
Constructions of Even-variable Boolean Function
with Optimum Algebraic Immunity

Yindong Chen and Peizhong Lu

Fudan University, Shanghai 200433, China
{chenyd, pzlu}@fudan.edu.cn

Abstract. This paper proposed an improved construction of even-variable
Boolean function with optimum algebraic degree. Compared with those
in [1], our Boolean functions are more balance. Specially, for k=2t+1(t>1),
the 2k-variables Boolean function is balanced. Furthermore, we general-
ized it to a class of constructions, meaning there would be much more
constructions.
Keywords: stream cipher, algebraic attacks, Boolean function, algebraic
immunity

1 Introduction

Recently, algebraic attack has gained a lot of attention in cryptanalysis [1–
8]. The main idea of algebraic attack is to deduce the security of a stream
cipher to solve an over-defined system of multivariate nonlinear equations. To
implement algebraic attack, attackers firstly construct equation system between
the input bits (the secret key bits) and the output bits, then recover the input
bits by solving the equation system with efficient methods such as Linearization,
Relinearization, XL, Grönber bases, etc. [9–11].

Algebraic attack was firstly applied to LFSR (Linear Feedback Shift Register)-
based stream cipher by Courtois and Meier [1] in 2003. By searching low degree
annihilator, some LFSR-based stream ciphers such as Toyocrypt, LILI-128 [1],
SFINKS [5], etc. were successfully attacked. The efficiency of algebraic attack is
guaranteed by the existing of low degree multiple for any Boolean function [2].
That is, for any n-variable Boolean function, there exists multiple function with
degree no more than

⌈
n
2

⌉
. The core of algebraic attack is to find out minimum

degree nonzero annihilators of f or of f+1. This minimum degree is related to
the complexity of algebraic attacks [2].

To resist algebraic attack, a new cryptographic property of Boolean functions
which is known as algebraic immunity (AI) has been proposed by Meier et al. [2].
The AI of a Boolean function expresses its ability to resist standard algebraic
attack. Thus the AI of Boolean function used in cryptosystem should be suffi-
ciently high. Courtois and Meier [1, 2] showed that, for any n-variable Boolean
function, its AI is bounded by

⌈
n
2

⌉
. If the bound is achieved, we say the Boolean

function have optimum AI. Obviously, a Boolean function with optimum AI has
strongest ability to resist standard algebraic attack. Therefore, the construction
of Boolean functions with optimum AI is of great importance.

2

Dalai et al. [12, 13] presented Boolean functions with optimum AI in even
variables by an recursive construction. It’s a second order recursive construc-
tion. Further study [12] showed that the functions are not balanced (although
it is possible to build balanced ones from them, but there would result in extra
computation). Another class of constructions [14–16] contains symmetric func-
tions. Being symmetric, they present a risk if attacks using this peculiarity can
be found in the future. Moreover, they do not have high nonlinearities either [17].
Li [18–20] proposed a method to construct all (2k+1)-variable Boolean functions
with optimum AI from one such given function. The construction has theoretical
sense. But the computational complexity of the construction do not have been
well studied. Carlet and Feng [21] proposed a well construction based on the
Boolean functions’ trace representation, recently. Their Boolean functions have
not only optimum AI but also high nonlinearity. Furthermore, they also have
a good behavior against fast algebraic attacks, at least for small values of the
number of variables. The drawback of the construction is the high complexity of
the computation for the value of f(x).

In this paper, we proposed an improved construction of even-variable Boolean
function with optimum algebraic degree. We’ll show that the Boolean functions
constructed in this paper compare favourably with those in [1], in respects of
AI, algebraic degree, and nonlinearity. Specially, our Boolean functions are more
balance. And furthermore, for k=2t+1(t>1), the 2k-variables Boolean function
is balanced. In the end, we’ll also generalize it to a class of constructions, thus
there would be much more constructions of Boolean functions with optimum AI.

The organization of the paper is as follows. In the following section we give
some preliminaries about Boolean functions. In Section 3, we recall the con-
struction in [1], and then in Section 4, we present the improved construction of
Boolean functions with optimum AI. Their cryptographic properties are stud-
ied in Section 5. We also generalize it to a class of constructions in Section 6.
Section 7 concludes the paper.

2 Preliminaries

Let F2 = {0, 1}, be the finite field with two elements. Then a Boolean function
in n variables is defined as mapping from Fn

2 into F2. We denote by Bn the set
of all n-variable Boolean functions. A basic representation of a Boolean function
f(x1, · · · , xn) is by the output column of its truth table, i.e., a binary string of
length 2n,

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)].

Sometimes, we may use a binary string of length 2n to represent a n-variable
Boolean function.

For an n-variables Boolean function f , we define its support and offset as

supp(f) = {x ∈ Fn
2 |f(x) = 1},

offset(f) = {x ∈ Fn
2 |f(x) = 0}.

3

and denote them by 1f and 0f respectively. The Hamming weight wt(f) of f is
the size of supp(f), i.e., wt(f) = | supp(f)|. It counts the number of 1’s in the
truth table of f . We say f is balanced, if the truth table contains an equal number
of 1’s and 0’s, i.e., supp(f) = offset(f), implying wt(f) = 2n−1. The Hamming
distance between two Boolean functions, f and g, is denoted by d(f, g) and is the
number of places where their truth tables differ. Note that d(f, g) = wt(f + g)
(by abuse of notation, we also use + to denote the addition in F2, i.e., the XOR);

Any Boolean function has a unique representation as a multivariate polyno-
mial over F2, called the algebraic normal form (ANF):

f(x1, · · · , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i≤j≤n

aijxixj + · · ·+ a12···nx1x2 · · ·xn,

where the coefficients a0, ai, aij , · · · , a12···n ∈ F2. The algebraic degree deg(f) of
f is the number of variables in the highest order term with nonzero coefficient.
A Boolean function is affine if it has algebraic degree at most 1 and we denote
by An the set of all affine functions in n variables.

The nonlinearity of an n-variable function f is its distance from the set of
all n-variable affine functions, i.e.,

nl(f) = min
g∈An

(d(f, g)).

To be cryptographically secure [22, 23], Boolean functions used in crypto-
graphic systems must be balanced to prevent the system from leaking statistical
information on the plaintext when the ciphertext is known, have high algebraic
degree to counter linear synthesis by Berlekamp-Massey algorithm, have high
order of correlation immunity to counter correlation attacks, and have high non-
linearity to withstand linear attacks and correlation attacks.

Recently, it has been identified that any combining or filtering should not
have a low-degree-multiple. More precisely, it is shown in [1] that, given any
n-variable Boolean function f , it is always possible to get a Boolean function g
with degree at most

⌈
n
2

⌉
such that f ·g has degree at most

⌈
n
2

⌉
. Therefore, while

choosing a Boolean function f , the cryptosystem designer should avoid that the
degree of f · g falls much below

⌈
n
2

⌉
with a nonzero Boolean function g whose

degree is also much below
⌈

n
2

⌉
. Otherwise, resulting low degree multivariate

relations between key bits and output bits of Boolean function f will allow a
very efficient attack. As observed in [1, 2], it is necessary to check that f and
f + 1 do not admit nonzero annihilators of low degrees.

Definition 1. Given f ∈ Bn, we define

Ann(f) = {g ∈ Bn|f · g = 0}.

Any function g ∈ Ann(f) is called an annihilator of f .

It’s explicit that a function g is an annihilator of f if and only if g takes value
0 on supp(f), i.e.,

g ∈ Ann(f)⇔ 1f ⊆ 0g.

4

Definition 2. Given f ∈ Bn, we define its algebraic immunity, denote by AIn(f),
as the minimum degree of all nonzero annihilators of f or f + 1, i.e.,

AIn(f) = min{deg(g)|0 6= g ∈ Ann(f) ∪Ann(f + 1)}.

We usually denote AIn(f) by AI(f) for short, when there is no confusion
about the number of variables.

Note that AI(f) ≤ deg(f), since f · (f + 1) = 0. As f or f + 1 must have
an annihilator at an algebraic degree ≤

⌈
n
2

⌉
[1], we have AI(f) ≤

⌈
n
2

⌉
. If an n-

variable Boolean function f satisfies that deg(f) =
⌈

n
2

⌉
, we say it has optimum

AI. The AI of a Boolean function expresses its ability to resist standard algebraic
attack. So, Boolean functions with higher AI (even optimum AI) is preferred in
cryptosystem. Note that although AI is not a property that can resist all kinds
of algebraic attacks, but clearly still a necessary one.

3 The Construction of Boolean Function in [1]

From now on, we use a binary string of length 2n to represent an n-variable
Boolean function. As used in [1], we denote by “‖” the concatenation of binary
strings. We also denote by “¯” the complement operation, i.e., f̄ meaning the
complement function of Boolean function f .

For example, let s, t ∈ B2, and s = x1x2 + x2 + 1, t = x1x2 + x2. In the
truth table representation, they are s = 1101, t = 0010. Let u = s‖t, then
u = 11010010 ∈ B3, i.e., u = x1x2 + x2 + x3 + 1. And ū = 00101101.

For the denotation “‖”, the following proposition holds.

Proposition 1. Given f1, f2 ∈ Bn, let f = f1‖f2, then

i) f = f1 + xn+1(f1 + f2) ∈ Bn+1, and deg(f1),deg(f2) ≤ deg(f);
ii) for any g ∈ Ann(f), decompose it as g = g1‖g2 where g1, g2 ∈ Bn, then

g1 ∈ Ann(f1) and g2 ∈ Ann(f2).

The following proposition can be deduced from Proposition 1.

Proposition 2. Given f1, f2, f3, f4 ∈ Bn, let f = f1‖f2‖f3‖f4, then

i) f ∈ Bn+2, and f = f1 + xn+1(f1 + f2) + xn+2(f1 + f3) + xn+1xn+2(f1 +
f2 + f3 + f4);

ii) for any g ∈ Ann(f), decompose it as g = g1‖g2‖g3‖g4 where g1, g2, g3, g4 ∈
Bn, then g1 ∈ Ann(f1), g2 ∈ Ann(f2), g3 ∈ Ann(f3) and g4 ∈ Ann(f4).

For the denotation “¯”, the following proposition holds.

Proposition 3. Given f ∈ Bn+2, decompose it as f = f1‖f2‖f3‖f4, where
f1, f2, f3, f4 ∈ Bn, then

i) f̄ = f + 1;
ii) ¯̄f = f ;

5

iii) f̄ = f̄1‖f̄2‖f̄3‖f̄4;
iv) AI(f̄) = AI(f).

Dalai et.al. firstly proposed a recursive construction of Boolean functions:

Construction 1. {
φ2k+2 = φ2k‖φ2k‖φ2k‖φ1

2k,

φi
2j = φi−1

2j−2‖φi
2j−2‖φi

2j−2‖φ
i+1
2j−2,

(1)

with base step φ0
k = φk, φi

0 = x1 + (j mod 2), i, n ≥ 1, j > 0.

They proved that the constructed Boolean function φ2k has optimum AI.
Based on the construction, we are to propose another construction for Boolean
functions with optimum AI.

4 An Improved Construction of Boolean Function

Our construction is:

Construction 2. {
φ2k+2 = φ̄2k‖φ̄2k‖φ2k‖φ1

2k,

φi
2j = φ̄i−1

2j−2‖φ̄i
2j−2‖φi

2j−2‖φ
i+1
2j−2,

(2)

with base step φ0
k = φk, φi

0 = x1 + (j mod 2), i, n ≥ 1, j > 0.

From now on, we denote by φ the Boolean function defined by Construction
2. To prove that φ2k has optimum AI, we need intermediate results. For technical
reasons, during our proofs, we will encounter certain situations when the degree
of a function is negative. As such functions do not exist, we will replace them
by function 0.

Lemma 1. Assume that the function φ2t ∈ B2t has been generated by Construc-
tion 2 and AI(φt) = t for 1 ≤ t ≤ k. If, for some i > 0, there exists g, h ∈ B2t

such that

i) g ∈ Ann(φi
2t), h ∈ Ann(φi+1

2t) and deg(g + h) ≤ t− 2− i, or
ii) g ∈ Ann(φ̄i

2t), h ∈ Ann(φ̄i+1
2t) and deg(g + h) ≤ t− 2− i,

then g = h.

Proof. We prove it by induction on t.
For the base step t = 0, deg(g + h) ≤ 0− 2− i ≤ −2 implies that functions

in the assumption cannot exist, i.e., g = h = 0.
Now we prove the inductive step. Assume that, for t < k, the induction

assumption holds (for every i ≥ 0). We show it for t = k and for every i ≥ 0.

6

We rewrite g and h as {
g = g1‖g2‖g3‖g4,

h = h1‖h2‖h3‖h4,

where g1, g2, g3, g4, h1, h2, h3, h4 ∈ B2k−2.
By Proposition 2, there is

g + h =(g1 + h1) + x2k−1(g1 + h1 + g2 + h2) + x2k(g1 + h1 + g3 + h3)
+ x2k−1x2k(g1 + h1 + g2 + h2 + g3 + h3 + g4 + h4).

1) If g ∈ Ann(φi
2t), h ∈ Ann(φi+1

2t), such that deg(g + h) ≤ t− 2− i.
By the recursion (2), there is

φi+1
2k = φ̄i

2(k−1)‖φ̄
i+1
2(k−1)‖φ

i+1
2(k−1)‖φ

i+2
2(k−1) ,

φi
2k = φ̄i−1

2(k−1)‖φ̄
i
2(k−1)‖φ

i
2(k−1)‖φ

i+1
2(k−1) i > 0,

φ2k = φ̄2(k−1)‖φ̄2(k−1)‖φ2(k−1)‖φ1
2(k−1) i = 0.

a) deg(g1 + h1) ≤ k − 2− i = (k − 1)− 2− (i− 1).
If i > 0, then g1 ∈ Ann(φ̄i−1

2(k−1)), h1 ∈ Ann(φ̄i
2(k−1)) implies that g1 = h1,

according to the induction assumption.
If i = 0, then g1, h1 ∈ Ann(φ̄2(k−1)), and therefore g1+h1 ∈ Ann(φ̄2(k−1)).
By hypothesis and Proposition 3, AI2(k−1)(φ̄2(k−1)) = AI2(k−1)(φ2(k−1))) =
k − 1.
Since deg(g1 + h1) ≤ k − 2, we have g1 + h1 = 0, i.e., g1 = h1.

b) deg(g2 +h2) ≤ k− 2− i− 1 = (k− 1)− 2− i, and g2 ∈ Ann(φ̄i
2(k−1)), h2 ∈

Ann(φ̄i+1
2(k−1)). Then by the induction assumption, we have g2 = h2.

c) deg(g3 +h3) ≤ k− 2− i− 1 = (k− 1)− 2− i, and g3 ∈ Ann(φi
2(k−1)), h3 ∈

Ann(φi+1
2(k−1)). Then by the induction assumption, we have g3 = h3.

d) deg(g4+h4) ≤ k−2−i−2 = (k−1)−2−(i+1), and g4 ∈ Ann(φi+1
2(k−1)), h4 ∈

Ann(φi+2
2(k−1)). Then by the induction assumption, we have g4 = h4.

2) If g ∈ Ann(φ̄i
2k), h ∈ Ann(φ̄i+1

2k), such that deg(g + h) ≤ k − 2− i, then
by the recursion (2), there is

φ̄i+1
2k = φi

2(k−1)‖φ
i+1
2(k−1)‖φ̄

i+1
2(k−1)‖φ̄

i+2
2(k−1) ,

φ̄i
2k = φi−1

2(k−1)‖φ
i
2(k−1)‖φ̄

i
2(k−1)‖φ̄

i+1
2(k−1) i > 0,

φ̄2k = φ2(k−1)‖φ2(k−1)‖φ̄2(k−1)‖φ̄1
2(k−1) i = 0.

Similar to 1), we can prove that g1 = h1, g2 = h2, g3 = h3 and g4 = h4.

Hence we get g + h = 0, i.e., g = h which finishes the proof. ut

Lemma 2. Assume that the function φ2t ∈ B2t has been generated by Construc-
tion 2 and AI(φt) = t for 1 ≤ t ≤ k. If there exists g, h ∈ B2t such that

7

i) g ∈ Ann(φ̄i
2t), h ∈ Ann(φi+1

2t) and deg(g + h) ≤ t− 1− i, i > 0, or
ii) g ∈ Ann(φ̄2t), h ∈ Ann(φ2t) and deg(g + h) ≤ t, i = 0,

then g = h = 0.

Proof. We prove it by induction on t.
For the base step t = 0, deg(g + h) ≤ t− 2− i = 0− 2− i ≤ −2, implies that

functions in the assumption cannot exist, i.e., g + h = 0, g = h.
Now we prove the inductive step. Assume that, for t < k, the induction

assumption holds. We show it for t = k.
We rewrite g and h as {

g = g1‖g2‖g3‖g4,

h = h1‖h2‖h3‖h4,

where g1, g2, g3, g4, h1, h2, h3, h4 ∈ B2k−2.
By Proposition 2, there is

g + h =(g1 + h1) + x2k−1(g1 + h1 + g2 + h2) + x2k(g1 + h1 + g3 + h3)
+ x2k−1x2k(g1 + h1 + g2 + h2 + g3 + h3 + g4 + h4).

1) If g ∈ Ann(φ̄i
2k), h ∈ Ann(φi+1

2k) and deg(g + h) ≤ k − 1− i, i > 0then
by the recursion 2, there is{

φ̄i
2k = φi−1

2(k−1)‖φ
i
2(k−1)‖φ̄

i
2(k−1)‖φ̄

i+1
2(k−1),

φi
2k = φ̄i−1

2(k−1)‖φ̄
i
2(k−1)‖φ

i
2(k−1)‖φ

i+1
2(k−1),

By Proposition 2, we have
a) deg(g1 +h1) ≤ k−1− i = (k−1)−1−(i−1), and g1 ∈ Ann(φi−1

2(k−1)), h1 ∈
Ann(φ̄i−1

2(k−1)).
If i− 1 > 0, then g1 = h1, according to the induction assumption i).
If i− 1 = 0, then g1 = h1, according to the induction assumption ii).

b) deg(g2 +h2) ≤ k− 1− i− 1 = (k− 1)− 1− i, and g2 ∈ Ann(φi
2(k−1)), h2 ∈

Ann(φ̄i+1
2(k−1)). Then by the induction assumption i), we have g2 = h2.

c) deg(g3 +h3) ≤ k− 1− i− 1 = (k− 1)− 1− i, and g3 ∈ Ann(φ̄i
2(k−1)), h3 ∈

Ann(φi+1
2(k−1)). Then by the induction assumption i), we have g3 = h3.

d) deg(g4+h4) ≤ k−1−i−2 = (k−1)−1−(i+1), and g4 ∈ Ann(φ̄i+1
2(k−1)), h4 ∈

Ann(φi+2
2(k−1)). Then by the induction assumption i), we have g4 = h4.

Thus, g1 = h1, g2 = h2, g3 = h3, g4 = h4, i.e., g = h.
And then g = h = 0, since g = h ∈ Ann(φ̄i

2k) ∩Ann(φi+1
2k).

2) If g ∈ Ann(φ̄2k), h ∈ Ann(φ2k), such that deg(g + h) ≤ k, i = 0, then
by the recursion 2, there is{

φ̄2k = φ2(k−1)‖φ2(k−1)‖φ̄2(k−1)‖φ̄1
2(k−1),

φ2k = φ̄2(k−1)‖φ̄2(k−1)‖φ2(k−1)‖φ1
2(k−1),

By Proposition 2, we have

8

a) g1 ∈ Ann(φ2(k−1)), h1 ∈ Ann(φ̄2(k−1)), and deg(g1),deg h1 ≤ k − 1 im-
plying deg(g1 + h1) ≤ k − 1. Then g1 = h1, according to the induction
assumption ii).

b) g2 ∈ Ann(φ2(k−1)), h2 ∈ Ann(φ̄2(k−1)), and deg(g2 + h2) ≤ k − 1. Then
g2 = h2, according to the induction assumption ii).

c) g3 ∈ Ann(φ̄2(k−1)), h3 ∈ Ann(φ2(k−1)), and deg(g3 + h3) ≤ k − 1. Then
g3 = h3, according to the induction assumption ii).

d) g4 ∈ Ann(φ̄2(k−1)), h4 ∈ Ann(φ2(k−1)), and deg(g4 + h4) ≤ k − 1. Then
g4 = h4, according to the induction assumption ii).

Thus, g1 = h1, g2 = h2, g3 = h3, g4 = h4, i.e., g = h.
And then g = h = 0, since g = h ∈ Ann(φ̄2k) ∩Ann(φ2k).

Here we finish the proof. ut

Theorem 1. The function φ2k obtained in Construction 2 has optimum alge-
braic immunity, for every k ≥ 1, i.e.,

AI(φ2k) = k.

Proof. We prove it by induction on k.
For the base step k = 1, it can easily be checked.
Now we prove the inductive step. Assume that, for k < t, the induction

assumption holds. We show it for k = t.
We have to prove that any nonzero function g such that g ·φ2t = 0 has degree

at least t (proving that any nonzero function g such that g · (φ2t + 1) = 0 has
degree at least t is similar). Suppose that such a function g ∈ B2t with deg(g) < t
exists. Then, g can be rewritten as g = g1‖g2‖g3‖g4 where g1, g2, g3, g4 ∈ B2(t−1).
By Proposition 2, we have

g(x1, x2, · · · , x2t−1, x2t) =g1 + x2t−1(g1 + g2) + x2t(g1 + g3)
+ x2t−1x2t(g1 + g2 + g3 + g4).

(3)

Since φ2tk = φ̄2(t−1)‖φ̄2(t−1)‖φ2(t−1)‖φ1
2(t−1) and deg(g) < t, by Proposition 2,

we have

deg(g1 + g2),deg(g1 + g3) ≤ t− 2,deg(g1 + g2 + g3 + g4) ≤ t− 3, (4)

g1, g2 ∈ Ann(φ̄2(t−1)), g3 ∈ Ann(φ2(t−1)), g4 ∈ Ann(φ1
2(t−1)).

Then g1+g2 ∈ Ann(φ̄2(t−1)). By the induction assumption, there is AI(φ̄2(t−1)) =
AI(φ2(t−1)) = t− 1.
Thus, g1 + g2 = 0, since deg(g1 + g2) ≤ t− 2.
So, (3) becomes

g = g1 + x2t(g1 + g3) + x2t−1x2t(g3 + g4), (5)

and then

deg(g1 + g3) ≤ t− 2 < t− 1, deg(g3 + g4) ≤ t− 3 = (t− 1)− 2.

9

By Lemma 1, we have g3 = g4.
By Lemma 2, we have g1 = g3 = 0.
Thus, g4 = 0, too.
Hence g = 0, which completes the proof. ut

5 The analysis of other cryptographic properties

In this section, we will analyze other cryptographic properties of the con-
structed Boolean functions. In the analysis, we lay emphasis on their balance,
algebraic degree and nonlinearity.

5.1 Balance

For an n-variable Boolean function f , we can use the value

b(f) = |2n−1 − wt(f)|

to measure its balance. Obviously, the less the value b(f) is , the more balance
the function f is. If b(f) = 0, then we say the Boolean function f is balanced.

Let wi
2k = wt(φi

2k), w2k = wt(φ2k) = w0
2k = wt(φ0

2k). By the recursion in
Construction 2, there is{

wi
2k = 22k−1 − wi−1

2k−2 + wi+1
2k−2,

w2k = 22k−1 − w2k−2 + w1
2k−2,

(6)

where k, i ≥ 1, and wj
0 = j mod 2(j ≥ 0).

Denote bi
2k = 22k−1 − wi

2k, then |bi
2k| measures the balance of φi

2k. By (6),
we have {

bi
2k = bi+1

2k−2 − bi−1
2k−2,

b0
2k = b1

2k−2 − b0
2k−2,

(7)

where k, i ≥ 1, and bj
0 = j mod 2(j ≥ 0).

By induction on k, the following property can easily be proved.

Property 1. Let bi
2k = 22k−1 − wt(φi

2k), (k ≥ 2, i ≥ 0), then

i) if k is even, then b2i
2k = b2i+1

2k ;
ii) if k is odd, then b0

2k = 0, b2i+1
2k = b2i+2

2k .

Property 1 shows that if k > 1 is odd number, then the Boolean function φ2k

obtained from Construction 2 is balanced. Note that none of the Boolean func-
tions from Construction 1 is balanced. Although it is possible to build balanced
ones from them, but there would result in extra computation. The balance of
Boolean functions between the two construction are compared in Table 1 . It’s
clearly that the balance of Boolean functions from Construction 2 is better than
that from Construction 1.

10

Table 1: The balance of boolean function in both constructions

2k=2 2k=4 2k=6 2k=8 2k=10 2k=12 2k=14 2k=16 2k=18 2k=20 2k=22 2k=24

b(φ′
2k) 1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078

b(φ2k) 1 1 0 1 0 2 0 5 0 14 0 42

Note 1. φ′
2k is the Boolean function in Construction 1, and φ2k in Construction 2.

5.2 Nonlinearity

Property 2. For the function φ2k(k > 0) obtained in Construction 2, there is

nl(φ2k) ≥ 22k−1 −
(

2k − 1
k − 1

)
. (8)

Proof. Consider the (2k+1)-variable Boolean function

ϕ2k+1 = x2k+1 + φ2k.

By Theorem 1, we have AI(φ2k) = k.
By Lemma 2, there does not exists g, h ∈ B2k, such that

0 6= g ∈ Ann(φ2k), 0 6= h ∈ Ann(φ̄2k), and deg(g),deg(h),deg(g + h) < k.

Thus AI(ϕ2k+1) = k + 1, according to [26].
And then nl(ϕ2k + 1) = nl(x2k+1 + φ2k) ≥ 22k −

(
2k
k

)
.

Note that for a k-variable Boolean function f , there has nl(x2k+1 + f) =
2 nl(f). Hence, nl(φ2k) ≥ 22k−1 −

(
2k−1
k−1

)
, which finishes the proof. ut

The nonlinearity of Boolean function φ2k in Construction 1 is nl(φ2k) =
22k−1 −

(
2k−1
k−1

)
. Therefor, the Boolean functions in Construction 2 is not worse

then those in Construction 1, in the aspect of nonlinearity.

5.3 Algebraic Degree

To avoid confusion, we denote by φ
′i
2k, φi

2k the Boolean functions obtained
in Construction 1 and Construction 2, respectively. Let γi

k = φi
2k + φi+1

2k , δi
k =

φi
2k + φi+2

2k , γ
′i
k = φ

′i
2k + φ

′i+1
2k , δ

′i
k = φ

′i
2k + φ

′i+2
2k . By induction on k, it can be

easily proved that: For any k ≥ i ≥ 0, there has deg(φi
2k) = deg(φ

′i
2k),deg(γi

k) =
deg(γ

′i
k),deg(δi

k) = deg(δ
′i
k). Sequentially, the following property holds.

Property 3. φ
′i
2k, φi

2k are the Boolean functions obtained in Construction 1 and
Construction 2 respectively, then deg(φi

2k) = deg(φ
′i
2k), i.e., [1]

deg(φ2k) = 2k k = 2t,

2k − 3 ≤ deg(φ2k) ≤ 2k − 1 k = 2t − 1,

deg(φ2k) = 2k − 1 others.

Property 3 shows that the Boolean functions obtained in Construction 1 and
Construction 2 are identical, in the aspect of algebraic degree.

11

6 Generalization

6.1 More constructions

Comparing Construction 2 with Construction 1, the former one just change
the fist two concatenated functions (of the latter one in the recursive formula)
into their complement functions. We can express the transformation in a vector
(a1, a2, a3, a4) ∈ F4

2 as follows: If ai = 1(1 ≤ i ≤ 4) then change the i-th
concatenated function into its complement function.

In this way, the Construction 2 can be expressed as the vector (1, 1, 0, 0), and
Construction 1, (0, 0, 0, 0).

Actually, we found more constructions by exhaust all the vectors in F4
2. We

list the constructions that can produce Boolean functions with optimum AI in
Table 2. All the constructions are with the same base step as Construction 1
and Construction 2.

Table 2: More constructions of Boolean functions with optimum AI

Cons.1 Cons.2 Cons.3 Cons.4 Cons.5 Cons.6 Cons.7 Cons.8

(0,0,0,0) (1,1,0,0) (1,0,1,0) (1,0,0,1) (0,1,1,0) (0,1,0,1) (0,0,1,1,) (1,1,1,1)

Observing that the AI, algebraic degree, and nonlinearity of Boolean func-
tions in Construction 2 are identical with those in Construction 1, we doubt that
whether Boolean functions in Construction 2 are affinely equivalent to those in
Construction 1. We firstly check that whether it’s a affine transformation that
changing any one of the four concatenated functions into its complement func-
tion. Since any of the transformation is combined by some of the four base one:
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). For example, (1, 1, 0, 0) is the com-
bined by (1, 0, 0, 0) and (0, 1, 0, 0). If the four base transformation are affine
ones, than all the transformation in F4

2 are affine, too. So we focus our atten-
tion on the four base transformation. Actually, we compute the AI’s of Boolean
functions in the four base transformation, and find that they are not equal to
those of Construction 1. That means the four base transformation are not affine
ones, since AI is a invariable in affine transformation.

Table 3: Constructions of Boolean functions have no optimum AI

Cons.9 Cons.10 Cons.11 Cons.12 Cons.13 Cons.14 Cons.15 Cons.16

(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1) (0,1,1,1) (1,0,1,1) (1,1,0,1,) (1,1,1,0)

12

6.2 Further discussion

In further research, we find that the Boolean functions still has optimum AI
by replacing the “¯” operation by affine transformation. That is

Theorem 2. τ2, τ4, · · · , τ2k(k > 1) are affine transformation, and{
φ2k+2 = τ2k(φ2k)‖τ2k(φ2k)‖φ2k‖φ1

2k,

φi
2j = τ2j(φi−1

2j−2)‖τ2j(φi
2j−2)‖φi

2j−2‖φ
i+1
2j−2,

(9)

with base step φ0
k = φk, φi

0 = x1 + (j mod 2), i, n ≥ 1, j > 0. Then the Boolean
functions φ2k in the upper construction have optimum AI.

Consider the reversed operation “←−”, which means reversing the Boolean
function’s truth table (e.g.,

←−−
1101 = 1011). We find that, after replacing the

“¯” operation by “←−”, φ2k in Construction 2 still has optimum AI. In fact,
the reversed operation “←−” can be represented as

←−
f (x1, x2, · · · , xn) = f(x1 +

1, x2 + 1, · · · , xn + 1), obviously an affine transformation. It’s consistent with
Theorem 2. As another application of Theorem 2, we can assert that the following
construction produces Boolean functions with optimum AI.{

φi
2k = φ̄i−1

2k−2‖φ̄i
2k−2‖φi

2k−2‖φ
i+1
2k−2 k mod 2 = 1,

φi
2k =

←−
φ i−1

2k−2‖
←−
φ i

2k−2‖φi
2k−2‖φ

i+1
2k−2, k mod 2 = 0.

(10)

What need to point out is that, although for any affine transformation in The-
orem 2 the Boolean functions’ AI maintain, but other cryptographic properties
may change. How to select suitable transformation in Theorem 2 to make sure
the Boolean functions have good cryptographic properties is an open problem.

7 Conclusion

Based on [1], this paper proposed an improved recursive construction of even-
variable Boolean function with optimum algebraic immunity. We showed that the
Boolean functions constructed in this paper compare favourably with those in [1],
in respects of AI, algebraic degree, and nonlinearity. In the case of balance, our
Boolean functions superior to those in [1]. Furthermore, when k > 3 is odd, our
construction produce balanced Boolean functions. In the end, we also generalized
it to a class of constructions, thus there would be much more constructions of
Boolean functions with optimum AI.

References

1. N. Courtois and W. Meier. Algebraic Attacks on Stream Ciphers with Linear Feed-
back[A]. Advances in Cryptology-Eurocrypt 2003[C], Berlin: Springer-Verlag, 2003,
345-359

13

2. W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of Boolean
functions[A]. Advances in Cryptology-Eurocrypt 2004[C], Berlin: Springer-Verlag,
2004, 474-491

3. F. Armknecht and M. Krause. Algebraic Attacks on Combiners with Memory[A].
Advances in Cryptology-Crypto 2003[C], Berlin: Springer-Verlag, 2003, 162-175

4. N. Courtois. Algebraic Attacks on Combiners with Memory and Several Outputs[A].
Information security and cryptology 2004 (ICISC 2004), LNCS 3506, 2005, 3-20

5. N. Courtois. Cryptanalysis of SFINKS[A]. Information Security and Cryptology
2005 (ICISC 2005)[C]. Berlin: Springer-Verlag, 2006, 261-269

6. L. M. Batten. Algebraic Attacks over GF(q) [A]. Progress in Cryptology-Indocrypt
2004[C], Berlin: Springer-Verlag, 2004, 84-91

7. J. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems Using Gröbner Bases[A]. Advances in Cryptology-Crypto 2003[C],
Berlin: Springer-Verlag, 2003, 44-60

8. F. Armknecht. On the Existence of low-degree Equations for Algebraic At-
tacks[EB/OL]. http://eprint.iacr.org/2004/185

9. N. Courtois, A. Klimov, J. Patarin, et al. Efficient algorithms for solving overde-
fined systems of multivariate polynomial equations[A]. Advances in Cryptology-
Eurocrypt 2000[C], Berlin: Springer-Verlag, 2000, 392-407

10. A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key cryptosystem by re-
linearization[A]. Advances in Cryptology-Crypto’99, Berlin: Springer-Verlag, 1999,
19-30

11. William W Adams, Philippe Loustaunau. An introduction to gröbner bases[M].
USA: AMS, 1994

12. C. Carlet, D. K. Dalai, K. C. Gupta, et al. Algebraic Immunity for Cryptograph-
ically Significant Boolean Functions: Analysis and Construction[J]. IEEE Transac-
tions on Information Theory, 2006, 52(7): 3105-3121

13. D. K. Dalai, K. C. Gupta and S. Maitra. Cryptographically Significant Boolean
functions: Construction and Analysis in terms of Algebraic Immunity[A]. Fast Soft-
ware Encryption 2005 (FSE05) [C], Paris, France, 2005, 98-111

14. A. Braeken and B. Preneel. On the algebraic immunity of symmetric Boolean func-
tions[A]. Progress in Cryptology-Indocrypt 2005[C], Berlin: Springer-Verlag, 2005,
35-48

15. D. K. Dalai, S. Maitra and S. Sarkar. Basic Theory in Construction of Boolean
Functions with Maximum Possible Annihilator Immunity[J]. Design, Codes and
Cryptography, 2006, 40(1): 41-58

16. C. Carlet. A method of construction of balanced functions with optimum algebraic
immunity[EB/OL]. http://eprint.iacr.org/2006/149

17. C. Carlet, X. Zeng, C. Li, et al. Further properties of several classes of Boolean func-
tions with optimum algebraic immunity[EB/OL]. http://eprint.iacr.org/2007/370

18. N. Li and W. Qi. Construction and analysis of Boolean functions of 2t+1 variables
with maximum algebraic immunity[A]. Advances in Cryptology-Asiacrypt 2006[C],
Berlin: Springer-Verlag, 2006, 84-98

19. N. Li and W. Qi. Boolean function of an odd number of variables with maximum
algebraic immunity[J]. Science in China, Ser. F, 2007, 50(3): 307-317

20. N. Li, L. Qu, W. Qi, et al. On the construction of Boolean functions with optimal
algebraic immunity[J]. IEEE Transactions on Information Theory, 2008, 54(3): 1330-
1334

21. C. Carlet and K. Feng. An Infinite Class of Balanced Functions with Optimal
Algebraic Immunity, Good Immunity to Fast Algebraic Attacks and Good Nonlin-

14

earity[A]. Advances in Cryptology-Asiacrypt 2008[C], Berlin: Springer-Verlag, 2008,
425-440

22. A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-check
equations of weight 4 and 5[A]. Advances in Cryptology-Eurocrypt 2000[C]. Berlin:
Springer-Verlag, 2000, 573-588

23. C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers[M]. Lec-
ture Notes in Computer Science (vol.561). Berlin: Springer-Verlag, 1991

24. M. Lobanov. Tight bound between nonlinearity and algebraic immunity[EB/OL].
http://eprint.iacr.org/2005/441

