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Abstract. We compute some dependence coefficients for the stationary Markov chain
whose transition kernel is the Perron-Frobenius operator of an expanding mapT of [0, 1]
with a neutral fixed point. We use these coefficients to prove acentral limit theorem for the
partial sums off ◦ T i, whenf belongs to a large class of unbounded functions from[0, 1]
to R. We also prove other limit theorems and moment inequalities.

1. Introduction and first results

For γ in ]0, 1[, we consider the intermittent mapTγ from [0, 1] to [0, 1], studied for
instance by Liverani et al. (1999), which is a modification ofthe Pomeau-Manneville map
(1980):

Tγ(x) =

{

x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1]

We denote byνγ the uniqueTγ-invariant probability measure on[0, 1] which is absolutely
continuous with respect to the Lebesgue measure. We denote by Kγ the Perron-Frobenius
operator ofTγ with respect toνγ : for any bounded measurable functionsf, g,

νγ(f · g ◦ Tγ) = νγ(Kγ(f)g) .

Let (Xi)i≥0 be a stationary Markov chain with invariant measureνγ and transition Kernel
Kγ . It is well known (see for instance Lemma XI.3 in Hennion and Hervé (2001)) that
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on the probability space([0, 1], νγ), the random variable(Tγ , T
2
γ , . . . , T

n
γ ) is distributed as

(Xn, Xn−1, . . . , X1). Hence any information on the law of

Sn(f) =

n
∑

i=1

f ◦ T i
γ

can be obtained by studying the law of
∑n

i=1 f(Xi).
In 1999, Young proved that such systems (among many others) may be described by a

Young tower with polynomial decay of the return time. From this construction, she was
able to control the covariancesνγ(f ◦T n ·(g−νγ(g))) for any bounded functionf and any
α-Hölder functiong, and then to prove thatn−1/2(Sn(f)−νγ(f)) converges in distribution
to a normal law as soon asγ < 1/2 andf is anyα-Hölder function. Forγ = 1/2, Gouëzel
(2004) proved that the central limit theorem remains true with the same normalization√
n if f(0) = νγ(f), and with the normalization

√

n ln(n) if f(0) 6= νγ(f). When
1/2 < γ < 1, he proved that iff is α-Hölder andf(0) 6= νγ(f), n−γ(Sn(f) − νγ(f))
converges to a stable law.

At this point, two questions (at least) arise: 1) what happens if f is no longer continu-
ous? 2) what happens iff is no longer bounded? More precisely, can we find a large class
of such functions for which the central limit theorem holds?For instance, for the uniformly
expanding mapT0(x) = 2x− [2x], the central limit theorem holds with the normalization√
n as soon asf is monotonic and square integrable on[0, 1].
For the slightly different mapθγ(x) = x(1−xγ)−1/γ − [x(1−xγ)−1/γ ], with the same

behavior around the indifferent fixed point, Raugi (2004) (following a work by Conze and
Raugi (2003)) has given a precise criterion for the central limit theorem with the normal-
ization

√
n in the case where0 < γ < 1/2 (see his Corollary 1.7). In particular his result

applies to a large class of non continuous functions. It alsoapplies to the unbounded func-
tion f(x) = x−a with 0 < a < 1/2 − γ. However, the functionf is allowed to blow up
near0 only: if f tends to infinity whenx tends tox0 ∈]0, 1], then the variation coefficient
v(fhγ , k) defined in page 83 in Raugi (2004) is always infinite (herehγ is the density of
theθγ-invariant probability, andk is some positive integer).

We now go back to the mapTγ . In a short discussion after the proof of his Theorem
1.3, Gouëzel (2004) considers the case wheref(x) = x−a, with 0 < a < 1−γ. He shows
that, if0 < a < 1/2−γ then the central limit theorem holds with the normalization

√
n, if

a = 1/2 − γ then the central limit theorem holds with the normalization
√

n ln(n), and if
0 < a < 1−γ andγ ≥ 1/2 then there is convergence to a stable law. Again, as for Raugi’s
result (2004) concerning the mapθγ , the functionf is allowed to blow up only near0.

On another hand, we know that for stationary Harris recurrent Markov chains with in-
variant measureµ andβ-mixing coefficients of ordern−b, b > 1, the central limit theorem
holds with the normalization

√
n as soon as the moment conditionµ(|f |p) < ∞ holds

for p > 2b/(b − 1). ForTγ , the covariances decay is of ordern(γ−1)/γ, so that one can
expect the moment conditionνγ(|f |p) < ∞ for p > (2 − 2γ)/(1 − 2γ). For instance, if
f(x) = x−a, since the density ofνγ is of orderx−γ near0, the moment condition is satis-
fied if 0 < a < 1/2 − γ, which is coherent with Gouëzel’s result (2004). However,since
the chain(Kγ , νγ) is notβ-mixing, the conditionνγ(|f |p) <∞ for p > (2−2γ)/(1−2γ)
alone is not sufficient to imply the central limit theorem, and one still needs some regularity
onf .

Let us now define the class of functions of interest.

Definition 1.1. For any probability measureµ on R, anyM > 0 and anyp ∈]1,∞], let
Mon(M,p, µ) be the class of functionsg which are monotonic on some open interval ofR
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and null elsewhere, and such thatµ(|g| > t) ≤ Mpt−p for p < ∞ andµ(|g| > M) = 0
for p = ∞. Let C(M,p, µ) be the closure inL1(µ) of the set of functions which can be
written as

∑n
i=1 aigi, where

∑n
i=1 |ai| ≤ 1 andgi belongs toMon(M,p, µ).

Note that a function belonging toC(M,p, µ) is allowed to blow up at an infinite number
of points. Note also that any functionf with bounded variation (BV) such that|f | ≤ M1

and‖df‖ ≤M2 belongs to the classC(M1 + 2M2,∞, µ) (here‖df‖ is the variation norm
of the signed measuredf ). Hence, any BV functionf belongs toC(M,∞, µ) for some
M large enough. Ifg is monotonic on some open interval ofR and null elsewhere, and if
µ(|g|p) ≤ Mp, theng belongs toMon(M,p, µ). Conversely, any function inC(M,p, µ)
belongs toLq(µ) for 1 ≤ q < p.

As a consequence of a general theorem for Markov chains (Theorem 4.1 of Section 4),
we obtain the following corollary:

Corollary 1.1. Let γ ∈]0, 1/2[. If f belongs to the classC(M,p, νγ) for someM > 0

and somep > (2 − 2γ)/(1 − 2γ), thenn−1/2Sn(f − νγ(f)) converges in distribution to
N (0, σ2(νγ ,Kγ , f)), where the variance termσ2(νγ ,Kγ , f) is defined in Theorem 4.1.

In particular, we infer from Corollary 1.1 that the central limit theorem holds for any
BV function providedγ < 1/2. For the mapθγ(x) = x(1 − xγ)−1/γ − [x(1 − xγ)−1/γ ]
andγ < 1/2, the central limit theorem for BV functions is a consequenceof Corollary
1.7(i) in Raugi (2004). Here are some other applications of Corollary 1.1:

Two simple examples.

(1) Assume thatf is positive and non increasing on]0, 1[, with f(x) ≤ Cx−a for
somea ≥ 0. Since the densitygνγ

of νγ is such thatgνγ
(x) ≤ V (γ)x−γ , we infer

that

νγ(f > t) ≤ C
1−γ

a V (γ)

1 − γ
t−

1−γ
a .

Hence the central limit theorem holds as soon asa < 1
2 − γ.

(2) Assume now thatf is positive and non decreasing on]0, 1[ with f(x) ≤ C(1 −
x)−a for somea ≥ 0. Here

νγ(f > t) ≤ V (γ)

1 − γ

(

1 −
(

1 −
(C

t

)1/a)1−γ)

.

Hence the central limit theorem holds as soon asa < 1
2 − γ

2(1−γ) .

We shall also give some conditions onp to obtain rates of convergence in the central
limit theorem (Corollary 5.1), as well as moment inequalities forSn(f−νγ(f)) (Corollary
6.1). A central limit theorem for the empirical distribution function of(T i

γ)1≤i≤n is given
in the last section (Corollary 7.1).

Let us present some easy applications of the moment inequalities given in Corollary 6.1.
For anyp > 2 and anyf in the classC(M,p, νγ), we have:

(1) Let γ < (p − 2)/(2p − 2). By Chebichev inequality applied with2 ≤ q <
2p(1 − γ)/(γp+ 2(1 − γ)), we infer from Item (1) of Corollary 6.1 that, for any
ǫ > 0 and anyx > 0,

νγ

( 1

n
|Sn(f − νγ(f))| > x

)

≤ C

(nx2)p(1−γ)/(γp+2(1−γ))−ǫ
.
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(2) Let now(p− 2)/(2p− 2) ≤ γ < 1. By Chebichev inequality applied withq = 2,
we infer from Item (2) of Corollary 6.1 that, for anyǫ > 0 and anyx > 0,

νγ

( 1

n
|Sn(f − νγ(f))| > x

)

≤ C

x2n(p−2)(1−γ)/γp−ǫ
.

In particular, iff is BV (casep = ∞) andγ < 1, we obtain that, for anyǫ > 0 and any
x > 0,

νγ

( 1

n
|Sn(f − νγ(f))| > x

)

≤ H(x)

n(1−γ)/γ−ǫ
,

whereH(x) = O(x2(1−γ)/γ−2ǫ) if γ < 1/2, andH(x) = O(x2) if γ ≥ 1/2. Note that
Melbourne and Nicol (2008) obtained the same bound whenf is α-Hölder andγ < 1/2.

To prove these results, we compute theβ-dependence coefficients (cf Dedecker and
Prieur (2005, 2007)) of the Markov chain(Kγ , νγ). The main tool is a precise estimate of
the Perron-Frobenius operator of the mapF associated toTγ on the Young tower, due to
Maume-Deschamps (2001). Next, we apply some general results forβ-dependent Markov
chains (cf. Theorems 4.1, 5.1, 6.1 and 7.1).

For the sake of simplicity, we give all the computations in the case of the mapsTγ , but
our arguments remain valid for many other one-dimensional systems modelled by Young
towers. More precisely, all the arguments of Section 2, remain valid in any dimension,
because they are only based on the results by Maume-Deschamps (2001) on abstract Young
towers. In Section 3, we compute the (one-dimensional) coefficientsβk(n) of the Markov
chain with transitionKγ by approximating indicators of half line by Hölder functions.
Since these coefficients may be defined in higher dimension through indicators of quadrant
(see Dedecker and Prieur (2007)), the results of Section 3 can be also extended to higher
dimension. However, the main results (Theorems 4.1, 5.1 and6.1) are valid in the one-
dimensional case only, because they are based on a covariance inequality for monotonic
functions (see Lemma 4.1 and its proof).

2. The main inequality

For any Markov kernelK with invariant measureµ, any non-negative integersn1, . . . , nk,
and any bounded measurable functionsf1, . . . , fk, define

K
(n1,n2,...,nk)(f1, f2, . . . , fk)=K

n1 (f1K
n2 (f2K

n3 (f3 · · ·K
nk−1 (fk−1K

nk (fk)) · · · ))),

K
(0)(n1,n2,...,nk)(f1, f2, . . . , fk)=K

(n1,n2,...,nk)(f1, f2, . . . , fk)

−µ(K(n1,n2,...,nk)(f1, f2, . . . , fk)) .

For α ∈]0, 1] andc > 0, let Hα,c be the set of functionsf such that|f(x) − f(y)| ≤
c|x− y|α.

Theorem 2.1. Let γ ∈]0, 1[, and letf (0) = f − νγ(f). For anyα ∈]0, 1], the following
inequality holds:

νγ

(

sup
f1,...,fk∈Hα,1

∣

∣K(0)(n1,n2,...,nk)
γ (f

(0)
1 , f

(0)
2 , . . . , f

(0)
k )

∣

∣

)

≤ C(α, k)(ln(n1 + 1))2

(n1 + 1)(1−γ)/γ
.

In particular,

νγ

(

sup
f∈Hα,1

|Kn
γ f − νγ(f)|

)

≤ C(α, 1)(ln(n+ 1))2

(n+ 1)(1−γ)/γ
.
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Proof of Theorem 2.1. We refer to the paper by Young (1999) for the construction of
the tower∆ associated toTγ (with floors Λℓ), and for the mappingsπ from ∆ to [0, 1]
andF from ∆ to ∆ such thatTγ ◦ π = π ◦ F . On ∆ there is a probability measure
m0 and an uniqueF -invariant probability measurēν with densityh0 with respect tom0,
and ν̄(Λℓ) = O(ℓ−1/γ). The uniqueTγ-invariant probability measureνγ is then given
by νγ = ν̄π. There exists a distanceδ on ∆ such thatδ(x, y) ≤ 1 and|π(x) − π(y)| ≤
κδ(x, y) for some positive constantκ. Forα ∈]0, 1], let δα = δα, letLα be the space of
Lipschitz functions with respect toδα, and letLα(f) = supx,y∈∆ |f(x)− f(y)|/δα(x, y).
Let Lα,c be the set of functions such thatLα(f) ≤ c. Forϕ in Hα,c, the functionϕ ◦ π
belongs toLα,cκα . Any functionf in Lα is bounded and the spaceLα is a Banach space
with respect to the norm‖f‖α = Lα(f) + ‖f‖∞. The densityh0 belongs to anyLα

and1/h0 is bounded. As in Maume-Deschamps (2001), we denote byL0 the Perron-
Frobenius operator ofF with respect tom0, and byP the Perron-Frobenius operator ofF
with respect tōν: for any bounded measurable functionsϕ, ψ,

m0(ϕ · ψ ◦ F ) = m0(L0(ϕ)ψ) and ν̄(ϕ · ψ ◦ F ) = ν̄(P (ϕ)ψ) .

We first state a useful lemma

Lemma 2.1. For any positiven1, . . . ,nk and any bounded measurable functionsf1, . . . ,fk

from [0, 1] to R, one has

K(n1,n2,...,nk)
γ (f1, f2, . . . , fk) ◦ π = Eν̄

(

P (n1,n2,...,nk)(f1 ◦ π, f2 ◦ π, . . . , fk ◦ π)
∣

∣π
)

.

We now complete the proof of Theorem 2.1 fork = 2, the general case being similar.
Applying Lemma 2.1, it follows that

sup
f,g∈Hα,1

|Kn
γ (f (0)

K
m
γ g

(0))(x) − νγ(f
(0)
K
m
γ g

(0))|

≤ Eν̄

“

sup
φ,ψ∈Lα,κα

|Pn(φ(0)
P
m
ψ

(0)) − ν̄(φ(0)
P
m
ψ

(0))|
˛

˛

˛
π = x

”

.

Here, we need the following lemma, which is derived from Lemma 3.4 in Maume-
Deschamps (2001).

Lemma 2.2. There existsMα > 0 such that, for anyψ ∈ Lα,

|Pmψ(x) − Pmψ(y)| ≤Mαδ(x, y)‖ψ(0)‖α ≤ 2Mαδα(x, y)Lα(ψ) .

Hence, ifψ ∈ Lα,κα , thenPm(ψ(0)) belongs toLα,2Mακα and is centered, so that
φ(0)Pmψ(0) belongs toLα,4Mακ2α . It follows that

sup
f,g∈Hα,1

|Kn
γ (f (0)

K
m
γ g

(0))(x)−ν(f (0)
K
m
γ g

(0))| ≤ 4Mακ
2α

Eν̄

“

sup
ϕ∈Lα,1

|Pn(ϕ)−ν̄(ϕ)|
˛

˛

˛
π = x

”

.

Next, we apply the following Lemma, which is derived from Corollary 3.14 in Maume-
Deschamps (2001).

Lemma 2.3. Letvℓ = (ℓ+ 1)(1−γ)/γ(ln(ℓ+ 1))−2. There existsCα > 0 such that

Eν̄

“

sup
ϕ∈Lα,1

|Pn(ϕ) − ν̄(ϕ)|
˛

˛

˛
π = x

”

≤ Cα(ln(n+ 1))2(n+ 1)(γ−1)/γ
X

ℓ≥0

vℓEν̄(1Λℓ
|π = x) .

Hence

νγ

(

sup
f,g∈Hα,1

|Kn
γ (f (0)Km

γ g
(0)) − ν(f (0)Km

γ g
(0))|

)

≤ 4Mακ
2αCα(ln(n+ 1))2(n+ 1)(γ−1)/γ

∑

ℓ≥0

vℓν̄(Λℓ) .
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Sinceν̄(Λℓ) = O(ℓ−1/γ), the result follows.

Proof of Lemma 2.1. We write the proof fork = 2 only, the general case being similar.
Letϕ, f andg be three bounded measurable functions. One has

νγ(ϕKn
γ (fKm

γ g)) = νγ(ϕ ◦ T n+m
γ · f ◦ Tm

γ · g)
= ν̄(ϕ ◦ π ◦ Fn+m · f ◦ π ◦ Fm · g ◦ π)

= ν̄(ϕ ◦ πPn(f ◦ πPm(g ◦ π)))

= ν̄(ϕ ◦ πEν̄(Pn(f ◦ πPm(g ◦ π))|π))

=

∫

ϕ(x)Eν̄ (Pn(f ◦ πPm(g ◦ π))|π = x)νγ(dx) ,

which proves Lemma 2.1 fork = 2.

Proof of Lemma 2.2. Applying Lemma 3.4 in Maume-Deschamps (2001) withvk = 1,
we see that there existsDα > 0 such that, for anyψ in Lα,

|Lm
0 ψ(x) − Lm

0 ψ(y)| ≤ Dαδα(x, y)‖ψ‖α.

Now Pm(ψ) = Lm
0 (ψh0)/h0. Since1/h0 is bounded byB(h0), and sinceh0 belongs to

Lα, it follows that

|Pmψ(x) − Pmψ(y)| ≤ DαB(h0)‖h0‖αδα(x, y)‖ψ‖α.

LetMα = DαB(h0)‖h0‖α. Since|Pmψ(x) − Pmψ(y)| = |Pmψ(0)(x) − Pmψ(0)(y)|
and since‖ψ(0)‖∞ ≤ Lα(ψ), it follows that

|Pmψ(x) − Pmψ(y)| ≤Mαδα(x, y)‖ψ(0)‖α ≤ 2Mαδα(x, y)Lα(ψ) .

Proof of Lemma 2.3.Applying Corollary 3.14 in Maume-Deschamps (2001), there exists
Bα > 0 such that

|Ln
0 f − h0m0(f)| ≤ Bα‖f‖α(ln(n+ 1))2(n+ 1)(γ−1)/γ

∑

ℓ≥0

vℓ1∆ℓ
.

It follows that, with the notations of the proof of Lemma 2.2,

|Pn(f) − ν̄(f)| ≤ BαB(h0)‖h0‖α‖f‖α(ln(n+ 1))2(n+ 1)(γ−1)/γ
∑

ℓ≥0

vℓ1∆ℓ
.

Since|Pn(f)− ν̄(f)| = |Pn(f (0))− ν̄(f (0))| and since‖f (0)‖∞ ≤ Lα(f), it follows that

|Pn(f) − ν̄(f)| ≤ 2BαB(h0)‖h0‖αLα(f)(ln(n+ 1))2(n+ 1)(γ−1)/γ
∑

ℓ≥0

vℓ1∆ℓ
,

and the result follows.

3. The dependence coefficients

Let X = (Xi)i≥0 be a stationary Markov chain with invariant measureµ and transi-
tion kernelK. Let ft(x) = 1x≤t. As in Dedecker and Prieur (2005, 2007), define the
coefficientsαk(n) of the stationary Markov chain(Xi)i≥0 by

α1(n)=sup
t∈R

µ(|Kn(ft) − µ(ft)|) , and fork ≥ 2,

αk(n)=α1(n) ∨ sup
2≤l≤k

sup
n2≥1,...nl≥1

sup
t1,...,tl∈R

µ
(

|K(0)(n,n2,...,nl)(f
(0)
t1 , f

(0)
t2 , . . . , f

(0)
tl

)|
)

.
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In the same way, define the coefficientsβk(n) by

β1(n)=µ
(

sup
t∈R

|Kn(ft) − µ(ft)|
)

, and fork ≥ 2,

βk(n)=β1(n) ∨ sup
2≤l≤k

sup
n2≥1,...nl≥1

µ
(

sup
t1,...,tl∈R

|K(0)(n,n2,...,nl)(f
(0)
t1 , f

(0)
t2 , . . . , f

(0)
tl

)|
)

.

Theorem 3.1. Let 0 < γ < 1. Let X = (Xi)i≥0 be a stationary Markov chain with
invariant measureνγ and transition kernelKγ . There exist two positive constantsC1(γ)
andC2(δ, γ, k) such that, for anyδ in ]0, (1 − γ)/γ[ and any positive integerk,

C1(γ)(n+ 1)
γ−1

γ ≤ αk(n) ≤ βk(n) ≤ C2(δ, γ, k)(n+ 1)
γ−1

γ
+δ .

Proof of Theorem 3.1. Applying Proposition 2, Item 2, in Dedecker and Prieur (2005),
we know that

νγ

(

sup
f∈H1,1

|Kn
γ f − νγ(f)|

)

≤ 2α1(n) .

Hence, for anyϕ such that|ϕ| ≤ 1 and anyf in H1,1,

νγ(ϕ · (Kn
γ f − νγ(f))) = νγ(ϕ ◦ T n · (f − νγ(f))) ≤ 2α1(n)

The lower bound forαk(n) follows from the lower bound forνγ(ϕ ◦ T n · (f − νγ(f)))
given by Sarig (2002), Corollary 1.

It remains to prove the upper bound. The point is to approximate the indicatorft(x) =
1x≤t by someα-Hölder function. Let

ft,ǫ,α(x) = ft(x) +
(

1 −
(x− t

ǫ

)α)

1t<x≤t+ǫ .

This function isα-Hölder with Hölder constantǫ−α. We now prove the upper bounds for
k = 1 andk = 2 only, the general case being similar. Fork = 1, one has

Kn(ft−ǫ,ǫ,α) − νγ(ft−ǫ,ǫ,α) − νγ([t− ǫ, t]) ≤ Kn
γ (ft) − νγ(ft)

≤ Kn
γ (ft,ǫ,α) − νγ(ft,ǫ,α) + νγ([t, t+ ǫ]) .

Since the densitygνγ
of νγ is such thatgνγ

(x) ≤ V (γ)x−γ , we infer that for any reala,
νγ([a, a+ ǫ]) ≤ V (γ)ε1−γ(1 − γ)−1. Consequently,

|Kn
γ (ft) − νγ(ft)| ≤ ǫ−α sup

f∈Hα,1

|Kn
γ (f) − νγ(f)| + V (γ)

1 − γ
ǫ1−γ .

Applying Theorem 2.1 withk = 1, we obtain that

νγ

(

sup
t∈[0,1]

|Kn
γ (ft) − νγ(ft)|

)

≤ C(α, 1)ǫ−α(ln(n+ 1))2(n+ 1)
γ−1

γ +
V (γ)

1 − γ
ǫ1−γ .

The optimalǫ is equal to

ǫ =
(αC(α, 1)(ln(n+ 1))2(n+ 1)

γ−1
γ

V (γ)

)
1

α+1−γ

.

Consequently, for some positive constantD(γ, α), one has

νγ

(

sup
t∈[0,1]

|Kn
γ (ft) − νγ(ft)|

)

≤ D(γ, α)
(

(ln(n+ 1))2(n+ 1)
γ−1

γ

)

1−γ
α+1−γ

..

Choosingα < δγ(1 − γ)/(1 − γ(1 + δ)), the result follows fork = 1.
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We now prove the result fork = 2. Clearly, the four following inequalities hold:

Kn
γ (f

(0)
t Km

γ f
(0)
s ) ≤ Kn

γ (f
(0)
t,ǫ,αK

m
γ f

(0)
s,ǫ,α) + νγ([t, t+ ǫ]) + νγ([s, s+ ǫ]) ,

Kn
γ (f

(0)
t Km

γ f
(0)
s ) ≥ Kn

γ (f
(0)
t−ǫ,ǫ,αK

m
γ f

(0)
s−ǫ,ǫ,α) − νγ([t− ǫ, t]) − νγ([s− ǫ, s]) ,

νγ(f
(0)
t Km

γ f
(0)
s ) ≥ νγ(f

(0)
t,ǫ,αK

m
γ f

(0)
s,ǫ,α) − 2νγ([t, t+ ǫ]) − νγ([s, s+ ǫ]) ,

νγ(f
(0)
t Kmf (0)

s ) ≤ νγ(f
(0)
t−ǫ,ǫ,αK

m
γ f

(0)
s−ǫ,ǫ,α) + 2νγ([t− ǫ, t]) + νγ([s− ǫ, s]) .

Consequently,

|Kn
γ (f

(0)
t Km

γ f
(0)
s ) − νγ(f

(0)
t Km

γ f
(0)
s )|

≤ ǫ−α sup
f,g∈Hα,1

|Kn
γ (f (0)Km

γ g
(0)) − νγ(f (0)Km

γ g
(0))| + 5V (γ)

1 − γ
ǫ1−γ .

Applying Theorem 2.1, we obtain that

νγ

(

sup
t∈[0,1]

|Kn
γ (f

(0)
t Km

γ f
(0)
s ) − νγ(f

(0)
t Km

γ f
(0)
s )|

)

≤ C(α, 2)ǫ−α(ln(n+ 1))2(n+ 1)
γ−1

γ +
5V (γ)

1 − γ
ǫ1−γ ,

and the proof can be completed as fork = 1.

4. Central limit theorems

In this section we give a central limit theorem for
∑n

i=1 f(Xi) where(Xi)i≥0 is a
stationary Markov chain, andf belongs to the classC(M,p, µ) defined in the introduction.
The condition are expressed in terms of the dependence coefficients(α1(k))k≥0 of the
chain, which have been defined in Section 3.

Theorem 4.1. Let X = (Xi)i≥0 be a stationary and ergodic (in the ergodic theoretic
sense) Markov chain with invariant measureµ and transition kernelK. Assume thatf
belongs toC(M,p, µ) for someM > 0 and somep ∈]2,∞], and that

∑

k>0

(α1(k))
p−2

p <∞ .

The following results hold:

(1) The series

σ2(µ,K, f) = µ((f − µ(f))2) + 2
∑

k>0

µ((f − µ(f))Kk(f))

converges to some non negative constant, andn−1Var(
∑n

i=1 f(Xi)) converges to
σ2(µ,K, f).

(2) Let (D([0, 1], d) be the space of cadlag functions from[0, 1] to R equipped with

the Skorohod metricd. The process{n−1/2
∑[nt]

i=1(f(Xi) − µ(f)), t ∈ [0, 1]}
converges in distribution in(D([0, 1], d) to σ(µ,K, f)W , whereW is a standard
Wiener process.

(3) One has the representation

f(X1) − µ(f) = m(X1, X0) + g(X1) − g(X0)

with µ(|g|p/(p−1))<∞, E(m(X1, X0)|X0)=0 andE(m2(X1, X0))=σ
2(µ,K, f).
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Proof of Theorem 4.1. Let f in C(M,p, µ). From Dedecker and Rio (2000), Items (1)
and (2) of Theorem 4.1 hold as soon as

∑

n>0

‖(f(X0) − µ(f))(E(f(Xn)|X0) − µ(f))‖1 <∞ .

Assume first thatf =
∑k

i=1 aigi, where
∑k

i=1 |ai| ≤ 1, andgi belongs toMon(M,p, µ).
Clearly, the series on left side is bounded by

k
∑

i=1

k
∑

j=1

|aiaj |
∑

n>0

‖(gi(X0) − µ(gi))(E(gj(Xn)|X0) − µ(gj))‖1 .

Here, we use the following lemma

Lemma 4.1. Letgi andgj be two functions inMon(M,p, µ) for somep ∈]2,∞]. For any
1 ≤ q ≤ p one has

‖E(gj(Xn)|X0) − µ(gj)‖q ≤ 2M
( p

p− q

)1/q

(2α1(n))
p−q
pq .

For any1 ≤ q < p/2, one has

‖(gi(X0) − µ(gi))(E(gj(Xn)|X0) − µ(gj))‖q ≤ 4M2
( p

p− 2q

)1/q

(2α1(n))
p−2q

pq ..

From Lemma 4.1 withq = 1, we conclude that

∑

n>0

‖(f(X0) − µ(f))(E(f(Xn)|X0) − µ(f))‖1 ≤ 4pM2

p− 2

∑

n>0

(2α1(n))
p−2

p . (4.1)

Since the bound (4.1) is true for any functionf =
∑k

i=1 aigi, it is true also for anyf in
C(M,p, µ), and Items (1) and (2) follow.

The last assertion is rather standard. From the first inequality of Lemma 4.1 withq =
p/(p − 1), we infer that if

∑

n>0(α1(n))(p−2)/p < ∞, then
∑

n>0 ‖E(f(Xn)|X0) −
µ(f)‖p/(p−1) < ∞ for any f in C(M,p, µ). It follows thatg(x) =

∑∞
k=1 E(f(Xk) −

µ(f)|X0 = x) belongs toLp/(p−1)(µ) and thatm(X1, X0) =
∑

k≥1(E(f(Xk)|X0) −
E(f(Xk)|X1)) belongs toLp/(p−1). Clearly

f(X1) − µ(f) = m(X1, X0) + g(X0) − g(X1) ,

with E(m(X1, X0)|X0) = 0. Moreover, it follows from the preceding result that

lim
n→∞

1√
n

∥

∥

∥

n
∑

k=1

m(Xk, Xk−1)
∥

∥

∥

1
= lim

n→∞
1√
n

∥

∥

∥

n
∑

k=1

(f(Xk) − µ(f))
∥

∥

∥

1
≤ σ(µ,K, f) .

By Theorem 1 in Esseen and Janson (1985), it follows thatE(m2(X1, X0)) = σ2(µ,K, f).

Proof of Lemma 4.1. We only prove the second inequality (the proof of the first oneis
easier). Letr = q/(q − 1) and letBr(σ(X0)) be the set ofσ(X0)-measurable random
variables such that‖Y ‖r ≤ 1. By duality,

‖(gi(X0) − µ(gi))(E(gj(Xn)|X0) − µ(gj))‖q

= sup
Y ∈Br(σ(X0))

E(Y (gi(X0) − µ(gi))(gj(Xn) − µ(gj)))

= sup
Y ∈Br(σ(X0))

Cov(Y (gi(X0) − µ(gi), gj(Xn)) .
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Define the coefficientsαk,g(n) of the sequence(g(Xi))i≥0 as in Section 3 withg ◦ ft

instead offt. If g is monotonic on some open interval ofR and null elsewhere, the set{x :
g(x) ≤ t} is either some interval or the complement of some interval, so thatαk,g(n) ≤
2kαk(n). LetQY be the generalized inverse of the tail functiont → P(|Y | > t). From
Theorem 1.1 and Lemma 2.1 in Rio (2000), one has that

Cov(Y gi(X0), gj(Xn)) ≤ 2

∫ α1,gi
(n)

0

QY (u)Qgi(X0)(u)Qgj(X0)(u)du

≤ 2

∫ 2α1(n)

0

QY (u)Qgi(X0)(u)Qgj(X0)(u)du .

In the same way, applying first Theorem 1.1 in Rio (2000) and next Fréchet’s inequality
(1957) (see also Inequality (1.11b) in Rio (2000)),

Cov(Y µ(gi), gj(Xn)) ≤ 2µ(|gi|)
∫ 2α1(n)

0

QY (u)Qgj(X0)(u)du

≤ 2

∫ 2α1(n)

0

QY (u)Qgi(X0)(u)Qgj(X0)(u)du .

Since
∫ 1

0
Qr

Y (u)du ≤ 1, it follows that

‖(gi(X0)−µ(gi))(E(gj(Xn)|X0)−µ(gj))‖q ≤4
(

∫ 2α1(n)

0

Qq
gi(X0)(u)Q

q
gj(X0)(u)du

)1/q

.

Sincegi andgj belong toMon(M,p, µ) for somep > 2q, we have thatQgi(X0)(u) and
Qgj(X0)(u) are smaller thanMu−1/p, and the result follows.

Proof of Corollary 1.1. We have seen that(T 1
γ , . . . , T

n
γ ) is distributed as(Xn, . . . , X1)

where(Xi)i≥0 is the stationary Markov chain with invariant measureνγ and transition
kernelKγ . Consequently, on the probability space([0, 1], νγ), the sumSn(f − νγ(f))

is distributed as
∑n

i=1(f(Xi) − νγ(f)), so thatn−1/2Sn(f − νγ(f)) satisfies the central
limit theorem if and only ifn−1/2

∑n
i=1(f(Xi) − νγ(f)) does. Moreover, we infer from

Theorem 3.1 that
α1(n) = O(n

γ−1
γ

+ǫ)

for anyǫ > 0. Consequently, ifp > (2 − 2γ)/(1− 2γ), one has that
∑

k>0(α1(n))
p−2

p <
∞ so that Theorem 4.1 applies: the central limit theorem holdsprovided thatf belongs to
C(M,p, νγ).

5. Rates of convergence in the CLT

Let c be some concave function fromR+ to R
+, with c(0) = 0. Denote by Lipc the set

of functionsg such that
|g(x) − g(y)| ≤ c(|x− y|) .

Whenc(x) = xα for α ∈]0, 1], we have Lipc = Hα,1. For two probability measuresP,Q
with finite first moment, let

dc(P,Q) = sup
f∈Lipc

|P (f) −Q(f)| .

Whenc =Id, we writedc = d1. Note thatd1(P,Q) is the so-called Kantorovič distance
betweenP andQ.
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Theorem 5.1. Let X = (Xi)i≥0 be a stationary Markov chain with invariant measureµ
and transition kernelK. Letσ2(f) = σ2(µ,K, f) be the non-negative number defined in
Theorem 4.1, and letGσ2(f) be the Gaussian distribution with mean 0 and varianceσ2(f).
LetPn(f) be the distribution of the normalized sumn−1/2

∑n
i=1(f(Xi) − µ(f)).

(1) Assume thatf belongs toC(M,p, µ) for someM > 0 and somep ∈]2,∞], and
that

∑

k>0

(α1(k))
p−2

p <∞ .

If σ2(f) = 0, thendc(Pn(f), δ{0}) = O(c(n−1/2)).
(2) If f belongs toC(M,p, µ) for someM > 0 and somep ∈]3,∞], and if

∑

k>0

k(α3(k))
p−3

p <∞ ,

thendc(Pn(f), Gσ2(f)) = O(c(n−1/2)).
(3) If f belongs toC(M,p, µ) for someM > 0 and somep ∈]3,∞], and if

α2(k) = O(k−(1+δ)p/(p−3)) for someδ ∈]0, 1[,

thendc(Pn(f), Gσ2(f)) = O(c(n−δ/2)).

Corollary 5.1. Let δ ∈]0, 1] and γ < 1/(2 + δ), and letµn(f) be the distribution of
n−1/2Sn(f − νγ(f)). If f belongs to the classC(M,p, νγ) for someM > 0 and some
p > (3 − 3γ)/(1 − (2 + δ)γ), thendc(µn(f), Gσ2(f)) = O(c(n−δ/2)), whereσ2(f) =

σ2(νγ ,Kγ , f).

Remark 5.1. We infer from Corollary 5.1 that iff is BV , thend1(µn(f), Gσ2(f)) =

O(n−1/2) if γ < 1/3, andd1(µn(f), Gσ2(f)) = O(n−δ/2) if γ < 1/(2 + δ). Denote by
dBV (P,Q) the uniform distance between the distribution functions ofP andQ. If f is α-
Hölder (Goüezel, 2005, Theorem 1.5) has proved thatdBV (µn(f), Gσ2(f)) = O(n−1/2)
if γ < 1/3, anddBV (µn(f), Gσ2(f)) = O(n−δ/2) if γ = 1/(2 + δ). In fact, from a
general result of Bolthausen (1982) for Harris recurrent Markov chains, we conjecture
that the results of Corollary 5.1 are true withdBV instead ofd1.

Two simple examples (continued).

(1) Assume thatf is positive and non increasing on[0, 1], with f(x) ≤ Cx−a for
somea ≥ 0. Let δ ∈]0, 1] and γ < 1/(2 + δ). If a < 1

3 − (2+δ)γ
3 , then

dc(µn(f), Gσ2(f)) = O(c(n−δ/2)).
(2) Assume thatf is positive and non increasing on[0, 1], with f(x) ≤ C(1 − x)−a

for somea ≥ 0. Let δ ∈]0, 1] andγ < 1/(2 + δ). If a < 1
3 − (1+δ)γ

3(1−γ) , then

dc(µn(f), Gσ2(f)) = O(c(n−δ/2)).

Proof of Theorem 5.1. From the Kantorovič-Rubinšteı̆n theorem (1957), there exists a
probability measureπ with marginsP andQ, such thatd1(P,Q) =

∫

|x − y|π(dx, dy).
Sincec is concave, we then have

dc(P,Q) = sup
f∈Hc

∣

∣

∣

∫

(f(x) − f(y))π(dx, dy)
∣

∣

∣
≤

∫

c(|x− y|)π(dx, dy) ≤ c(d1(P,Q)) .

Hence, it is enough to prove the theorem ford1 only.
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If
∑

k>0(α1(k))
(p−2)/p < ∞, f belongs toC(M,p, µ) for someM > 0 and some

p ∈]2,∞], andσ2(f) = 0, it follows from Theorem 4.1 thatf(X1) = g(X0) − g(X1)
with µ(|g|) <∞. Hence

d1(Pn(f), δ{0}) ≤
2µ(|g|)√

n
,

and Item (1) is proved.
From now, we assume thatσ2(f) > 0 (otherwise, the result follows from Item (1)). If

f = g1 − g2, whereg1, g2 belong toMon(M,p, µ) for someM > 0 and somep ∈]3,∞],
Item (2) of Theorem 5.1 follows from Theorem 3.1(b) in Dedecker and Rio (2008). In
fact the proof remains unchanged iff belongs toC(M,p, µ) for someM > 0 and some
p ∈]3,∞].

It remains to prove Item (3). LetYk = f(Xk)−µ(f), σ2(f) = σ2, andsm =
∑m

i=1 Yi.
Define

Wm = Am+Bm, withAm = E(s2m|X0)−mσ2 andBm = 2

m
∑

k=1

E

(

Yk

∑

i>m

Yi

∣

∣

∣
X0

)

.

From Theorem 2.2 in Dedecker and Rio (2008), we have that, if
∑

k>0 ‖Y0E(Yk|X0)‖1 <
∞,

√
nd1(Pn(f), Gσ2) ≤ C ln(n) +

[
√

2n]
∑

m=1

‖(|Y0| + 2σ)Wm‖1

mσ2
+D1,n +D2,n , (5.1)

where

D1,n=

n
∑

m=1

1

σ
√
m

∑

i≥m

‖Y0E(Yi|X0)‖1 andD2,n=

n
∑

m=1

1

2σ2m

m
∑

k=1

‖(σ2+Y 2
0 )E(Yk|X0)‖1.

From Lemma 4.1 withq = 1, the bound (4.1) holds for anyf in C(M,p, µ) for p >
2. Consequently, ifα2(k) = O(k−(1+δ)p/(p−3)) for someδ ∈]0, 1[ and p > 3, then
∑

k>0 ‖Y0E(Yk|X0)‖1 < ∞, so that the bound (5.1) holds. Moreovern−1/2D1,n =

O(n−1/2 ln(n) ∨ n−δ). Arguing as in Lemma 4.1, one can prove that

‖Y 2
0 E(Yk|X0)‖1 ≤ C(M,p)(α1(k))

p−3
p ,

so thatn−1/2D2,n = O(n−1/2 ln(n)).
Arguing as in Lemma 4.1, one can prove that, for0 < k < i,

‖(|Y0|+ 2σ)E(YkYi|X0)‖1 ≤ ‖(|Y0|+ 2σ)YkE(Yi|Xk)‖1 ≤ C(M,p, σ)(α1(i− k))
p−3

p .
(5.2)

Consequently,

1√
n

[
√

2n]
∑

m=1

‖(|Y0| + 2σ)Bm‖1

mσ2
= O

( 1√
n

[
√

2n]
∑

m=1

1

mσ2

m
∑

k=1

∑

i>m

1

(i− k)1+δ

)

= O(n−δ/2) .

Now,

‖(|Y0| + 2σ)Am‖1

m
≤ 2

m

m
∑

i=1

m
∑

j=i

‖(|Y0| + 2σ)(E(YiYj |X0) − E(YiYj))‖1

+(‖Y0‖1 + 2σ)
∣

∣

∣

1

m
E(s2m) − σ2

∣

∣

∣
.
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For the second term on right hand, we have
∣

∣

∣

1

m
E(s2m) − σ2

∣

∣

∣
≤ 2

∞
∑

k=1

k ∧m
m

|E(Y0Yk)| = O
(

∑

k>0

k ∧m
m

(α1(k))
p−2

p

)

= O(m−δ) ,

so that

1√
n

[
√

2n]
∑

m=1

∣

∣

∣

1

m
E(s2m) − σ2

∣

∣

∣
= O(n−δ/2) .

To complete the proof of the theorem, it remains to prove that

1√
n

[
√

2n]
∑

m=1

2

m

m
∑

i=1

m
∑

j=i

‖(|Y0| + 2σ)(E(YiYj |X0) − E(YiYj))‖1 = O(n−δ/2) . (5.3)

Applying first (5.2), we have forj > i,

‖(|Y0| + 2σ)(E(YiYj |X0) − E(YiYj))‖1 ≤ 2C(M,p, σ)(α1(j − i))
p−3

p . (5.4)

We need a second bound for this quantity. Assume first thatf =
∑k

i=1 aigi, where
∑k

i=1 |ai| ≤ 1 andgi belongs toMon(M,p, µ). Let g(0)
i = gi − µ(gi). We have that

‖Y0(E(YiYj |X0) − E(YiYj))‖1

≤
k

X

l=1

k
X

q=1

k
X

r=1

|alaqar|‖g
(0)
l (X0)(E(g(0)

q (Xi)g
(0)
r (Xj)|X0) − E(g(0)

q (Xi)g
(0)
r (Xj)))‖1 .

For 3 real-valued random variablesA,B,C, define the numbers̄α(A,B) andᾱ(A,B,C)
by

ᾱ(A,B) = sup
s,t∈R

|Cov(1A≤s,1B≤t)|

ᾱ(A,B,C) = sup
s,t,u∈R

|E((1A≤s − P(A ≤ s))(1B≤t − P(B ≤ t))(1C≤u − P(C ≤ u)))|

(note that̄α(A,B,B) ≤ ᾱ(A,B)). Let

A = |g(0)
l (X0)|sign{E(g(0)

q (Xi)g
(0)
r (Xj)|X0) − E(g(0)

q (Xi)g
(0)
r (Xj))} ,

and note thatQA = Q
g
(0)
l

(X0)
. From Proposition 6.1 and Lemma 6.1 in Dedecker and Rio

(2008), we have that

‖g(0)
l (X0)(E(g(0)

q (Xi)g
(0)
r (Xj)|X0) − E(g(0)

q (Xi)g
(0)
r (Xj)))‖1

= E((A − E(A))g(0)
q (Xi)g

(0)
r (Xj))

≤ 16

∫ ᾱ(A,gq(Xi),gr(Xj))/2

0

Q
g
(0)
l

(X0)
(u)Qgq(X0)(u)Qgr(X0)(u)du .

Note thatQ
g
(0)
l

(X0)
≤ Qgl(X0) + ‖gl(X0)‖1. Hence, by Fréchet’s inequality (1957),

∫ ᾱ(A,gq(Xi),gr(Xj))/2

0

Q
g
(0)
l

(X0)
(u)Qgq(X0)(u)Qgr(X0)(u)du

≤ 2

∫ ᾱ(A,gq(Xi),gr(Xj))/2

0

Qgl(X0)(u)Qgq(X0)(u)Qgr(X0)(u)du .

Since{x : gi(x) ≤ t} is either some interval or the complement of some interval, we have
that forj > i ≥ 1

ᾱ(A, gq(Xi), gr(Xj)) ≤ 4ᾱ(A,Xi, Xj) ≤ 4α2(i) ,
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and fori = j,

ᾱ(A, gq(Xi), gr(Xi)) ≤ 4ᾱ(A,Xi, Xi) ≤ 4ᾱ(X0, Xi) ≤ 4α1(i) ≤ 4α2(i) .

SinceQgi(X0)(u) ≤Mu−1/p, it follows that, for1 ≤ i ≤ j,

‖gl(X0)(E(gq(Xi)gr(Xj)|X0) − E(gq(Xi)gr(Xj)))‖1 ≤ 32M3p

p− 3
(2α2(i))

p−3
p .

Consequently, for anyf in C(M,p, µ) with p > 3,

‖Y0(E(YiYj |X0) − E(YiYj))‖1 ≤ 32M3p

p− 3
(2α2(i))

p−3
p .

In the same way,

2σ‖E(YiYj |X0) − E(YiYj)‖1 ≤ 32σM2p

p− 2
(2α2(i))

p−2
p .

It follows that, for any1 ≤ i ≤ j,

‖(|Y0| + 2σ)(E(YiYj |X0) − E(YiYj))‖1 ≤ D(M,p, σ)(α2(i))
p−3

p . (5.5)

Combining (5.4) and (5.5), we infer that

m
∑

i=1

m
∑

j=i

‖(|Y0| + 2σ)(E(YiYj |X0) − E(YiYj))‖1 = O(m1−δ) ,

and (5.3) easily follows. This completes the proof.

6. Moment inequalities

Theorem 6.1. Let X = (Xi)i≥0 be a stationary Markov chain with invariant measureµ
and transition kernelK. If f belong toC(M,p, µ) for someM > 0 and somep > 2, then,
for any2 ≤ q < p

‚

‚

‚

n
X

i=1

(f(Xi)−µ(f))
‚

‚

‚

q
≤

p

2q
“

n‖f(X0)−µ(f)‖2
q+4M2

“

p

p− q

” 2
q

n−1
X

k=1

(n−k)(2α1(k))
2(p−q)

pq

” 1
2
.

Corollary 6.1. Let 0 < γ < 1. Let f belong toC(M,p, νγ) for someM > 0 and some
p > 2, and let2 ≤ q < p.

(1) If γ < 2(p− q)/(2(p− q) + pq), then‖Sn(f − νγ(f))‖q = O(
√
n) .

(2) If 2(p− q)/(2(p− q) + pq) ≤ γ < 1, then, for anyǫ > 0,

‖Sn(f − νγ(f))‖q = O
(

n1+ǫ− (1−γ)(p−q)
γpq

)

.

Two simple examples (continued).

(1) Assume thatf is positive and non increasing on[0, 1], with f(x) ≤ Cx−a for
somea > 0. If a < 1

2 −γ and2 ≤ q < 2(1−γ)
γ+2a , then‖Sn(f−νγ(f))‖q = O(

√
n).

If now a < 1−γ
2 and2 ∨ 2(1−γ)

γ+2a ≤ q < 1−γ
a , then, for anyǫ > 0,

‖Sn(f − νγ(f))‖q = O
(

n1+ǫ− (1−γ−aq)
γq

)

.
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(2) Assume thatf is positive and non increasing on[0, 1], with f(x) ≤ C(1 − x)−a

for somea ≥ 0. If a < 1−2γ
2(1−γ) and2 ≤ q < 2(1−γ)

γ+(1−γ)2a , then‖Sn(f−νγ(f))‖q =

O(
√
n). If a < 1

2 and2 ∨ 2(1−γ)
γ+(1−γ)2a ≤ q < 1

a , then, for anyǫ > 0,

‖Sn(f − νγ(f))‖q = O
(

n1+ǫ− (1−γ)(1−aq)
γq

)

.

Proof of Theorem 6.1. From Proposition 4 in Dedecker and Doukhan (2003) (see also
Theorem 2.5 in Rio (2000)), we have that, for anyq ≥ 2,

∥

∥

∥

n
∑

i=1

(f(Xi) − µ(f))
∥

∥

∥

q
≤

√

2q
(

n‖f(X0) − µ(f)‖2
q

+

n−1
∑

k=1

(n− k)‖(f(X0) − µ(f))(E(f(Xk)|X0) − µ(f))‖ q
2

)
1
2

.

Assume first thatf =
∑k

i=1 aigi, where
∑k

i=1 |ai| ≤ 1, andgi belongs toMon(M,p, µ).
Clearly

‖(f(X0) − µ(f))(E(f(Xn)|X0) − µ(f))‖q/2

≤
k

∑

i=1

k
∑

j=1

|aiaj|‖(gi(X0) − µ(gi))(E(gj(Xn)|X0) − µ(gj))‖q/2 .

Applying Lemma 4.1, we obtain that

‖(f(X0) − µ(f))(E(f(Xn)|X0) − µ(f))‖q/2 ≤ 4M2
( p

p− q

)2/q

(2α1(n))
2(p−q)

pq ..

Clearly, this inequality remains valid for anyf in C(M,p, µ), and the result follows.

7. The empirical distribution function

Theorem 7.1. Let X = (Xi)i≥0 be a stationary Markov chain with invariant measureµ
and transition kernelK. LetFn(t) = n−1

∑n
i=1 1Xi≤t andFµ(t) = µ(] −∞, t]).

(1) If X is ergodic (in the ergodic theoretic sense) and if
∑

k>0 β1(k) <∞, then, for
any probabilityπ on R, the process{√n(Fn(t) − Fµ(t)), t ∈ R} converges in
distribution inL

2(π) to a tight Gaussian processG with covariance function

Cov(G(s), G(t)) = Cµ,K(s, t)

= µ(f
(0)
t f (0)

s ) +
∑

k>0

µ(f
(0)
t Kkf (0)

s ) +
∑

k>0

µ(f (0)
s Kkf

(0)
t ) .

(2) Let(D(R), d) be the space of cadlag functions equipped with the Skorohod metric
d. If β2(k) = O(k−2−ǫ) for someǫ > 0, then the process{√n(Fn(t)−Fµ(t)), t ∈
R} converges in distribution in(D(R), d) to a tight Gaussian processG with
covariance functionCµ,K .

Corollary 7.1. LetFn,γ(t) = n−1
∑n

i=1 1T i
γ≤t.

(1) If 0 < γ < 1/2, then, for any probabilityπ on [0, 1], the process{√n(Fn,γ(t) −
Fνγ

(t)), t ∈ [0, 1]} converges in distribution inL2(π) to a tight Gaussian process
Gγ with covariance functionCνγ ,Kγ

.
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(2) If 0 < γ < 1/3, the process{√n(Fn,γ(t) − Fνγ
(t)), t ∈ [0, 1]} converges in dis-

tribution in (D([0, 1]), d) to a tight Gaussian processGγ with covariance function
Cνγ ,Kγ

.

Remark 7.1. Denote by‖ · ‖p,π the L
p(π)-norm. If γ < 1/2, we have that, for any

1 ≤ p ≤ 2,
√
n‖Fn,γ − Fνγ

‖p,π converges in distribution to ‖Gγ‖p,π . (7.1)

In particular, if π = λ is the Lebesgue measure on[0, 1] andq = p/(p−1), we obtain that

1√
n

sup
‖f ′‖q≤1

|Sn(f − νγ(f))| converges in distribution to ‖Gγ‖p,λ .

For p = 1 and q = ∞, we obtain the limit distribution of the Kantorovič distance
d1(Fn,γ , Fνγ

):

√
nd1(Fn,γ , Fνγ

) =
1√
n

sup
f∈H1,1

|Sn(f−νγ(f))| converges in distribution to
∫ 1

0

|Gγ(t)|dt .

Now ifγ < 1/3, the limit in (7.1) holds for anyp ≥ 1.
Note that, for Harris recurrent Markov chains, Item (2) of Theorem 7.1 holds as soon as

the sum of theβ-mixing coefficients of the chain is finite. Hence, we conjecture that Item
(2) of Corollary 7.1 remains true forγ < 1/2.

Proof of Theorem 7.1.Item (1) has been proved in Dedecker and Merlevède (2006, The-
orem 2, Item 2) and Item (2) in Dedecker and Prieur (2007, Proposition 2).

Acknowledgments.Many thanks to Jean-René Chazottes, who pointed out the references
to Conze and Raugi (2003) and Raugi (2004).
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