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A SIMPLE MODEL TO DETERMINE CHAOTIC MOTIONS AROUND

ASTEROIDS

A. Elipe1 and M. Lara2

RESUMEN

Es conocido que el movimiento tridimensional en las proximidades del asteroide (433) Eros es caótico para un
amplio abanico de inclinaciones. La principal caracteŕıstica de este asteroide es su forma alargada, lo que hace
que los procedimientos habituales de desarrollar el potencial en armónicos esféricos no tenga mucha utilidad.
Por tal razón, consideramos un modelo simple que aproxime su forma alargada; en concreto, tomamos una
varilla alargada y en rotación. De este modo sepuede obtener el potencial de forma cerrada, sin necesidad de
desarrollos. Con este modelo tan simple y mediante el cálculo de familias de órbitas periódicas, podemos obtener
una explicación para la mayoŕıa de las caracteŕısticas dinámicas previamente halladas para el movimiento orbital
alrededor de Eros.

ABSTRACT

It is well known that the 3-D motion around the asteroid (433) Eros is chaotic for a wide set of inclinations.
The main feature of this body is its elongated shape, which originates that the usual procedure of expanding
the potential function in spherical harmonics is useless. This is the reason why we consider a simple model to
describe its elongated shape, namely, a rotating finite straight segment. By so doing, it is possible to obtain
the potential in closed form, with no need of further expansions. For this model, from the analysis of families
of periodic orbits, we can find an explanation for most of dynamics already found for orbits around Eros.

Key Words: CELESTIAL MECHANICS — MINOR PLANETS, ASTEROIDS

1. INTRODUCTION

At present, there are space missions planned
which targets are minor bodies in the Solar System,
such as asteroids, comet nuclei or planet satellites,
like Phobos or Deimos. Designing orbits around
those bodies is a new challenge because of the un-
certainty of some of its physical properties, like their
mass, density and rotation, and also, because one
of the main features of these bodies is their elon-
gated shape. Taking into account the latter aspect,
the classical way of expanding the gravity potential
in Legendre polynomial series may diverge at some
points (Balmino 1999). Consequently, a new ques-
tion raised: how to efficiently represent the gravity
field of such irregular bodies? To answer this ques-
tion, several approaches have been proposed. Thus,
Werner (1994) models the asteroid by a homoge-
neous polyhedron and derive formulas for the grav-
ity field. This same model has been applied (Werner
& Scheeres 1997) to asteroid 4769 Castalia. How-
ever, the polyhedron model, although very accurate,
presents a lot of difficulties from the practical point
of view, since there are many free parameters, there
may be singularities at the corners and edges. This

1GME. Universidad de Zaragoza, Spain.
2Real Observatorio de la Armada, Spain.

model makes difficult the computations of the deriva-
tives to find the acting force. For some particular
cases, other models, not so sophisticated, may give
a good approximation for some bodies. In this way,
Scheeres (1994) and Lara & Scheeres (2002) make
the classical Legendre expansion and take only the
first tesserals to analyze the dynamics around aster-
oid 433 Eros.

A different approach was made in Halamek
(1988), although it already appears in Duboshin
(1959). It consists of a finite straight segment with
homogeneous distribution of mass. As its main ad-
vantage, it is possible to express its potential in
closed form as a logarithm, depending on intrinsic
quantities, namely, the length of the segment and the
distances to the end points of the segment (Elipe et
al. 1999; Riaguas et al. 1999). An extension of this
model, considering two perpendicular straight seg-
ments, has been proposed very recently (Bartczak &
Breiter 2003), and a comparison with respect to the
expansion in spherical harmonics is made.

Asteroids and planetary satellites are old objects
in the solar system and have reached the state of low-
est energy for a given angular momentum, i.e., pure
rotation about the principal axis of highest moment
of inertia; any primeval nutation faded away because
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4 ELIPE & LARA

nutation induces time-varying internal stresses that
dissipate mechanical energy through hysteresis cy-
cles (see e.g. Prieto & Gómez 1994).

In this communication, we will briefly present
some of aspects of the dynamics around a finite
straight segment in rotation, and we will address the
interested reader to the references.

The potential of a finite straight segment of
length 2` per unit of mass is given by

U = −
GM

2`
log

(

r1 + r2 + 2`

r1 + r2 − 2`

)

,

where G stands for the Gaussian constant and r1

and r2 are the distances from the point P to the
end points of the segment. Thus, the potential is
expressed in closed form in terms of intrinsic quan-
tities, namely distances.

When the segment is uniformly rotating with an-
gular velocity ω about an axis perpendicular to it
and passing through its center of mass, and after an
adequate choice of units, we can define the effective
potential

W = −
1

2
(x2 + y2) − k log

(

r1 + r2 + 1

r1 + r2 − 1

)

, (1)

where k = GM/(ω2(2`)3); when k < 1 we have fast
rotation of the segment. On the contrary, k > 1
means slow rotation with respect to the orbital mean
motion.

In this rotating frame, the equations of motion
are

ẍ − 2ẏ = −Wx, ÿ + 2ẋ = −Wy, z̈ = −Wz, (2)

that have the Jacobian integral h = 2W + 2T ,with
T the kinetic energy.

Stationary points give valuable information
about the dynamics. It can be proved by analyz-
ing the linearized equations (Riaguas 1999; Elipe et
al. 1999) that Eqs. (2) have 4 equilibria, two on
the x axis that are unstable for whatever value of
the parameter k, and two on the y axis, unstable
for k ≥ 4.548, and linearly stable for k < 4.548. A
further and more complex analysis, which requires
the use of normal forms and some previous results
for Hamiltonians with 2 degrees of freedom, proves
that these points are indeed orbitally stable (Riaguas
1999). Besides, the analysis was extended for the
resonant cases (Riaguas et al. 2001).

Equations (2) are highly nonlinear, and Poincaré
sections show a transition order-chaos (Riaguas et al.
1999). This strong nonlinearity gives also some in-
dications about their non-integrability, which indeed

happens; in Arribas & Elipe (2001) it was proved
that for any expansion of the potential, the system
has no mero morphic integrals but the Hamiltonian
itself.

But, we recall there are planned missions to or-
bit around those bodies and it should be desirable
to split regions of initial conditions where the mo-
tion is regular from others regions where the motion
is chaotic. This goal may be achieved by means of
families of periodic orbits. Computing families of pe-
riodic orbits is a delicate task, and there are several
ways to obtain them. In our case, we used the nu-
merical continuation method given by Deprit & Hen-
rard (1967) with the modifications given in Lara et
al. (1995), based on a prediction-correction scheme.
By so doing, from a starting periodic orbit, we can
propagate the family by integrating jointly the equa-
tions of motion and the variational equations. In our
case, as starting orbit, we take a circular orbit with
very big radius (close to a Keplerian circle); then, by
modifying slowly the Jacobian constant we generate
the family that sprouts from the circular orbit.

The eigenvalues of the monodromy matrix (that
is, the transition matrix evaluated after one period)
arecomputed along the procedure, and provide the
stability index, which is used to determine not only
the stability of the orbits along the family, but the
values of the bifurcations and the type of bifurcation
that takes place, that is, if the family bifurcates on
the plane or if it is a vertical bifurcation. For de-
tails about the stability index, see Broucke (1969);
Hénon (1973); Lara & Peláez (2002). Since the prob-
lem is Hamiltonian, if λi is eigenvalue, 1/λi is also
eigenvalue; besides, the system is autonomous, and
one eigenvalue is the unit with multiplicity 2. Hence,
two stability indices

k1 = λ1 + 1/λ1, k2 = λ2 + 1/λ2,

are defined in such a way that if |ki| < 2 (i = 1, 2)
we have linear stability for the orbit. Otherwise, we
have instability.

It is known that bifurcations from stability to
instability are the threshold to chaos. Thus, we pro-
ceeded in Elipe & Lara (2003) to determine these
bifurcation lines. First, we computed periodic or-
bits in a rotating frame attached to the segment and
determined their stability, which helps in separating
regions of stable trajectories from escape or collision
ones. In this way, we extended the work (Elipe et al.
1999) by computing the vertical stability (k2) of pla-
nar periodic orbits. We found that three-dimensional
periodic orbits are members of bifurcated families of
the planar equatorial family of periodic orbits — we
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A SIMPLE MODEL TO DETERMINE CHAOTIC MOTIONS AROUND ASTEROIDS 5

call “equator” the plane perpendicular to the rota-
tion axis. We also noticed that these bifurcations ap-
pear when there are commensurabilities between the
rotation rate of the segment and the mean motion of
the orbiter in an inertial frame, which suggested that
these resonances would play an important role on the
bifurcations and on the stability. Thus, we decided
to tackle the problem of the resonances among these
angular velocities.

Let us assume that there is commensurability be-
tween the two frequencies involved in the problem,
namely, the orbital period in the inertial frame and
the rotating period of the segment. Let us assume
that the orbiter gives N revolutions in the inertial
frame around the segment while this rotates D times
around its rotation axis. Then, for retrograde orbits
there results that −n/ω = N/D, and if we denote by
PR = 2π/|ñ| the period of the orbit in the synodic
frame, there results that

PR =
2π

1 + N/D
,

The orbit will close in the inertial frame af-
ter a time ∆t = 2πD = (D + N)PR producing
the resonance. Therefore, the D:N -resonant orbit
is obtained by locating the orbit with period PR

on the retrograde family. The corresponding ini-
tial conditions are used then with multiple period
P = (D +N)PR, as starter of thepredictor-corrector
algorithm. By propagating the family with respect
to the Jacobian constant h, we obtain two types of
bifurcations, namely vertical bifurcation for increas-
ing values of h and horizontal bifurcation for smaller
values of h. Once the vertical bifurcation has been
found, slight variations in the initial conditions will
result in a three-dimensional periodic orbit of the
vertically bifurcated family.

The computation of different resonances occur-
ring at different distances from the orbiter to the ori-
gin provides an effective way to get very close to the
critical points with multiple period where the cor-
responding branches of families of three-dimensional
periodic orbits bifurcate. Further, the continuation
of the vertically bifurcated families of periodic orbits
and the computation of the stability indices enable
the determination of a set of points, defining a line
in phase space where the stability of the periodic or-
bits changes. A detailed explanation can be found
in Elipe & Lara (2003).

The continuation of the families of three-
dimensional periodic orbits that vertically bifurcate
in the vicinity of different resonances of planar ret-
rograde motion (Fig. 1), as well as the computation
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Fig. 1. Sample orbit of the 1:5-resonance family in the
rotating frame.

of the stability indices enable the determination of
a set of inclination values where almost circular or-
bits change from stability to instability. We can plot
these values versus the distance to the origin in a 2D
graphic (or equivalently versus the resonance value)
and have a set of points that, if dense enough, define
a line in the phase space where the stability of the
periodic orbits changes.

By so doing, we obtain the Figure 2 that presents
a set of points corresponding to the critical almost
circular orbits that are periodic in the cycles (nodal
periods/nodal days) 1:1, 4:5, 3:4, 2:3, 3:5, 4:7, 1:2,
3:7, 3:8, 1:3, 1:4, and 1:5. Ordinates present the
inclination I (the average along one period), while
abscissas are the inverse of the repetition cycle (1:1,
5:4, . . . , 5:1), that is directly related to the distance
of the orbit to the origin. In this figure, we find
stability for most retrograde orbits, while instability
appears for direct motion close to the origin. Joining
these dots, we can define three stability regions:

1. In the first region, we find stability for almost
circular orbits.

2. In the second region, we find instability for al-
most circular orbits. The motion could be easily
controlled since the stability indices are not very
high.

3. In the third region, the instability is very high,
leading very soon to escape or collision orbits.
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6 ELIPE & LARA
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Fig. 2. Stability indices k1, k2 of the family bifurcated at
the 1:1-resonance as a function of the inclination I and
the inverse of the repetition cycle.

With this simple model, our results are in good
agreement with the ones obtained with other tech-
niques, such as the ones given in Scheeres et al.
(1999).
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Hénon, M. 1973, A&A, 28, 415

Lara, M., Deprit, A. & Elipe, A. 1995, Celest. Mech.

Dyn. Astron., 62, 167
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