Alea5, 29-45 (2009) 7{“!!, fg’fé\]}

Some unbounded functions of intermittent maps for which
the central limit theorem holds

J. Dedecker and C. Prieur

Laboratoire de Statistique Théorique et Appliquée Ursité Paris 6, 175 rue du Chevaleret 75013
Paris, France.

E-mail addressj er ome. dedecker @pnc. fr

URL http://ww. | sta. upnt. fr/dedecker. ht m

INSA Toulouse, Institut Mathématique de ToulouEguipe de Statistique et Probabilités, 135 Av.
de Rangueil, 31077 Toulouse Cedex 4, France.

E-mail addressCl enent i ne. Pri eur @ nsa-toul ouse. fr

URL http://ww. mat h. uni v-toul ouse. fr/ prieur/

Abstract. We compute some dependence coefficients for the stationankdv chain
whose transition kernel is the Perron-Frobenius operdtanaxpanding maff’ of [0, 1]
with a neutral fixed point. We use these coefficients to proserdral limit theorem for the
partial sums off o T, whenf belongs to a large class of unbounded functions ffom]
to R. We also prove other limit theorems and moment inequalities

1. Introduction and first results

For v in ]0, 1[, we consider the intermittent map, from [0,1] to [0, 1], studied for
instance by Liverani et al. (1999), which is a modificatiorited Pomeau-Manneville map
(1980):

T, () = z(14+2727) ifxe0,1/2]
EAC if « € [1/2,1]

We denote by, the uniquerl,-invariant probability measure df, 1] which is absolutely
continuous with respect to the Lebesgue measure. We dendtg the Perron-Frobenius
operator off’, with respect ta.,: for any bounded measurable functichg,

’/v(f “go Tv) = Vv(Kv(f)g) .

Let (X;);>0 be a stationary Markov chain with invariant measuyeand transition Kernel
K. Itis well known (see for instance Lemma XI.3 in Hennion anehté (2001)) that
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on the probability spacg0, 1], ), the random variablgr’,, T2, ..., T7') is distributed as
(Xn, Xn—1,...,X1). Hence any information on the law of

Su(f) =D foT!
=1

can be obtained by studying the law)}.__, f(X;).

In 1999, Young proved that such systems (among many othexg)@ described by a
Young tower with polynomial decay of the return time. Fronstbonstruction, she was
able to control the covariances(foT" - (g —v4(g))) for any bounded functiofi and any
a-Holder functiony, and then to prove that/%(S,,(f)—v, (f)) convergesin distribution
to a normal law as soon gs< 1/2 andf is anya-Holder function. Fory = 1/2, Gouézel
(2004) proved that the central limit theorem remains trughviie same normalization
Vv if f(0) = v4(f), and with the normalizatior/n In(n) if f(0) # v, (f). When
1/2 < v < 1, he proved that iff is a-Holder andf(0) # v (f), n=7(Sn(f) — vy(f))
converges to a stable law.

At this point, two questions (at least) arise: 1) what hajggérf is no longer continu-
ous? 2) what happensffis no longer bounded? More precisely, can we find a large class
of such functions for which the central limit theorem hold&# instance, for the uniformly
expanding maffy(z) = 22 — [2z], the central limit theorem holds with the normalization
\/n as soon ag is monotonic and square integrable [0n1].

For the slightly different map, (z) = z(1—27)~"/7 — [2(1—27)~'/7], with the same
behavior around the indifferent fixed point, Raugi (2004)Ifwing a work by Conze and
Raugi (2003)) has given a precise criterion for the centmait theorem with the normal-
ization/n in the case wheré < v < 1/2 (see his Corollary 1.7). In particular his result
applies to a large class of non continuous functions. It atggies to the unbounded func-
tion f(z) = ~* with 0 < a < 1/2 — ~. However, the functiorf is allowed to blow up
near0 only: if f tends to infinity when: tends tary €]0, 1], then the variation coefficient
v(fhy, k) defined in page 83 in Raugi (2004) is always infinite (heyds the density of
the 6, -invariant probability, and is some positive integer).

We now go back to the m&p,. In a short discussion after the proof of his Theorem
1.3, Gouézel (2004) considers the case wiférg = ==, with 0 < a < 1 —+. He shows
that, if0 < a < 1/2 —~ then the central limit theorem holds with the normalizatign, if
a = 1/2 — ~ then the central limit theorem holds with the normalizatigin In(n), and if
0 < a < 1—~vandy > 1/2then there is convergence to a stable law. Again, as for Raugi
result (2004) concerning the map, the functionf is allowed to blow up only nea.

On another hand, we know that for stationary Harris recurkéarkov chains with in-
variant measurg andj3-mixing coefficients of orden—?, b > 1, the central limit theorem
holds with the normalizatioR/n as soon as the moment conditipfl f|?) < oo holds
forp > 2b/(b — 1). ForT,, the covariances decay is of ordef’ =)/, so that one can
expect the moment condition, (| f|?) < oo for p > (2 —2v)/(1 — 2v). For instance, if
f(z) = ¢, since the density af, is of orderz~" near0, the moment condition is satis-
fied if 0 < a < 1/2 — v, which is coherent with Gouézel's result (2004). Howesgearce
the chain( &, v,) is not3-mixing, the condition, (| f|P) < coforp > (2—2v)/(1—27)
alone is not sufficient to imply the central limit theoremgdame still needs some regularity
onf.

Let us now define the class of functions of interest.

Definition 1.1. For any probability measurg onR, any M > 0 and anyp €]1, oo}, let
Mon(M, p, 1) be the class of functionswhich are monotonic on some open intervaRof



CLT for unbounded functions of intermittent maps 31

and null elsewhere, and such thaf|g| > t) < MPt=? forp < co andu(|g| > M) =0
for p = co. LetC(M,p, ) be the closure il (1) of the set of functions which can be
written as) " ; a;g;, whered>_" | |a;| < 1 andg; belongs taVlon(M, p, ).

Note that a function belonging &M, p, 1) is allowed to blow up at an infinite number
of points. Note also that any functighwith bounded variation (BV) such that| < M;
and||df|| < M belongs to the clasd(M; + 2M», 0o, 1) (herel|df|| is the variation norm
of the signed measuré’). Hence, any BV functiory belongs taC (M, oo, ) for some
M large enough. If; is monotonic on some open intervalRfand null elsewhere, and if
u(|g|?) < MP, theng belongs taMon(M, p, ). Conversely, any function i6(M, p, i)
belongs tdL?(u) for 1 < ¢ < p.

As a consequence of a general theorem for Markov chains ¢Ehed.1 of Section 4),
we obtain the following corollary:

Corollary 1.1. Let~y €]0,1/2[. If f belongs to the clas§(}, p, v.,) for someM > 0
and some > (2 — 2v)/(1 — 2v), thenn='/28,,(f — v, (f)) converges in distribution to
N(0,0%(vy, K, f)), where the variance term? (v, K.,, f) is defined in Theorem 4.1.

In particular, we infer from Corollary 1.1 that the centrahit theorem holds for any
BV function providedy < 1/2. For the mag@.,(z) = z(1 — 27)~/7 — [z(1 — 27)~1/7]
andy < 1/2, the central limit theorem for BV functions is a consequeat€orollary
1.7(i) in Raugi (2004). Here are some other applicationsarbary 1.1:

Two simple examples.

(1) Assume thaff is positive and non increasing d6, 1], with f(x) < Cx~° for
somea > 0. Since the density, of v, is suchthay, (z) < V(y)z™7, we infer
that

CEV), 1
) < ———=t "o .
vy(f>1) < T—~
Hence the central limit theorem holds as soon as% - .

(2) Assume now thaf is positive and non decreasing th 1] with f(z) < C(1 —

x)~* for somea > 0. Here

0= -9 )

t

Hence the central limit theorem holds as soonas% — ﬁ
We shall also give some conditions prto obtain rates of convergence in the central
limit theorem (Corollary 5.1), as well as moment inequetiorS,, (f — v~ (f)) (Corollary
6.1). A central limit theorem for the empirical distributidunction Of(Té)lgign is given
in the last section (Corollary 7.1).
Let us present some easy applications of the moment indig@sajiven in Corollary 6.1.
For anyp > 2 and anyf in the clas€ (M, p, v,), we have:
(1) Lety < (p — 2)/(2p — 2). By Chebichev inequality applied with < ¢ <
2p(1 —v)/(yp + 2(1 — 7)), we infer from Item (1) of Corollary 6.1 that, for any
e > 0 and anyx > 0,

1 C
o (G1SaF = N> ) € o s
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(2) Letnow(p —2)/(2p — 2) <~ < 1. By Chebichev inequality applied with= 2,
we infer from Item (2) of Corollary 6.1 that, for ary> 0 and anyx > 0,

1 C
v (180(F = s ()] > @) £ e

In particular, if f is BV (casep = o) andy < 1, we obtain that, for any > 0 and any
z > 0,

1 H(z
s (H18u(f — ()] > ) < )

whereH (z) = O(x*1=0/7=2¢) if 4 < 1/2, andH (z) = O(x?) if v > 1/2. Note that
Melbourne and Nicol (2008) obtained the same bound whism-Hbdlder andy < 1/2.

To prove these results, we compute thelependence coefficients (cf Dedecker and
Prieur (2005, 2007)) of the Markov cha(x’,, v,). The main tool is a precise estimate of
the Perron-Frobenius operator of the mé&mssociated t@’, on the Young tower, due to
Maume-Deschamps (2001). Next, we apply some general sdsult-dependent Markov
chains (cf. Theorems 4.1, 5.1, 6.1 and 7.1).

For the sake of simplicity, we give all the computations ia dase of the mags,, but
our arguments remain valid for many other one-dimensioystesns modelled by Young
towers. More precisely, all the arguments of Section 2, iarmalid in any dimension,
because they are only based on the results by Maume-Dessl{a@i) on abstract Young
towers. In Section 3, we compute the (one-dimensional)ioiedts Sy (n) of the Markov
chain with transition/’, by approximating indicators of half line by Holder funatia
Since these coefficients may be defined in higher dimensrong indicators of quadrant
(see Dedecker and Prieur (2007)), the results of Sectiom®ealso extended to higher
dimension. However, the main results (Theorems 4.1, 5.16ahgare valid in the one-
dimensional case only, because they are based on a cowairaguality for monotonic
functions (see Lemma 4.1 and its proof).

2. The main inequality

For any Markov kerneK with invariant measurg, any non-negative integers, . . . , ng,
and any bounded measurable functigps . ., fi, define
Km0 (f fo o fi) =K (K2 (2K (fs - K0 (e K™ (f) --)),
KOtmee ) (g fo o fr) =K (fy fo L )
—(K T (f fa o )
Fora €]0,1] andc > 0, let H, . be the set of functiong such that f(z) — f(y)| <

cle —yl|*. -

Theorem 2.1. Lety €]0,1[, and letf(® = f — v (f). For anya €]0, 1], the following
inequality holds:

Cla, k)(In(ny +1))2
- K(O)(nl,ng,...nk) (0)’ (0)’”.’ (0) ) < s
m(fl,mz}iIG)Ha 1| il (fl f2 k )‘ = (nl +1)(1*’Y)/’Y
In particular,

C(a,1)(In(n + 1))?
(n+ 1)(1*7)/7

IN

vy(sup |K7F = (f)])

feHu 1
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Proof of Theorem 2.1. We refer to the paper by Young (1999) for the construction of
the towerA associated td’, (with floors A,), and for the mappings from A to [0, 1]
and F' from A to A such thatl’, o m = 7o F. On A there is a probability measure
mg and an uniqué’-invariant probability measure with densityhg with respect tan,,
andv(As) = O(¢~'/7). The uniqueT,-invariant probability measure, is then given
by v, = p™. There exists a distan@eon A such thav(z,y) < 1 and|r(z) — 7(y)| <
k6(x,y) for some positive constant Fora €]0,1], leté, = 6%, let L, be the space of
Lipschitz functions with respect @,, and letL, (f) = sup, ,ea [f(2) = f(y)]/da(z,y).
Let L, . be the set of functions such that,(f) < c¢. Fory in H, ., the functiony o
belongs taL,, .x~. Any functionf in L, is bounded and the spade, is a Banach space
with respect to the nornfj f|lo = La(f) + || flles. The densityhy belongs to anyL,
and1/hg is bounded. As in Maume-Deschamps (2001), we denot€dthe Perron-
Frobenius operator af' with respect tang, and byP the Perron-Frobenius operator Bf
with respect tav: for any bounded measurable functiongy,

mo(p - o F)=mo(Lo(p)y) and v(p o lF)=uv(P(p)y).
We first state a useful lemma

Lemma 2.1. For any positiven, . . . ,n; and any bounded measurable functigis. . . , /%
from|[0,1] to R, one has

K’(}Inhnz,..,,nk)(fl, fo, ..., ,fk) om=1E; (P(n1,n2.,...,nk)(f1 om, f2 om,..., fk ° 7T)|7T) .
We now complete the proof of Theorem 2.1 fore= 2, the general case being similar.
Applying Lemma 2.1, it follows that
sup K3 (fO KT g) (@) — vy (FOKT ¢
f9€Ha 1

<Bo( s [P0 P ) — (¢ Py @) = z).

(;5,1,[16[/0“,@04
Here, we need the following lemma, which is derived from Leang4 in Maume-
Deschamps (2001).
Lemma 2.2. There existd\/, > 0 such that, for any € L.,
[P () = P (y)| < Mad(,9) [0 |a < 2Maba(@,y)La ().
Hence, ifi) € Lq .o, then P (1) belongs toL, o, «« and is centered, so that
¢ Pmyp(©) belongs tal, 4az, 2 - It follows that

sup K7 (f O K 9 ) @) —v(f O KT )| < AMar® B sup |P"(¢) = 0(p)||x = ).
f9€Hu 1 pELy 1
Next, we apply the following Lemma, which is derived from Glary 3.14 in Maume-
Deschamps (2001).
Lemma 2.3. Letv, = (£ + 1)(2=/7(In(¢ + 1)) 2. There exist€’,, > 0 such that

IE;,( sup |P™(¢) — 17(4,0)|‘7r = :17) < Calln(n +1))*(n+ 1) 3 wEp(1a,|r = @).

PELG 1 £>0
Hence

w( ~sup |K$(f(0)K,’Y”g(O)) _ U(f(O)K’,Yng(O))D
f.9€Ha 1

< AMok**Co(In(n +1))*(n + 1)OD/7> "uym(Ay).
>0
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Sincew(Ay) = O(¢=1/7), the result follows.

Proof of Lemma 2.1. We write the proof fork = 2 only, the general case being similar.
Let p, f andg be three bounded measurable functions. One has

vy (K (fKT'g)) = vy(poTyt™ . foTi - g)

(pomo F"™ . foroF™.gom)
(pomP"(fomP™(goT)))

(p o 7By (P (f o mP™ (g o m))|m))

= [ ¢@)Es(P"(f omP™(g o m))|m = z)vy (d),

U

N

NI

which proves Lemma 2.1 for = 2.

Proof of Lemma 2.2. Applying Lemma 3.4 in Maume-Deschamps (2001) with= 1,
we see that there exisi3, > 0 such that, forany in L.,

|£6n1/](x) - £6n¢(y)| < Daéa(xay)”wHa-

Now P™(v)) = L (vho)/ho. Sincel/hyq is bounded byB(hg), and sincéyy belongs to
L., it follows that

[P (x) — P (y)| < DaB(ho)|hollaba(z, y)||1¢]la-
Let My, = DoB(ho)llholla- Since|P™y(x) — P™(y)| = [P (z) — PO (y)]
and since|y( || < Lo (1), it follows that

|P™p(x) — P™(y)| < Ma&a(xay)Hw(o)Ha < 2Mobo(w, y) La (1) -

Proof of Lemma 2.3.Applying Corollary 3.14 in Maume-Deschamps (2001), thetiste
B, > 0such that

L5 f = homo(f)] < Ballfla(n(n + 1))*(n + HO"D Y Tupla, .
>0
It follows that, with the notations of the proof of Lemma 2.2,
[P (f) = 7(f)] < BaB(ho)llholall flla(n(n + 1)*(n + 1)/ Y w14, .
>0
Since|P™(f) —o(f)| = |P*(f©) —o(£©)| and since| f?||c < La(f), it follows that
[P (f) = 2()] < 2BaB(ho)|lhollaLa(f)(In(n + 1)*(n + 1)07D/7Y "0l s,
>0

and the result follows.

3. The dependence coefficients

Let X = (X;);>0 be a stationary Markov chain with invariant measprand transi-
tion kernel K. Let f,(z) = 1,<;. As in Dedecker and Prieur (2005, 2007), define the
coefficientsay, (n) of the stationary Markov chaifiX;);>o by

al(n)=§1€1§u(lK"(ft) —p(fo)l), andfork > 2,

n,n,....n 0 0 0
ag(n)=ai(n)V sup  sup sup  pu(|K Oz (pO ) pO 0Oy
2<I<kng>1,..m>1t1,....t, ER
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In the same way, define the coefficiepign) by

Bu(n)=p((sup |K"(f) = u(f1)l) . andfork > 2,
teR

Bem=pr) v suwp  sup  p(sup (RO (70 50 pP)])

2<I<kng>1,..m>1 1,--,t1ER

Theorem 3.1. Let0 < v < 1. LetX = (X;);>0 be a stationary Markov chain with
invariant measure-, and transition kernek<,. There exist two positive constarts(y)
andCs(4, v, k) such that, for any in 0, (1 — )/~[ and any positive integek,

y—1

Ci(M)(n+1)5 < ap(n) < Bi(n) < Co(d,7, k) (n+1)"5 7,

Proof of Theorem 3.1. Applying Proposition 2, Item 2, in Dedecker and Prieur (2005
we know that

uv(fsg[p K2 f = vy ()]) < 201 (n).

1,1

Hence, for anyy such thafy| < 1 and anyf in Hy 1,

vy(p - (K3 f = vy () = va(p o T - (f = v4(f))) < 201(n)

The lower bound fory;(n) follows from the lower bound for, (¢ o T™ - (f — v4(f)))
given by Sarig (2002), Corollary 1.

It remains to prove the upper bound. The point is to approteérttee indicatorf; (x) =
1,<; by somex-Holder function. Let

friea(x) = fe(x) + (1 - (IT_t)a)lt@cgtJre-

This function isa-Holder with Holder constart*. We now prove the upper bounds for
k = 1 andk = 2 only, the general case being similar. Fo& 1, one has

K™(fimeea) = Vy(fi—esea) — vy ([t — 6,8]) < KZ(fe) — vy (f2)
< K'ryl(ft,é,a) - V'y(ft,e,a) + V’y([t, t+ E]) .

Since the density, of v, is such thay, (z) < V(y)z~7, we infer that for any reat,
vy(la,a +¢€]) <V (y)e'=7(1 —v)~t. Consequently,

—a n V _
K2(f) = ()l € € sup [K2() = (/)] + 1 ) 4y
f€Ha 1 -
Applying Theorem 2.1 wittk = 1, we obtain that
a1V _
vy (sup [KZ(f) = v (£)]) < Clas DE (n(n+ 1) +1)F + 5 ) -
te0,1] —

The optimale is equal to

- (a0<a, D(In(n+1)*(n+1)"5 ) =
V() '
Consequently, for some positive consténty, «), one has

m(tz%]f’l] |KZ(fe) — l/v(ft)|) < D(%a)((ln(n +1)2(n + 1)%1)71,7 )

Choosingy < dv(1 —v)/(1 — v(1 + 9)), the result follows forc = 1.
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We now prove the result for = 2. Clearly, the four following inequalities hold:

E2(AOKMFO) < KA KD ) + vt + ) + vy ([s s+ €)
E2FOR2FO) > KO WK O ) = vy ([t =) — vy ([s — €, 5]),
vy (FOKT D) > vy (F0 K £ ) = 20 ([t t+ €]) — vy (5,5 + €),
oy (FOR™ D) < vy (£ KO, ) 20y ([ e t]) + v (s — € 8]).
Consequently,

(K (fOKT O — v (O K O]

—a n m m 5V’Y _
< sup [KN(FORLGO) - o (FORT ) + LD o
f.9€Ha 1 -7

Applying Theorem 2.1, we obtain that

o ( s [KGGORT SO = (1K)
telo,

< C(a,2)e *(In(n+1)2(n+1)"5 +

and the proof can be completed as for 1.

4. Central limit theorems

In this section we give a central limit theorem ", f(X;) where (X;);>0 is a
stationary Markov chain, anfibelongs to the clasd(M, p, 1) defined in the introduction.
The condition are expressed in terms of the dependence @estfi (a4 (k))x>o Of the
chain, which have been defined in Section 3.

Theorem 4.1. Let X = (X;);>0 be a stationary and ergodic (in the ergodic theoretic
sense) Markov chain with invariant measwureand transition kernelK. Assume thaf
belongs taC (M, p, u) for someM > 0 and some €)2, oo], and that

S (e (k)T < 0.
k>0
The following results hold:
(1) The series
o (1 1, f) = p((f = (D) +2 Y nl(f = pl(HE"(F))
k>0

converges to some non negative constant,antvVar(> .-, f(X;)) converges to

o?(u, K, f).
(2) Let (D([O, 1], d) be the space of cadlag functions frdiy 1] to R equipped with

the Skorohod metrid. The procesgn—/2 "1™ (r(X,) — u(f)),t € [0,1]}
converges in distribution i0D([0, 1], d) to o(u, K, f)W, whereW is a standard
Wiener process.

(3) One has the representation

J(X1) = p(f) = m(X1, Xo) + g(X1) — 9(Xo)
with z(|g[P/ P~ <00, E(m(X1, X0)| Xo)=0 andE(m? (X1, Xo))=02(u, K, f).
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Proof of Theorem 4.1. Let f in C(M,p,u). From Dedecker and Rio (2000), Iltems (1)
and (2) of Theorem 4.1 hold as soon as

DI (Xo0) = () ES (Xn)|Xo) = u(H) < oo

n>0

Assume first thaf = Zle a;g;, Wherer:1 la;] < 1, andg; belongs taMon(M, p, p).
Clearly, the series on left side is bounded by

Eok
DD laias) > [1(gi(Xo0) = p(g:)) (Eg; (Xn)| Xo) = (g1 -
i=1 j=1 n>0

Here, we use the following lemma

Lemma 4.1. Letg; andg; be two functions ifMon (M, p, ) for somep €]2, ). For any
1< g<ponehas

P—q

(55 () Xo) = gl < 21 (2) " 2aa ()
Foranyl < ¢ < p/2, one has
11(9s(X0) — 11(9:)) (E(g; (Xn)|Xo) — p(g;))llq < 4M> (p—

From Lemma 4.1 witly = 1, we conclude that

S 17 (X0) = N EFEXD) ~ (D < 25 Y en(n) T (4D)

n>0 n>0

Since the bound (4.1) is true for any functign= Zle a;g;, it is true also for anyf in
C(M,p, u), and Items (1) and (2) follow.

The last assertion is rather standard. From the first inégual Lemma 4.1 withg
p/(p — 1), we infer that if >, (a1 (n))P=2/P < oo, thend o [E(f(X )|X0)
()llp/p—1) < oo forany fin C(M,p,p). It follows thatg(z) = > 77 E(f(Xx) —
u(f)|Xo = ) belongs tol?/ =1 (1) and thatm(X1, Xo) = 3=, (E(F(X5)| Xo) —

(f(X%)|X1)) belongs tdL?/(»=1), Clearly

f(X1) = p(f) = m(X1, Xo) + 9(Xo) — 9(X1),
with E(m(X1, Xo)|Xo) = 0. Moreover, it follows from the preceding result that

n

lim %H;mm,xkuﬂl ~ lim %HZ(f(&)—u(f»Hl <o K. f).

By Theorem 1 in Esseen and Janson (1985), it followslat? (X1, Xo)) = 02 (i, K, f).

Proof of Lemma 4.1. We only prove the second inequality (the proof of the first ae
easier). Letr = ¢/(¢ — 1) and letB,(c(Xy)) be the set ot (X,)-measurable random
variables such thdtY||,. < 1. By duality,

[[(9:(Xo) — 12(9:)) (E(g; (X)) X0) — p(g5))ll4

=  sup  E(Y(g:(Xo) — 1(9:)) (g5 (Xn) — pug;)))
Y€B,(o(X0))

= sup  Cov(Y(gi(Xo) — 1(g:), 9;(Xn)) -
Y€B(0(X0))
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Define the coefficients, ,(n) of the sequencéy(X;));>o as in Section 3 withy o f;
instead off;. If g is monotonic on some open intervalRfand null elsewhere, the sgt :
g(x) < t} is either some interval or the complement of some intenathstay ,(n) <
2k (n). Let Qy be the generalized inverse of the tail functions P(]Y'| > t). From
Theorem 1.1 and Lemma 2.1 in Rio (2000), one has that

al,yi(n)
Cov(Ygi(Xo), 6;(X0)) < 2 / Qv (1) Q4. (x0) (1)Qy, (0 (W)

2a1 (n)
< 2 / Qy (1) Qg (x0) (1) Qg (0 (1)t

In the same way, applying first Theorem 1.1 in Rio (2000) and Reechet’s inequality
(1957) (see also Inequality (1.4)lin Rio (2000)),

Cov(Y (i), 95 (Xn))

IN

2a1(n)
201g:]) / Qv (1)Qy, (x0) (w)du

2a1 (n)
< 2 / Qy (1) Qg (x0) (1) Qg (0 (1)l

since [, Q% (u)du < 1, it follows that

2a1(n) 1/q
H<gi<xo>—u<gz->><E<gj<Xn>|xo>—u<gj>>|\qs4(/0 Q! ) (R ) (W)

Sinceg; andg; belong toMon(M, p, 1) for somep > 2¢, we have that),, x,(u) and
Qg (x)(u) are smaller thad/v~1/?, and the result follows.

Proof of Corollary 1.1. We have seen thaf’}, ..., T7") is distributed agX,,, ..., X1)
where (X;);>¢ is the stationary Markov chain with invariant measureand transition
kernel K,. Consequently, on the probability spage, 1], v, ), the sumS,,(f — v (f))
is distributed a$ """, (f(X;) — v,(f)), so thata='/2S,,(f — v, (f)) satisfies the central

limit theorem if and only ifn=*/2 3" (f(X;) — v,(f)) does. Moreover, we infer from
Theorem 3.1 that

ai(n) = O(n’7 ™)
foranye > 0. Consequently, ip > (2 — 2v)/(1 — 2v), one has thaE,DO(ozl(n))pr2 <

oo so that Theorem 4.1 applies: the central limit theorem hptdsided thatf belongs to
C(M,p,vy).

5. Rates of convergence in the CLT

Let c be some concave function froRt" to R, with ¢(0) = 0. Denote by Lip the set
of functionsg such that
lg9(z) —g(W)| < c(lz —yl).
Whenc(x) = z* for a €]0, 1], we have Lip = H, ;. For two probability measureB, Q
with finite first moment, let
de(P,Q) = sup [P(f) —Q(f)|.
felip,
Whenc =Id, we writed. = d;. Note thatd; (P, Q) is the so-called Kantorovic distance
betweenP and@.
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Theorem 5.1. Let X = (X;);>0 be a stationary Markov chain with invariant measyre
and transition kerneK . Leto?(f) = o%(u, K, f) be the non-negative number defined in
Theorem 4.1, and lef 2 ) be the Gaussian distribution with mean 0 and varianégf ).

Let P, (f) be the distribution of the normalized sum'/2 """ | (f(X;) — u(f)).

(1) Assume thaf belongs taC (M, p, 1) for someM > 0 and some €]2, co|, and
that

(k)T < oo
k>0
If 02(f) = 0, thend. (P (f), ;03) = Oc(n™/2)).
(2) If f belongs taC (M, p, 1) for someM > 0 and some €]3, oo], and if
Z k(as(k ; < 00,
k>0
thende(Py (f), G () = Ole(n*/2)).
(3) If f belongstaC(M, p, ) for someM > 0 and some €]3, oc], and if

az(k) = O(k~1FP/P=3))  for somes €]0, 1],
thend.(P,(f), Goz()) = O(c(n=9/2)).

Corollary 5.1. Leté €]0,1] andy < 1/(2 + ¢), and letu,(f) be the distribution of
n~Y28,(f — vy(f)). If f belongs to the clas§(M, p,v.,) for someM > 0 and some
p > (3—=37)/(1 = (2+8)y), thendc(un(f), Goz(p)) = O(c(n™92)), wherea?(f) =
02(vy, K, f).

Remark 5.1. We infer from Corollary 5.1 that iff is BV, thend:(un(f), Go2(5)) =
O(n=12)if v < 1/3, anddy (pn (f), Go2(s)) = O(n=%/2) if v < 1/(2 + &). Denote by
dpv (P, Q) the uniform distance between the distribution function® @ndQ. If f is a-
Holder (Gowzel, 2005, Theorem 1.5) has proved #hat (1, (f), G2 (f)) = O(n~='/?)

if v < 1/3, anddpy (un(f), Go2()) = O(n=%2)if v = 1/(2+ 6). In fact, from a
general result of Bolthausen (1982) for Harris recurrent tidav chains, we conjecture
that the results of Corollary 5.1 are true witlgy instead ofd; .

Two simple examples (continued).

(1) Assume thaff is positive and non increasing de, 1], with f(x) < Cx~° for
somea > 0. Letd €]0,1] andy < 1/(2+4). If a < & — BT then
de(pn(f), Go2p)) = O(c(n™/2)).

(2) Assume thaf is positive and non increasing o, 1], with f(x) < C(1 — z)™*
for somea > 0. Letd €]0,1] andy < 1/(2+6). Ifa < 3 — étf‘s)j) then
de(pn(f), Gozp)) = O(c(n™/?)).

Proof of Theorem 5.1. From the Kantorovi¢-RubinStein theorem (1957), thedste a

probability measurer with marginsP and@, such thatl; (P, Q) = [ |z — y|r(dz, dy).
Sincec is concave, we then have

4(P.Q) = sup | [(#() = flu)n(da. )| < [ elle ~ yr(do.dy) < el (P.Q)).

feH.

Hence, it is enough to prove the theoremdgronly.
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If > poolea(k)P=2/P < oo, f belongs toC(M,p, 1) for someM > 0 and some
p €]2,00], ando?(f) = 0, it follows from Theorem 4.1 thaf (X;) = g(Xo) — 9(X1)
with u(]g]) < oco. Hence

2u(lgl)
di(Pn(f),d¢0y) < Jn

and Item (1) is proved.

From now, we assume that(f) > 0 (otherwise, the result follows from Item (1)). If
f = g1 — g2, whereg,, g2 belong toMon(M, p, i) for someM > 0 and some €]3, oc],
Item (2) of Theorem 5.1 follows from Theorem 3.1(b) in Dedercknd Rio (2008). In
fact the proof remains unchangedfifoelongs toC (M, p, u) for someM > 0 and some
p €]3,0].

It remains to prove Item (3). L&t, = f(Xi)—u(f), o*(f) = o2, ands,, = > -, Vi.
Define

From Theorem 2.2 in Dedecker and Rio (2008), we have that,if , | YoE(Yz|Xo)|l1 <

oo,

Wy = A+ Bum,  With Ay, = E(s2|Xo)—mo?®  andB,, = 22E(Yk v,
k=1

i>m

[v2n]
Y 2 YW,
Vndi(Pa(f),Go2) < Cln(n Z I 0|+ )Wl + D1+ Dy, (5.1)
where
D1,n—z \/— > IVOE(Y;|Xo)[ls andDs, n—z mZH o*+ Y E(Ye] Xo)|1.
i>m k=1

From Lemma 4.1 withy = 1, the bound (4.1) holds for any in C(M,p, u) for p >
2. Consequently, itv (k) = O(k~(1+)p/(=3)) for somes €]0,1[ andp > 3, then
> a0 IYOE(Y2|X0)[1 < oo, so that the bound (5.1) holds. Moreower/2D, , =
O(n='21n(n) v n=?). Arguing as in Lemma 4.1, one can prove that
p—3
IYZE(Y:|Xo)lls < C(M, p)(ar(k)) # |

so thatn='/2Dy ,, = O(n=/21n(n)).

Arguing as in Lemma 4.1, one can prove that,(ot k < 1,

p—

Il(IYo] 4 20)E(Y2Y; | Xo) (1 < ||(|Yo] + 20) YR E(Y; | X4) |1 < C(M,p, U)(Oél(i—k))TS -

(5.2)
Consequently,
[V2n] [V2n] m
L Z II( |Y0|+2U )Buml|1 :O(L 1 3 ) — O(n~0/2)
n m02 1+6 '
m=1 k=1 z>m
Now,

I(¥o] +20) Amls
— ZZII Yol + 20)(E(Y:Y;|Xo) — E(YiY)))|x

1
+(IYolls +20)| —E(s2,) - o?|.
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For the second term on right hand, we have

E zz B vl = 032 H0 (01 (1) 5 ) = O,

k>0
so that
1 [V2n] 1
—= > |=E(s7) —o°| = O(n~?/?)
Vv — ‘m ’
To complete the proof of the theorem, it remains to prove that
w% m m
f Z ZZH Yol + 20) (E(Y;Y;|Xo) — E(Y:Y;) |1 = O(n /%) (5.3)
=1 j=1

Applying first (5.2), we have foj > i,
(10| + 20) (B(Y:Y;|Xo) — E(ViY)))|li < 20(M.p,0)(er(j —i)'F . (5.4)
We need a second bound for this quantity. Assume first that Zle a;gi, where
Zle |a;] < 1andg; belongs taMlon(M, p, ). Letg( ) = = g; — p(gi). We have that
Yo (E(Y3Y5]Xo) — E(Y:Y;))[lx

<ZZZ|azaqar|ng<°> 0) (E(95” (X:) g\ (X;)1X0) — E(g{”(X:)g (X))l -

1=1 qg=1r=1
For 3 real-valued random variablds B, C, define the numbei@(A, B) anda(A, B, C)
by

@(A,B) = sup |COV(1A§salB§t)|
s, teR

a(4,B,C) = sup [E((Lacs —P(A < 5))(Ip<t —P(B < 1))(1o<u —P(C < w)))]

(note thatd(A B, B) < a(A, B)). Let

=g,° (Xo)|81gn{E(gq°>(X )90 (X;)|X0) — E(g{ (X:)g{ (X))},
and note thaQA = Q © (x . From Proposition 6.1 and Lemma 6.1 in Dedecker and Rio
(2008), we have that

19{” (Xo0) (B9 (X:)g (X;)|Xo) — E(g{ (X:)9 (X))
= E((4 - E(4))g (X:)9V (X;))
( xqq(Xw sgr (XJ))/2
<16 [ Q0 (1)@, 0 (), (35 ()
0

Note thatQ © (x ) < Qg (x0) T l9:(Xo)|l1. Hence, by Fréchet's inequality (1957),
a(A,gq(Xi),9-(X;5))/2
/ Q0 sy (1)@, 050 () Qg (50 (1)

0

( !qq(X’b)7QT(X.7))/2
<2 /0 Qg,(x0) (W) Qy, (x0) (W) Qy, (xy) (w)du .

Since{z : g;(x) < t} is either some interval or the complement of some intervalhave
thatforj >i>1

a(A, 9q(Xi), 9r(X;)) < 4a(A, X;, Xj) < das(i),
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and fori = j,
@(A,gq(Xi),gr(Xi)) < 46((A,X17X1) < 4@(X0,X) < 4041( ) < 4042( )

SinceQ,, x,)(u) < Mu~1/?, it follows that, forl < i < j,

ll91(X0) (E(gq (Xi)gr(X;)|Xo0) — E(gq(Xi)gr(X5)))ll1 <

Consequently, for any in C(M, p, 1) with p > 3,

32M3 o p3
Yo (B(Y:Y;|Xo) — E(GY;)|h < = =

In the same way,

320 M?p o p=2

20|[E(Y:Y;|X0) — E(YiYj)x < (202(3)) 7 -

It follows that, foranyl < < j,

(1Yol 4 20) (B(Y:Y;1X0) = EViY;)lls < D(M.p,0)(as(i)"> . (5.5)
Combining (5.4) and (5.5), we infer that

Z Z (1Yo| + 20) (E(Y;Y}] Xo) — E(YiY))) 1 = O(m' ™),
and (5.3) easily follows. This completes the proof.

6. Moment inequalities

Theorem 6.1. Let X = (X;);>o be a stationary Markov chain with invariant measure
and transition kerneK. If f belong toC (M, p, 1) for someM > 0 and somey > 2, then,
forany2 <q¢<p

H i(f(xi)_ﬂ(f))Hqﬁ\/%(nﬂf()(o)—u(f)||q+4M2( )gg (20 (k M)%

Corollary 6.1. Let0 < v < 1. Let f belong toC(M, p, v.,) for someM > 0 and some
p>2,andlet2 < ¢ < p.

1) Ity <2(p—q)/2(p — q) + pq), then||S,,(f — v, (f))lly = O(Vn) .
(2 1f2(p—q)/2(p —q) +pg) < < 1, then, for any > 0,

1Su(f = v (g = O (w52,

Two simple examples (continued).

(1) Assume thatf is positive and non increasing de, 1], with f(z) < Cz~ for
somea > 0. If a<z—yand2 <gq <2 +2a then||S (f=vy (g = O(/n).
If nowa < 152 and2 v

+2a) < ¢ < =2, then, for any > 0,

%Mf—wqmmzo@Hﬁ&%yﬁ_
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(2) Assume thaf is positive and non increasing oo, 1], with f(z) < C(1 — z)~°
forsomea > 0. If a < 2(1 and2 <g< m then||.S, (f —v(f)llq =

O(vn). fa< i and2v%_q<l then, for any > 0,

1Su(f = v (F)llg = O (=57 ).

Proof of Theorem 6.1. From Proposition 4 in Dedecker and Doukhan (2003) (see also
Theorem 2.5 in Rio (2000)), we have that, for any 2,

Hzn:(f(Xi)—u(f))Hq < V/2a(nlf (Xo) — (D)2
i=1

[N

+ > (n =) (f(Xo) = p()(E(f (Xi)| Xo) = p(f)]lg )

k=1

Assume first thaf = Zle aigi, wherer:1 |a;] <1, andg; belongs taMon(M, p, u).
Clearly

1(f(Xo) = p(MES (Xn)[Xo) = p(£))llq/2
k
> laia;lll(g9:(Xo) = n(9i))(E(g; (Xn)|Xo) = 1(g5))lg/2

1j=

Mw

=

3

Applying Lemma 4.1, we obtain that
2(p—aq)

[(F(Xo) = n())EF (X Xo) = u()llyy < 4M2(p%q)”q<za1<n>> z

Clearly, this inequality remains valid for anfyin C(M, p, 1), and the result follows.

7. The empirical distribution function

Theorem 7.1. Let X = (X;);>o be a stationary Markov chain with invariant measure
and transition kerneK. LetF,(t) = n~' Y1 | 1x,<; andF,(t) = p(] — oo, t]).
(1) If X is ergodic (in the ergodic theoretic sense) and if . , 41 (k) < oo, then, for
any probabilityr on R, the procesq\/n(F,(t) — F,(t)),t € R} converges in
distribution inIL?(7) to a tight Gaussian proce<s with covariance function

Cov(G(s),G(t)) = C#_,K(s,t)
p( £V FO) 3 u O KFFO) 3 p(f O KR ).
k>0 k>0

(2) Let(D(R), d) be the space of cadlag functions equipped with the Skoroleddom
d. If B2(k) = O(k=27¢) for somee > 0, then the processy/n(F, (t)—F,(t)),t €
R} converges in distribution ifD(R),d) to a tight Gaussian proces§ with
covariance functio’,, k.

Corollary 7.1. LetFy, (t) =n~' 30 1ni<y

(1) If 0 < v < 1/2, then, for any probabilityr on [0, 1], the procesg/n(F, ,(t) —
F, (t)),t € [0,1]} converges in distribution ii.? () to a tight Gaussian process
G, with covariance functiol,
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(2) If 0 < v < 1/3, the proces§/n(F, - (t) — F,, (t)),t € [0,1]} converges in dis-
tribution in (D([0, 1]), d) to a tight Gaussian process, with covariance function
Cy, Kk,

Remark 7.1. Denote by|| - ||, the L?(7)-norm. Ify < 1/2, we have that, for any
1<p<2

Vn||Fny —F, |lp,= converges in distribution to |G ||y - (7.1)

In particular, if = = X is the Lebesgue measure [0n1] andg = p/(p — 1), we obtain that

1 s
— sup |S,(f —vy(f))] convergesin distribution to |G|, -

Vi<t
Forp = 1 andg = oo, we obtain the limit distribution of the Kantordvidistance
dl(Fn,'ya Fl/»y):
1 o !

Vndi(F, , F,,) = —= sup |Sn(f—v,(f))| converges in distribution tof |G, (t)]dt .

\/ﬁ fEH 1 0
Now ify < 1/3, the limit in (7.1) holds for any > 1.

Note that, for Harris recurrent Markov chains, Item (2) oféldiem 7.1 holds as soon as

the sum of theg-mixing coefficients of the chain is finite. Hence, we conjecthat Item
(2) of Corollary 7.1 remains true foy < 1/2.

Proof of Theorem 7.1.l1tem (1) has been proved in Dedecker and Merlevede (2008, Th
orem 2, Item 2) and Item (2) in Dedecker and Prieur (2007, &sition 2).

Acknowledgments.Many thanks to Jean-René Chazottes, who pointed out theerefes
to Conze and Raugi (2003) and Raugi (2004).
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