土壤盐分对牧草及饲料作物种子发芽率的影响

丁生祥,张泽郎,金元锋 (同德县气象局,青海同德813201)

摘要 [目的] 为增加牧草产量、促进牧草及饲料作物生产提供依据。[方法] 通过对饲料作物种子与牧草种子萌发阶段对盐分反应的 观察和鉴定,研究牧草与饲料作物的耐盐力。[结果]随着土壤盐分的增加,种子发芽率和种子活力指数逐渐下降,饲料作物种子对土 壤盐分的耐受性低于牧草种子。[结论] 在盐碱土中种植牧草及饲料作物,必须先测定盐浓度,如果大于2.0%则需进行改良后方能 种植。

关键词 土壤盐分; 种子; 发芽率

中图分类号 S330.2⁺1 文献标识码 A 文章编号 0517 - 6611(2008)21 - 08997 - 02

Analysis of the Effect on Seed Germination Rate of Soil Salirity

IING Sheng xiang et al (Tongde Courty Meteorological Bureau, Tongde, Qinghai 813201)

Abstract [Objective] The research aimed to provide references to increase the herbage yield and promote the production of herbage and forage crop. [Method] The salt-tolerance ability of herbage and forage crop was studied by the observation and identification to the salt-tolerance response of the sprouting stage herbage and forage crop seeds. [Result] The seed germination rate and the seed vigor index decreased gradually as the soil salinity increased. The salt-tolerance ability of forage crop seed was lower than that of herbage seed .[Conclusion] The salt concentration must be measured before planting herbage and forage crop. If it was over 2.0 %, the soil should be modified.

Key words Soil salinity; Seed; Cermination rate

盐土的形成主要是积盐过程。青海境内盐土类型复杂, 其盐分来源与积盐过程也不同,这样给有些牧草及饲料作物 的生产带来困难。目前,许多耕地因发生次生盐碱化而被弃 耕,许多人工草地也由于发生盐碱化而不再进行牧草种植。 因此,为增加牧草产量,有必要进行牧草和饲料作物耐盐力 的测定,选择抗盐牧草及饲料作物,使盐碱化的土壤得以利 用。牧草各个发育阶段耐盐力是不一致的,要测定不同牧草 的耐盐能力,必须对牧草各发育阶段分别进行试验[1-2]。笔 者通过对试验种子萌发阶段耐盐力的观察和鉴定,来研究牧 草及饲料作物的耐盐力。

材料与方法

- 1.1 材料 牧草及饲料作物9个品种:紫花苜蓿,红豆草, 沙打旺, 中华羊茅, 朝鲜碱茅, 无芒雀麦, 箭舌豌豆, 甜菜, 莞根。
- 1.2 方法 瓷盘播种,在恒温室中进行发芽试验,恒温24 。每盘装大田土壤4.5 kg(经测定含盐量小于0.2%属正 常土壤, 盐量忽略不计),按草甸盐土 HCO3、CI、SO42 含量

折算成 $NaHCO_3$ 、NaO、 Na_2SO_4 ,模拟草甸盐土的盐分比例1.0 12.7 对土壤进行加盐处理,按占土重百分比的0.4%、0.6%、 0.8%、1.0%、1.3%比例加盐(分别为处理 B₂~B₆),以不加盐 的大田土壤为对照(Bi,CK),2次重复,每重复播9种作物种 子各100 粒,每盘加水900 ml,每日定量补充水分,连续观察 15 d, 记录发芽数与饲料作物种子和牧草种子在发芽阶段对 盐分的反应。

结果与分析

- 2.1 不同盐分处理下牧草及饲料作物种子发芽率 分处理下9种牧草与饲料作物种子发芽率情况见表1。由表 1 可见,除 A_2 、 A_4 、 A_5 外,其他植物的发芽率均随盐分含量的 增加而变小。
- 2.2 两向分组资料的方差分析 对表1进行方差分析,结 果表明: 土类间 F(432.62) > F_{0.01}(4.38), 作物间 F(25.09) > $F_{0.01}(3.04)$, 土类×作物 $F(5.99) > F_{0.01}(2.35)$ 。 这表明它 们在0.01 水平有差异。

表1 不同盐分处理下9 种作物发芽率

Table 1 Ger mination rates of 9 crops under different salinity treat nexts

% A₇(沙打旺) A₈(朝鲜碱茅) A₀(无芒雀麦) 处理 A₁(紫花苜蓿) A₂(中华羊茅) A₃(红豆草) A₄(箭舌豌豆) A5(甜菜 A6(莞根) Weeping Astragalus Broms Treat ment Alfalfa Festuca sinensis Sanfan Sugar beet Vicia sativa Brassica rapa <u>alkaligrass</u> inermis Lewss <u>adsur gens</u> 27.0 43.0 73.5 $\mathbf{B}_{\mathbf{l}}$ 83.0 30.5 69.559.5 42.055.5 33.0 57 .0 23.0 53 .5 48.5 25 .5 19.0 33.5 B_8 33 .5 7.54 .5 28 .0 58.0 21 .0 19.5 10.0 21.0 B_4 18.5 3.0 39.0 3.0 14.0 3.0 16.5 2.5 23.0 B_5 1.5 0.55.0 2.5 9.0 1.5 0.50.52.5

2.3 B 因子多重比较检验 对B 因子进行多重比较检验,

丁生祥(1972-),男,青海湟中人,工程师,从事牧草种植与

利用研究。 收稿日期 2008-02-19

这表明土壤含盐量对牧草及饲料作物发芽率有极显著影响, 且随着土壤盐分增加,发芽率下降。

2.4 A 因子新复极差测验 A 因子新复极差测验结果(表 2) 表明:A₅、A₁、A₄ 极显著高于其他饲料作物和牧草的发芽 率; A_5 、 A_1 显著高于其他 A 因子, A_4 、 A_6 、 A_9 、 A_7 又显著高于 $A_2 A_8 A_3$

表2 A 因子新复极差测验

Table 2 SSR analysis of the mean value of A factor

	平均数	差异显著性Significance of difference			
A factor	Mean value	0 .05	0.01		
A_5	40 .92	a	Α		
A_1	32 .33	a	Α		
A_4	30.00	b	Α		
A_6	24 .08	b	В		
A_9	22 .92	b	В		
A_7	19 .25	b	В		
A_2	19.25	c	В		
A_8	12 .83	c	В		
A_3	12.33	c	В		

注:不同大、小写字母表示差异在0.01、0.05 水平显著。下同。

Note: Different capital letters and lowercases mean differences at 0.01 and 0.05 levels, respectively. The same as follows.

2.5 A × **B** 新复极差测验(表3) 由表3 可知, 经新复极差测验, A_1B_1 极显著高于 A_4B_4 、 A_5B_1 以外的其他处理, A_4B_4 、 A_5B_1 显著高于 A_6B_1 、 A_5B_2 以外的其他处理。

3 结论与讨论

试验结果表明,土壤含盐量对牧草及饲料作物发芽率有极显著的影响,随土壤盐分增加,发芽率下降;土壤盐分含量变化对饲料作物发芽率的影响比牧草发芽率要大;饲料作物和牧草在盐土中发芽率由小到大依次为甜菜、紫花苜蓿、箭舌豌豆、莞根、无芒雀麦、沙打旺、中华羊茅、朝鲜碱茅、红豆草。由土壤盐量达1.0%、1.3%可知,土壤盐分含量大,抑制牧草及饲料作物种子发芽。根据牧草发芽率不同(在土壤盐分不同时),选择不同的作物进行播种,对发芽率低的牧草及饲料作物,可加大播种量以保证全苗。

表3 A×B新复极差测验

Table 3 Mean value of A × B material in each treat next combination by SSR analysis

				1			
处理	平均数	差异显著性Significance of difference		处理	平均数	差异显著性Significance of difference	
Treat ment	Mean value	0 .05	0 .01	Teatment	Mean value	0 .05	0.01
A_lB_l	83.0	a	Α	A_4B_8	28.0	e	D
A_4B_4	75.5	ab	AB	A_7B_2	25.5	e	DE
A_5B_1	73.5	ab	AB	A_3B_2	23.0	ef	DE
A_6B_1	69.5	b	В	A_4B_4	23.0	ef	DE
A_5B_2	68.5	\mathbf{bc}	В	A_0B_3	21.0	ef	DE
A_7B_1	59.5	c	В	A_6B_8	21.0	ef	DE
A_5B_3	58.0	c	В	A_7B_8	19.5	ef	DE
A_1B_2	57.0	c	BC	A_8B_2	19.0	ef	DE
A_0B_1	55 .5	c	BC	A_1B_4	18.5	ef	DE
A_4B_2	53.5	c	BC	A_0B_1	16 . 5	ef	DE
A_6B_2	51.0	cd	BC	A_7B_4	14.0	f	E
A_3B_1	43.0	d	С	A_8B_8	10.0	fg	E
A_8B_1	42.0	de	CD	A_2B_3	7.5	fg	E
A_5B_4	38.0	de	CD	A_3B_3	4.5	g	E
A_1B_3	33.5	e	CD	A_8B_4	3.0	g	E
A_2B_2	33.5	e	CD	A_6B_4	3.0	g	E
A_0B_2	33.0	e	CD	A_3B_4	3.0	g	E
				A_2B_4	2.5	g	E

参考文献

[1] 中国农业科学院畜牧研究所科学研究年报 M. 北京: 中国工业出版

(上接第8982 页)

品种为皖麦50(82.52%) 宝丰7228(86.48%);乳酸溶剂保持力较高的品种为郑9405(90.30%) 和烟农19(83.99%),较低的品种有皖麦19(58.13%) 和宝丰7228(61.64%);蔗糖溶剂保持力较高的品种有郑9405(141.32%) 和烟农19(132.76%),较低的品种为淮麦20(111.22%) 和宝丰7228(113.89%)。方差分析结果显示,品种间溶剂保持力存在极显著差异(P<0.01)。品质分析结果表明,19个品种17个品质性状在品种间存在显著差异(P<0.05)。进行近一步分析发现,乳酸溶剂保持力与蛋白质、湿面筋等品质性状具有相关性;碳酸钠溶剂保持力与硬度和吸水率之间有相关性;水溶剂保持力与吸水率、稀懈值、硬度之间有相关性;蔗糖溶剂保

社,1984.

[2] 黄荣翰, 魏永纯. 盐碱地改良 M. 北京: 中国工业出版社,1980.

持力与蛋白质、吸水率有相关性。

由此可见,溶剂保持力与品质性状具有相关性,因而可以作为品质分析的指标,用于育种早代选择。由于该试验所采用的材料只有19个品种,所得结论不一定能全面反映真实情况,在实践操作中应结合具体情况而论。

参考文献

- [1] AMERICAN. Association of Great Chemists. Approved methods of the AACC [M. 10thed. American Association of Great Chemists, St. Paul, MN,2000.
- [2] CALNES C.S. Call aborative study of nethods for solent retention capacity profiles[J]. Cereal Food Wirld, 2000, 45(7):308 306.
- [3] CUTTERI MJ, SOUZA E. Sources of variation in the sclent retention capacity test of wheat flour[J]. Grop Sci, 2003, 43:1628 1633.
- [4] American Association of Gereal Chemists . Approved methods of the AACQ M . $9^{\rm th}$ ed . AACC,St . Paul ,MN,1995 .
- [5] GUTILERI MJ, BOWEN D, CANNON D, et al. Solvent retention capacities of imigated soft white spring wheat flours [J]. Grop Sci., 2001, 37(4):1079 1086.