaussmf) ,该曲线具有很好的光滑性 图形没有零点而且具有比较清晰的物理意义 ,更 能够准确的反映控制系统的实际情况,提高控制精度[4].

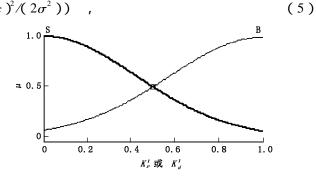


图 2 $\ell(K)$ 或 $\Delta\ell(K)$ 的隶属函数图

图 3 K_n 或 K_d 的隶属函数图

图 3 中 0 < x < 1 对于曲线 S $\sigma = 0.4247$ $\rho = 0$ 对于曲线 B $\sigma = 0.4247$ $\rho = 1$

积分控制具有滞后特性 ,积分太强会使被控对象的动态 品质变坏 ,导致闭环系统不稳定 ,考虑到系统的特点 ,采用公式(5)所述的 gaussmf 函数建立 K_i 的隶属函数图(如图 4). 图中 0 < x < 1 ,对于曲线 S $\sigma = 0.21$ $\rho = 0.33$,对于曲线 M , $\sigma = 0.11$ $\rho = 0.5$;对于曲线 $\rho = 0.21$ $\rho = 0.21$

3.3 模糊控制规则

这里所述 Fuzzy-PID 控制方法的模糊控制规则采用" ifthen "规则 具体形式如下: If e(K) is A_i and $\Delta e(K)$ is B_i , Then K_a is C_i , K_i is D_i , K_d is E_i ;

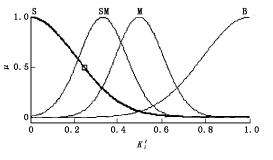


图 4 K_i 的隶属函数图

在响应的起始点,误差 $\epsilon(K)$ 很大且为正 $\Delta \epsilon(K)$ 几乎为 0. 为了得到快速的系统响应,必须加大对被控对象的操作量. 此时的控制规则为:

If d(K) is PB and $\Delta d(K)$ is ZE, Then ΔK_p is B, ΔK_i is B, ΔK_d is S.

第一次达到设定值时 输出响应需要产生一个小的控制信号 以避免大的超调量 此时规则为:

If d(K) is ZE and $\Delta d(K)$ is NB, Then ΔK_n is S, ΔK_i is B, ΔK_d is S.

根据生产工程师的工程经验,并参考文献256],建立 K_0 , K_1 , K_2 的模糊控制表.

3.4 模糊运算

用于模糊运算的第 i 条模糊控制规则 ,由条件模糊集合成的隶属度为 $\mu_i = \min \{ \mu_{Ai} \in K \} \mu_{Bi} \Delta \in K \}$.

3.5 解模糊

这里所述 Fuzzy-PID 控制方法采用面积中心法[4]进行解模糊.

表 1 K_{o} 的模糊控制表

表 2 K 的模糊控制表

K	,	$\Delta e(K)$						$oldsymbol{v}'$	$\Delta \epsilon(K)$							
$\mathbf{\Lambda}_p$		NB	NM	NS	ZE	PS	PM	PB	\mathbf{K}_{i}	NB	NM	NS	ZE	PS	PM	PB
	NB	В	В	В	В	В	В	В	NB	В	В	В	В	В	В	В
	NM	\mathbf{S}	В	В	В	В	В	S	NM	SM	M	В	В	В	M	SM
	NS	\mathbf{S}	S	В	В	В	S	S	NS	\mathbf{S}	SM	M	В	M	SM	S
e(K)	ZE	\mathbf{S}	S	\mathbf{S}	В	\mathbf{S}	S	S	e(K) ZE	\mathbf{S}	S	SM	M	SM	S	S
	PS	\mathbf{S}	\mathbf{S}	В	В	В	S	S	PS	\mathbf{S}	SM	M	В	M	SM	S
	PM	\mathbf{S}	В	В	В	В	В	S	PM	SM	M	В	В	В	M	SM
	PB	В	В	В	В	В	В	В	PB	В	В	В	В	В	В	В

表 3 K_{i} 的模糊控制表

			· ·	1						
$oldsymbol{v}'$		Δe(K)								
K_{μ}	,	NB	NM	NS	ZE	PS	PM	PB		
	NB	S	S	S	S	S	S	S		
	NM	В	В	\mathbf{S}	\mathbf{S}	\mathbf{S}	В	В		
	NS	В	В	В	S	В	В	В		
e(K)	ZE	В	В	В	В	В	В	В		
	PS	В	В	В	S	В	В	В		
	PM	В	В	\mathbf{S}	S	\mathbf{S}	В	В		
	PB	S	S	\mathbf{S}	\mathbf{S}	\mathbf{S}	S	S		

$$K_{p}^{'} = \sum_{i=1}^{m} \mu_{i} K_{p_{i}}^{'} / \sum_{i=1}^{m} \mu_{i}$$
 , (6)

$$K_{i}^{'} = \sum_{i=1}^{m} \mu_{i} K_{i_{i}}^{'} / \sum_{i=1}^{m} \mu_{i}$$
 , (7)

$$K_{d}^{'} = \sum_{i=1}^{m} \mu_{i} K_{d_{i}}^{'} / \sum_{i=1}^{m} \mu_{i}$$
 (8)

4 控制实现

通过大量的实验测试,并参考文献 5β],设定 $K_p K_a$ 的变化范围.

 $K_{p \min}=0.235~K_u$, $K_{p \max}=0.418~K_u$, $K_{d \min}=0.0347~K_u~T_u$, $K_{d \max}=0.0951~K_u~T_u$, $K_u~T_u$ 分别为比例控制下等幅振荡时的比例增益和振荡周期.

根据 Ziegler-Nichols 整定 PID 参数法 ,得到 $T_i = 4T_a$,所以

$$K_i = K_p/T_i = K_p/(4T_d) = K_p^2/(4K_d)$$
 (9)

根据公式(9),参考文献 5 β],并考虑到系统对积分控制的特殊要求,通过实验测试,设定 K_i 的变化范围为

$$K_{i\min} = 0.0010 K_{i\max} = 0.00156.$$

实时控制时,首先需要将 d(K) 及 $\Delta d(K)$ 量化到论域 -3 , 3)中 然后进行模糊控制运算 得到 PID 参数变化系数 K_p K_i K_d 的值 再相应计算出 K_p K_i K_d 的值 作为 PID 控制的参数.

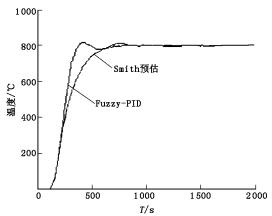


图 5 仿真曲线图

5 仿 真

在文献 7]中 ,采用曲线飞升法求得 MOCVD 温度控制系统的参数 :增益约为 $3.2\%/0.1\,\mathrm{V}$,对象纯滞后时间约为 $150\,\mathrm{s}$.过程惯性时间常数约为 $200\,\mathrm{s}$.

$$G(s) = (3.2/(200 s + 1)) \exp(-150 s)$$
. (10)

纯滞后补偿 Smith 预估算法是一种应用较为普遍的针对大时滞系统进行补偿的方法. 根据文献 8]所述方法 建立 Smith 预估算法模型 作为对比参考.

分别采用 Fuzzy-PID 方法和 Smith 预估算法 在 Matlab 软件中对 MOCVD 温度控制系统进行仿真测试. 图 5 所示为仿真曲线图. 表 4 中 Y ros 为最大超调的百分比 Y 代表稳定时间 Y LEE 分别是绝对误差积分和平方误差积分.

表 4 仿真结果数据表

	Yos/(%)	T_s/s	IAE(10 ⁵)	ISE(10 ⁸)
Fuzzy-PID	2.32	350	2.016	1.348
Smith 预估	0.31	549	2.339	1.440

6 结 论

由图5和表4可知 ,本文中所述的Fuzzy-PID算法在 $T_{_{s}}$,IAE ,ISE3项指标上 ,性能优于Smith预估控制