Revista Mexicana de Astronomía y Astrofísica
Universidad Nacional Autónoma de México
rmaa@astroscu.unam.mx
ISSN (Versión impresa): 0185-1101
MÉXICO

2006
J. Smolinski / W. Osborn

MEASUREMENT OF DOUBLE STARS WITH A CCD CAMERA: TWO METHODS
Revista Mexicana de Astronomía y Astrofísica, enero, volumen 25
Universidad Nacional Autónoma de México
Distrito Federal, México
pp. 65-68

MEASUREMENT OF DOUBLE STARS WITH A CCD CAMERA: TWO METHODS

J. Smolinski ${ }^{1}$ and W. Osborn ${ }^{1}$

RESUMEN

El propósito de este trabajo es determinar ρ y θ en estrellas dobles usando coordenadas ecuatoriales. Esta aproximación ofrece varias ventajas. Una comparación de los valores derivados con aquellos obtenidos tras el empleo de métodos tradicionales de coordenadas rectangulares, sobre las mismas imágenes, muestra una equivalencia de resultados. Se determinaron las medidas correspondientes a 62 estrellas dobles.

Abstract

This research aims to determine ρ and θ for double stars using equatorial coordinates. This approach offers several advantages. A comparison of the derived values with those from traditional measures of rectangular coordinates for the same images shows the results are equivalent. Measures for 62 double stars have been determined.

Key Words: BINARIES: VISUAL

1. INTRODUCTION

The systematic observation of double stars to detect orbital motion, and hence, to determine stellar masses, is perhaps the oldest branch of stellar astrophysics. Work has been traditionally concentrated on the systems with small separations since they have the most probability of both being physical binaries and showing rapid motion. In contrast, wide pairs generally need measures over many years - or even centuries - to determine if a system is gravitationally bound or an optical double.

The Washington Double Star catalog (WDS; Mason et al. 2001) contains measures of over 85,000 visual pairs. Many of the wider ones have not been observed regularly or very recently. Most of these neglected doubles are relatively bright, therefore, obtaining new observations is an ideal project for a small telescope equipped with a CCD camera. In fact, a number of programs of CCD observations of neglected pairs using 50 cm or smaller telescopes have been carried out in the past decade (for example, Salaman, Morlet \& Gili 1999; Ryan 2003; Wilson 2003).

This paper presents measurements for 62 wide double stars. There were two objectives: (1) to obtain recent epoch measures for neglected pairs and (2) to investigate the technique of determining separations and position angles from the stars' equatorial coordinates rather than differential rectangular ones.

[^0]

Fig. 1. The relation between (ρ, θ) and (α, δ) coordinates.

TABLE 1
AVERAGE VALUES OF $\Phi^{\text {a }}$

Tel.	1999	2001	2002	2003
CMU	-1.32	-1.64	-1.21	-1.80
NURO	-3.89	-0.33	\ldots	\ldots

${ }^{\mathrm{a}}$ In degrees, with errors less than 0.1°.

2. MEASUREMENT METHODS

For observations with a CCD camera, the separation (ρ) and position angle (θ) of a given pair are typically determined from the rectangular pixel

TABLE 2
MEASURES OF 62 DOUBLE STARS
© 2006: Instituto de Astronomía, UNAM - Third International Meeting of Dynamic Astronomy in Latin America

WDS No.	Name	α_{2000}	δ_{2000}	Epoch	ρ	θ	N	Tel.
$02282+5423$	HJ 5535 CD	022822.1	+5425 20	2003.082	19.34	145.4	4	CMU
$03178+5457$	SCA 12	031743.8	+54 5718	2003.082	19.50	350.8	3	CMU
$03393+6513$	STI 471	033913.6	+65 1205	2003.082	10.65	95.2	2	CMU
$03404+3022$	HJ 335	034023.4	+30 2206	2003.082	15.41	250.3	3	CMU
$03547+5200$	PAN 2	035437.8	+515821	2003.082	7.07	313.4	3	CMU
$04276+3204$	SEI 47	042737.3	+3203 41	2003.082	19.86	186.2	3	CMU
$05032+2921$	HJ 354	050316.1	+29 2051	2003.082	11.89	296.2	3	CMU
$05044+3743$	SEI 59	050423.6	+374153	2003.082	16.65	322.6	3	CMU
$05083+3716$	SEI 74	050815.5	+371621	2003.115	11.47	208.9	3	CMU
$05104+3742$	SEI 85	051027.0	+374158	2003.115	15.30	312.8	3	CMU
$05119+3757$	SEI 91	051159.1	$+375717$	2003.115	14.76	247.3	3	CMU
$05121+3650$	SEI 94	051208.1	+3650 39	2003.143	17.19	177.4	3	CMU
$05136+3749$	SEI 110	051338.3	+374834	2003.143	10.99	350.0	3	CMU
$05138+3520$	SEI 112	051346.8	+35 1937	2003.143	17.39	242.6	3	CMU
$05151+3623$	SEI 118	051506.2	+362315	2003.156	18.45	343.9	3	CMU
$05154+3635$	SEI 119	051524.7	+36 3414	2003.156	10.57	353.7	3	CMU
$05155+3804$	SEI 120	051532.3	+38 0259	2003.156	12.41	84.2	2	CMU
$05156+3731$	SEI 122	051533.1	+373042	2003.156	14.24	120.8	3	CMU
$05168+3709$	SEI 143	051648.7	+370809	2003.156	9.49	204.7	2	CMU
$06321+3253$	SEI 460	063204.2	+325252	2003.115	8.96	187.4	4	CMU
$06462+4962$	ES 2619	064618.8	+4956 49	2003.121	9.65	279.8	1	CMU
$07159+3131$	SEI 476	071557.3	+313141	2003.121	15.23	230.9	3	CMU
$07554+3818$	MLB 834	075521.9	+381849	2003.121	7.82	293.9	3	CMU
$11022+0954$	STF 1503	110210.9	+095344	2002.275	11.45	270.6	2	CMU
$12033+5924$	STI 738	120317.8	+59 2405	1999.395	6.52	38.6	2	NURO
12085-0259	BAL $219{ }^{\text {a }}$	120829.0	-02 5904	1999.395	7.57	16.7	2	NURO
$12151+0959$	STF $1618^{\text {a }}$	121503.5	+09 5927	1999.395	25.95	245.0	2	NURO
$12272+5519$	MLB 1076	122707.2	+541021	1999.395	10.91	225.4	2	NURO
$12279+6105$	STI $746{ }^{\text {a }}$	122751.5	+61 0455	1999.395	4.98	335.5	1	NURO
$12511+0152$	BAL 1887	125105.4	+015204	1999.395	8.33	51.0	2	NURO
$14165+4633$	ES 1085 ${ }^{\text {a }}$	141630.2	+463309	1999.398	5.72	175.0	2	NURO
$14485+1203$	HJ 241	144830.9	+120328	1999.392	17.29	140.9	2	NURO
$14514+4436$	HJ 2752	145125.1	+443634	1999.398	6.11	120.8	2	NURO
$15094+1437$	HEI 165	150922.1	+14 3741	1999.398	3.54	15.3	2	NURO
$15141+2545$	STF 1924	151406.6	+2545 26	1999.398	15.37	306.0	2	NURO
$17594+2929$	STF 2247 Aa-B	175924.5	+29 2930	2001.491	11.53	188.5	2	NURO
$18029+5626$	STF 2278 AB	180253.1	+56 2541	2001.852	36.25	28.1	2	NURO
$18029+5626$	STF 2278 AC	180253.1	+5625 41	2001.852	33.90	37.2	2	NURO
$18029+5626$	STF 2278 BC	180255.1	+56 2613	2001.852	6.06	145.4	2	NURO
$18048+2353$	STF 2274	180445.2	+235314	1999.726	18.08	292.0	1	CMU
$18057+1200$	STF 2276 AB	180543.4	+1200 14	1999.622	7.11	256.3	2	CMU

${ }^{\text {a }}$ Only rectangular coordinate measures.
coordinates of the image centers of the two stars: $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Formally,

$$
\begin{aligned}
& \rho=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}(\mathrm{~S}) \\
& \theta=\tan ^{-1}\left[\left(x_{2}-x_{1}\right) /\left(y_{2}-y_{1}\right)\right]+\Phi
\end{aligned}
$$

where S is the plate scale in arcsec per pixel and Φ is the rotation angle of the pixel array coordinates relative to the equatorial coordinates on the sky. Both
S and Φ may vary and must be determined. Calibration can be time consuming and may pose problems if the field of view is small.

An alternate approach is to determine ρ and θ from the equatorial coordinates (α, δ) of the two stars. These values can be obtained by standard astrometry techniques using catalogued reference stars that appear on the image. By spherical trigonometry (see Fig. 1), ρ and θ are given by

$$
\begin{aligned}
& \rho=\cos ^{-1}\left[\cos \left(\Delta \alpha \cos \delta_{1}\right) \cos \left(\delta_{2}-\delta_{1}\right)\right] \\
& \theta=90^{\circ}-\tan ^{-1}\left[\frac{\sin \left(\delta_{2}-\delta_{1}\right)}{\cos \left(\delta_{2}-\delta_{1}\right) \sin \left(\Delta \alpha \cos \delta_{1}\right)}\right] .
\end{aligned}
$$

The astrometric solution provides the scale and the orientation, and determines both ρ and θ. Obviously, this method can also be applied to catalogued positions as well as measurements of images.

3. THE OBSERVATIONS

Images for 62 systems were obtained during the period 1999-2003 using the Central Michigan University (CMU) 40 cm and National Undergraduate Research Observatory (NURO) 70 cm reflectors. Even though the observations were not done in any systematic manner, short periods of time were devoted while other observation programs had place. Two or three images of each system were usually obtained.

Standard zero point and flat field corrections were applied and after that the double stars were measured by the two methods independently. MIRA ${ }^{2}$ was used to derive the equatorial coordinates from reference star positions, which were taken from the USNO-A2.0 catalog. The rectangular pixel coordinates were determined by using IRAF^{3} with the adopted scale and orientation, which are mean values from the astrometric solutions. In a few cases, results could only be obtained from rectangular coordinates because suitable reference stars were not in the field.

[^1]
4. COMPARISON OF THE TWO METHODS

Comparison of the results from the two techniques with Hipparcos or other measures for well-observed unchanging systems showed:

- The two methods provide equivalent results when there are no difficulties (such as blended images or a poor reference frame). The differences averaged $0.04^{\prime \prime}$ in ρ and 0.16° in θ.
- At least, 5 well-distributed reference stars are needed to adequately determine the relative equatorial positions.
- Φ can vary over several degrees due to the remounting of a camera on a telescope, as shown in Table 1.
- Our measures have errors in ρ and θ that are typically $0.1^{\prime \prime}$ and 0.3°, respectively, but somewhat larger for close systems.

5. RESULTS

Table 2 shows results for a sample of the whole set. ${ }^{4}$ Two new pairs are found on the images of targeted doubles. The columns show the WDS identifier, star name, equatorial coordinates of the primary, epoch of the observation, the average ρ and θ from the separate images, the number of images, and the telescope used. Eleven stars have not been observed for over 50 years and six stars have not been measured since their discovery, over 100 years ago. Several systems show significant motion.

Our acknowledgement to the persons who participated in the observations: J. Beningo, M. Curtis, S. DeLano, J. Fraley, D. Ferrer, J. Lacy, B. Lien, E. McDonald, and L. Parsons. This research made use of NASA's Astrophysics Data System and the SIMBAD database, operated by CDS, Strasbourg, France.

REFERENCES

Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., Worley, C. E. 2001, AJ, 122, 3466

Ryan, J. M. 2003, Double Star Observer, No. 35, 24
Salaman, M., Morlet, G., \& Gili, R. 1999, A\&AS, 135, 499
Wilson, J. W. 2003, BAAS, 35, 1422

[^2]

Homage to Jürgen Stock, in the background the telescope with his name.

[^0]: ${ }^{1}$ Dept. of Physics, Central Michigan Univ., Mt. Pleasant, MI 48859, USA.

[^1]: ${ }^{2}$ Axiom Research (http://www.axres.com).
 ${ }^{3}$ IRAF is distributed by the National Optical Astronomy Observatory. which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

[^2]: ${ }^{4}$ The full table can be requested to the authors.

