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Abstract. Bondesson (1981) studied the class of generalized convolutions of mix-
tures of exponential distributions on R+ = (0,∞), which is the smallest class that
contains all mixtures of exponential distributions and that is closed under convo-
lution and weak convergence on R+. Barndorff-Nielsen, Maejima and Sato (2006)
extended this class to R

d, which they call Goldie-Steutel-Bondesson class B(Rd)
for a historical reason. This class is characterized by the so-called Υ-mapping of in-
finitely divisible distributions in terms of stochastic integrals of Lévy processes. In
this paper, we introduce nested subclasses of B(Rd) by the iteration of Υ-mapping,
and characterize them in terms of stochastic integrals of Lévy processes as well as
Lévy measures.

1. Introduction

Throughout this paper, for any R
d-valued random variable X , we denote its law

by L(X). The characteristic function and the cumulant function of a probability
distribution µ on R

d are denoted by µ̂(z) and Cµ(z), z ∈ R
d, respectively. Namely,

Cµ(z) is a continuous function with Cµ(0) = 0 such that µ̂(z) = exp(Cµ(z)). I(Rd)
denotes the class of all infinitely divisible distributions on R

d. We use the Lévy-
Khintchine triplet (A, ν, γ) of µ ∈ I(Rd) in the sense that

µ̂(z) = exp

{
−

1

2
〈z, Az〉+ i〈γ, z〉 +

∫

Rd

(
ei〈z,x〉 − 1 −

i〈z, x〉

1 + |x|2

)
ν(dx)

}
, z ∈ R

d,

where A is a symmetric nonnegative-definite d×d matrix, γ ∈ R
d and ν is a measure

(called the Lévy measure) on R
d satisfying

ν({0}) = 0 and

∫

Rd

(|x|2 ∧ 1)ν(dx) < ∞.
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An R
d-valued stochastic process {Xt, t ≥ 0} is called a Lévy process if (i) X0 = 0,

a.s., (ii) it has independent and stationary increments and (iii) it is stochastically
continuous at each t ≥ 0. Since L(X1) ∈ I(Rd) and the law of a Lévy process {Xt}

is determined by L(X1), we denote by {X
(µ)
t } the Lévy process with L(X

(µ)
1 ) = µ.

As to the definition of stochastic integrals of nonrandom functions with respect to
Lévy processes {Xt} on R

d, we follow the definition in (Sato, 2004, 2006), whose
idea is to define the integrals with respect to R

d-valued independently scattered
random measure induced by a Lévy process on R

d. This idea was used in Urbanik
and Woyczyński (1967) and Rajput and Rosinski (1989) for the case d = 1. See
also Barndorff-Nielsen et al. (2006).

Bondesson (1981) studied the class of generalized convolutions of mixtures of
exponential distributions on R+, called T2 in his monograph (1992). It is the small-
est class that contains all mixtures of exponential distributions and that is closed
under convolution and weak convergence on R+. Goldie (1967) is the first person
who proved the infinite divisibility of the mixtures of exponential distributions and
Steutel (1967) found the form of their Lévy measures. The Lévy measure ν of a
distribution in T2 has the following form:

ν(dr) = l(r)dr, r > 0, (1.1)

where l(r) is completely monotone. (See Bondesson (1992), Theorem 3.3.1.)
In order to talk about infinitely divisible distributions on R

d, it is useful to
consider the polar decomposition of Lévy measures, because most interesting sub-
classes of I(Rd) can be determined only by the radial component νξ of the Lévy
measure defined below. The polar decomposition of Lévy measures on R

d is the
following: Let ν be the Lévy measure of some µ ∈ I(Rd) with 0 < ν(Rd) ≤ ∞.
Then there exist a measure λ on S = {ξ ∈ R

d : |ξ| = 1} with 0 < λ(S) ≤ ∞ and
a family {νξ : ξ ∈ S} of measures on (0,∞) such that νξ(B) is measurable in ξ for
each B ∈ B((0,∞)), 0 < νξ((0,∞)) ≤ ∞ for each ξ ∈ S and that

ν(B) =

∫

S

λ(dξ)

∫ ∞

0

1B(rξ)νξ(dr), B ∈ B(Rd \ {0}). (1.2)

Here λ and {νξ} are uniquely determined by ν up to multiplication of a measurable
function c(ξ) and 1

c(ξ) with 0 < c(ξ) < ∞. We say that ν has the polar decomposi-

tion (λ, νξ) and νξ is called the radial component of ν. (See, e.g. Barndorff-Nielsen
et al. (2006), Lemma 2.1.)

In Barndorff-Nielsen et al. (2006), the class B(Rd) is defined as the collection
of µ ∈ I(Rd) with Lévy measure ν such that ν = 0 or ν 6= 0, having the polar
decomposition (λ, νξ) satisfying

νξ(dr) = lξ(r)dr, for λ-a.e. ξ ∈ S, (1.3)

where lξ(r) is measurable in ξ and completely monotone in r for λ-a.e. ξ. We call
this lξ the l-function of the Lévy measure of µ ∈ B(Rd). If we compare (1.1) and
(1.3), we see that B(Rd) is an extension of T2. We call the class B(Rd) Goldie-
Steutel-Bondesson class for the historical reason mentioned above.

On the other hand, Barndorff-Nielsen and Thorbjørnsen (2002a; 2002b; 2004;
2006) introduced a mapping Υ on I(R) defined by a stochastic integral as follows.
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Namely, for µ ∈ I(R),

Υ(µ) = L

(∫ 1

0

(log t−1)dX
(µ)
t

)
∈ I(R), (1.4)

where {X
(µ)
t } is a Lévy process on R with L(X

(µ)
1 ) = µ. They studied this mapping

only in one dimension, but it can easily be extended to a mapping from I(Rd) into

I(Rd) by the same definition, with the replacement of {X
(µ)
t } on R by {X

(µ)
t } on

R
d. The stochastic integral in (1.4) is definable for any for µ ∈ I(Rd). (Barndorff-

Nielsen et al., 2006, Proposition 2.3.) Then in Barndorff-Nielsen et al. (2006), we
discussed Υ-mapping in I(Rd) and proved that the class B(Rd) is the image of the
class of all infinitely divisible distributions on R

d:

B(Rd) = Υ(I(Rd)).

Note that the class B(Rd) is one of the subclasses of I(Rd) which can be determined
only by the Lévy measures.

Recently, detailed studies of subclasses of infinitely divisible distributions have
again been investigated by many authors. (See, e.g. Aoyama and Maejima, 2006.)
In this paper, we will study nested subclasses of B(Rd) defined by the iteration
of Υ-mapping. For m = 1, 2, ..., let Υm+1(µ) = Υ(Υm(µ)), with Υ0(µ) = µ and
Υ1 = Υ. Then we define nested subclasses of B(Rd) as follows.

Definition 1.1. (Class Bm(Rd)) Let B0(R
d) = B(Rd). Define, for m = 1, 2, ...,

Bm(Rd) = Υ(Bm−1(R
d)) = Υm+1(I(Rd))

and define

B∞(Rd) = ∩∞
m=0Bm(Rd).

By Lemma 4.1 of Barndorff-Nielsen et al. (2006), we see that Bm(Rd)⊃Bm+1(R
d).

The organization of this paper is the following. In Section 2, we define stochastic
integrals with respect to Lévy processes, which will appear in characterizations of
the class Bm(Rd), and in Section 3, we characterize the class Bm(Rd), m < ∞.
In Section 4, we characterize distributions in Bm(Rd) in terms of Lévy measures,
and discuss some properties of functions appearing in those Lévy measures. In the
last Section 5, we discuss the class B∞(Rd) and show that all stable distributions
belong to B∞(Rd).

We conclude this section with the following remark. Since the classes determined
by Υ-mapping depend only on Lévy measures essentially, Υ-mapping can also be
regarded as a mapping that sends a Lévy measure to another Lévy measure. Ac-
tually, if

Υ(µ) = L

(∫ 1

0

(log t−1)dX
(µ)
t

)
∈ I(Rd), µ ∈ I(Rd),

then

νΥ(µ)(B) =

∫ ∞

0

νµ(t−1B)e−tdt, B ∈ B(Rd),

where νµ is the Lévy measure of µ ∈ I(Rd). (See Barndorff-Nielsen et al., 2006,
Theorem A (ii).) When we regard Υ as a mapping from the class of Lévy measures
into itself, we may write

Υ(ν)(B) =

∫ ∞

0

ν(t−1B)e−tdt, B ∈ B(Rd). (1.5)
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Once we look at (1.5), we can easily extend Υ-mapping by replacing the probability
density function e−t in (1.5) by other probability densities on (0,∞), and we can
investigate new subclasses of infinitely divisible distributions. For the recent studies
in this direction, see, e.g. Barndorff-Nielsen et al. (2007). Also, Barndorff-Nielsen
and Pérez-Abreu (2007) extended Υ-mapping to the class of Lévy measures on the
cone of symmetric nonnegative-definite matrices and studied matrix subordinations.
This is another new direction of the study of this topic.

2. Preliminaries

In this section, we define stochastic integrals with respect to Lévy processes,
which are needed for characterizations of the class Bm(Rd). First we introduce a
sequence of functions εm(x), m = 0, 1, 2, ..., whose inverse functions will appear as
integrands of stochastic integrals in the class Bm(Rd) as follows: For x ≥ 0,

ε0(x) = e−x,

ε1(x) = −

∫ ∞

0

e−x/udε0(u) > 0,

· · ·

εm(x) = −

∫ ∞

0

e−x/udεm−1(u) > 0. (2.1)

We give some properties of εm(x) for later use.

Proposition 2.1. For m = 1, 2, ...,

(1) εm(x) is definable on [0,∞),
(2) εm(0) = 1 and εm(∞) := limx→∞ εm(x) = 0,
(3) εm(x) is differentiable on (0,∞),
(4)

ε′m(x) =

∫ ∞

0

e−x/uu−1dεm−1(u) =

∫ ∞

0

e−x/uu−1ε′m−1(u)du, x > 0, (2.2)

(5) |ε′m(x)| ≤ x−1, x > 0
and

(6) εm(x) is strictly decreasing.

Proof.

Proof of (1). It is trivial that ε1(x) is definable. Next suppose εm(x) is definable
for some m ≥ 1. Then

εm+1(x) ≤ −

∫ ∞

0

dεm(u) = −εm(∞) + εm(0),

so that εm+1(x) is definable.
Proof of (2). Note that ε0(0) = 1 and ε0(∞) = 0. Suppose that εm(0) = 1 and
εm(∞) = 0 for some m ≥ 0. Then

εm+1(0) = −εm(∞) + εm(0) = 1.

Also, since e−x/u ≤ 1 and
∫∞

0
(−dεm(u)) = 1, we have by the dominated conver-

gence theorem that

lim
x→∞

εm+1(x) = lim
x→∞

∫ ∞

0

e−x/u(−dεm(u)) = 0.
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Proofs of (3), (4) and (5). We have

1

h
(ε1(x + h) − ε1(x)) =

∫ ∞

0

e−x/u 1 − e−h/u

h
e−udu.

The absolute value of the integrand here is dominated by e−x/uu−1e−u ≤ e−x/uu−2,
which is integrable over (0,∞) for each x > 0, because

∫ ∞

0

e−x/uu−2du = x−1

∫ ∞

0

e−ydy = x−1.

Thus by the dominated convergence theorem,

ε′1(x)= lim
h→0

1

h
(ε1(x + h) − ε1(x))=−

∫ ∞

0

e−x/uu−1e−udu=

∫ ∞

0

e−x/uu−1dε0(u),

which shows that (3) and (4) are true for m = 1. Now, note that |ε′0(x)| = e−x ≤
x−1, x > 0. Then

|ε′1(x)| ≤

∫ ∞

0

e−x/uu−2du = x−1, x > 0.

Hence, (5) holds for m = 1.
Next suppose that ε′m(x) exists, (2.2) holds, and |ε′m(x)| ≤ x−1, x > 0. We have

1

h
(εm+1(x + h) − εm+1(x)) =

∫ ∞

0

e−x/u 1 − e−h/u

h
u−1ε′m(u)du.

The absolute value of the integrand above is dominated by e−x/uu−2, which is
integrable over (0,∞) for each x > 0. Thus ε′m+1(x) exists, by the dominate
convergence theorem. As to the orders of ε′m+1(x), we have

|ε′m+1(x)| ≤

∫ ∞

0

e−x/uu−2du = x−1,

Proof of (6). Since ε′0(x) < 0 for all x > 0, (2.2) implies ε′1(x) < 0 and thus ε1(x)
is strictly decreasing. If we suppose, for some m ≥ 1, ε′m(x) < 0 for all x > 0, then
εm+1(x) is strictly increasing by (2.2) again. �

Since εm(x) is strictly decreasing, we can define the inverse function x = ε∗m(t)
by t = εm(x). We are now ready to define stochastic integrals for our purpose.

Proposition 2.2. Let m = 0, 1, 2, . . .. For any µ ∈ I(Rd),
∫ 1

0

ε∗m(t)dX
(µ)
t

exists and finite a.s.

Proof. The case m = 0 is proved in Proposition 2.3 in Barndorff-Nielsen et al.
(2006). For general m, it is enough to apply the following lemmas, the first of
which is from parts of Propositions 2.17 and 3.4 of Sato (2006).

Lemma 2.3 (Sato, 2006). Let µ ∈ I(Rd). Let {X
(µ)
t } be the Lévy process with

L(X
(µ)
1 ) = µ on R

d and f(t) a real-valued measurable function on [0, 1]. If
∫ 1

0
f(t)2

dt < ∞, then Y =
∫ 1

0 f(t)dX
(µ)
t is definable,

∫ 1

0 |Cµ(f(t)z)|dt < ∞ and CL(Y )(z) =∫ 1

0
Cµ(f(t)z)dt.
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Lemma 2.4. Let p = 1, 2, ....
∫ 1

0

ε∗m(t)pdt = Γ(p + 1)m

∫ 1

0

(log t−1)pdt < ∞.

Proof. We have
∫ 1

0

ε∗m(t)pdt = −

∫ ∞

0

xpdεm(x) = −

∫ ∞

0

xpdx

∫ ∞

0

e−x/uu−1dεm−1(u)

= −

∫ ∞

0

u−1dεm−1(u)

∫ ∞

0

xpe−x/udx = −Γ(p + 1)

∫ ∞

0

updεm−1(u)

= Γ(p + 1)

∫ 1

0

ε∗m−1(t)
pdt = Γ(p + 1)m

∫ 1

0

ε∗0(t)
pdt

= Γ(p + 1)m

∫ 1

0

(log t−1)pdt < ∞.

�

3. Stochastic integral characterizations of Bm(Rd), m < ∞

We are now going to show that the elements of Bm(Rd) have the representation

L
(∫ 1

0 ε∗m(t)dX
(µ)
t

)
. Actually, we have the following.

Theorem 3.1. Let m = 0, 1, 2, . . .. Then for µ ∈ I(Rd),

Υm+1(µ) = L

(∫ 1

0

ε∗m(t)dX
(µ)
t

)
.

Then, we can characterize Bm(Rd) as follows.

Corollary 3.2.

Bm(Rd) =

{
L

(∫ 1

0

ε∗m(t)dX
(µ)
t

)
, µ ∈ I(Rd)

}
.

Proof of Theorem 3.1. Let µ ∈ I(Rd). We first note that
∫ 1

0

|Cµ(ε∗m(t)z)|dt < ∞ (3.1)

and show that

CΥm+1(µ)(z) =

∫ 1

0

Cµ(ε∗m(t)z)dt. (3.2)

(3.1) follows from Proposition 2.3 and Lemma 2.4. We are going to prove (3.2).
For m = 0,

CΥ(µ)(z) =

∫ 1

0

Cµ

(
(log t−1)z

)
dt =

∫ ∞

0

Cµ(uz)e−udu = −

∫ ∞

0

Cµ(uz)dε0(u).

Next suppose, for some m ≥ 1,

CΥm(µ)(z) = −

∫ ∞

0

Cµ(uz)dεm−1(u).
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We claim that
∫ ∞

0

e−wdw

∫ ∞

0

|Cµ(zwu)|(−dεm−1(u)) < ∞ (3.3)

for the use of Fubini theorem in calculation of cumulants below.
The proof of (3.3) is as follows. The idea is from Barndorff-Nielsen et al. (2006).

If the Lévy-Khintchine triplet of µ is (A, ν, γ), then

|Cµ(z)| ≤ 2−1(trA)|z|2 + |γ||z| +

∫

Rd

|g(z, x)|ν(dx),

where

g(z, x) = ei〈z,x〉 − 1 − i〈z, x〉(1 + |x|2)−1.

Hence

|Cµ(wuz)| ≤ 2−1(trA)w2u2|z|2 + |γ||w||u||z| +

∫

Rd

|g(z, wux)|ν(dx)

+

∫

Rd

|g(wuz, x) − g(z, wux)|ν(dx) =: J1 + J2 + J3 + J4,

say. The finiteness of
∫∞

0 e−wdw
∫∞

0 (J1 +J2)(−dεm−1(u)) follows from Lemma 2.4

with p = 1, 2. Noting that |g(z, x)| ≤ Cz|x|
2(1 + |x|2)−1 with a positive constant

Cz depending on z, we have
∫ ∞

0

e−wdw

∫ ∞

0

J3(−dεm−1(u))

≤ Cz

∫

Rd

ν(dx)

∫ ∞

0

e−wdw

∫ ∞

0

(wu|x|)2

1 + (wu|x|)2
(−dεm−1(u))

= Cz

(∫

|x|≤1

ν(dx) +

∫

|x|>1

ν(dx)

)∫ ∞

0

e−wdw

∫ ∞

0

(wu|x|)2

1 + (wu|x|)2
(−dεm−1(u))

=: J31 + J32,

say, and

J31 ≤ Cz

∫

|x|≤1

|x|2ν(dx)

∫ ∞

0

w2e−wdw

∫ ∞

0

u2(−dεm−1(u)) < ∞,

J32 ≤ Cz

∫

|x|>1

ν(dx)

∫ ∞

0

e−wdw

∫ ∞

0

(−dεm−1(u)) < ∞.

As to J4, note that for a ∈ R,

|g(az, x)−g(z, ax)|=
|〈az, x〉||x|2|1 − a2|

(1 + |x|2)(1 + |ax|2)
≤

|z||x|3(|a| + |a|3)

(1 + |x|2)(1 + |ax|2)
≤

|z||x|2(1 + |a|2)

2(1 + |x|2)
,

since |b|(1 + b2)−1 ≤ 2−1. Then
∫ ∞

0

e−wdw

∫ ∞

0

J4(−dεm−1(u))

≤ |z|

∫

Rd

|x|2

1 + |x|2
ν(dx)

∫ ∞

0

e−wdw

∫ ∞

0

(1 + w2u2)(−dεm−1(u)) < ∞.

This completes the proof of (3.3).
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Then

CΥm+1(µ)(z) =

∫ 1

0

CΥm(µ)

(
(log t−1)z

)
dt

= −

∫ 1

0

dt

∫ ∞

0

Cµ

(
(log t−1)uz

)
dεm−1(u)

(
by the change of variables log t−1 = w

)

= −

∫ ∞

0

e−wdw

∫ ∞

0

Cµ(wuz)dεm−1(u)

= −

∫ ∞

0

dεm−1(u)

∫ ∞

0

e−wCµ(wuz)dw

= −

∫ ∞

0

dεm−1(u)u−1

∫ ∞

0

e−s/uCµ(sz)ds

= −

∫ ∞

0

Cµ(sz)ds

∫ ∞

0

e−s/uu−1dεm−1(u)

= −

∫ ∞

0

Cµ(sz)dεm(s) =

∫ 1

0

Cµ(ε∗m(t)z)dt,

which is (3.2). Here we have used εm(0) = 1. Hence

Υm+1(µ) = L

(∫ 1

0

ε∗m(t)dX
(µ)
t

)
.

This concludes the proof. �

4. Lévy measures

The first theorem of this section is characterizations of distributions in Bm(Rd),
m < ∞, in terms of their Lévy measures.

Theorem 4.1. Let m = 1, 2, . . ..

(i) Let νm be a Lévy measure. It is the Lévy measure of some distribution in

Bm(Rd) if and only if νm can be represented as

νm(B) = −

∫ ∞

0

νµ(t−1B)dεm(t)

for the Lévy measure νµ of some µ ∈ I(Rd).
(ii) Let νm be a Lévy measure. It is the Lévy measure of some distribution in

Bm(Rd) if and only if νm can be represented as

νm(B) = −

∫ ∞

0

ν0(t
−1B)dεm−1(t) (4.1)

for the Lévy measure ν0 of some distribution in B0(R
d).

Proof. The proof is almost the same as for that of Theorem 3.1. So, we omit it. �

Next we consider some detailed properties of the Lévy measures of distributions
in Bm(Rd), m < ∞. Since Bm(Rd) ⊂ B0(R

d), the Lévy measure νm of some distri-
bution in Bm(Rd) has the following property in terms of the polar decomposition
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in (1.2);

νm(B) =

∫

S

λ(dξ)

∫ ∞

0

1B(rξ)lm,ξ(r)dr,

where lm,ξ(r) is measurable in ξ and completely monotone in r for λ-a.e. ξ. In the
following, we give a representation of the l-function lm.ξ.

Theorem 4.2. Let νm be a Lévy measure. It is the Lévy measure of some distri-

bution in Bm(Rd) if and only if the l-function of νm can be expressed as

lm,ξ(r) = −

∫ ∞

0

t−1l0,ξ

(
t−1r

)
dεm−1(t), (4.2)

where l0,ξ is the l-function of the Lévy measure of some distribution in µ0 ∈ B0(R
d).

Proof. We first show the “only if” part. Let νm be the Lévy measure of some
distribution in Bm(Rd). Then by (4.1),

νm(B) = −

∫ ∞

0

ν0(t
−1B)dεm−1(t)

for the Lévy measure ν0 of some distribution in B0(R
d). Here, ν0 has the following

polar decomposition:

ν0(B) =

∫

S

λ(dξ)

∫ ∞

0

1B(rξ)l0,ξ(r)dr,

where l0,ξ is the l–function of ν0. Thus,

νm(B) = −

∫ ∞

0

dεm−1(t)

∫

S

λ(dξ)

∫ ∞

0

1t−1B(rξ)l0,ξ(r)dr

= −

∫ ∞

0

dεm−1(t)

∫

S

λ(dξ)

∫ ∞

0

1B(rξ)t−1l0,ξ

(
t−1r

)
dr

=

∫

S

λ(dξ)

∫ ∞

0

1B(rξ)dr

(
−

∫ ∞

0

t−1l0,ξ

(
t−1r

)
dεm−1(t)

)
.

Thus the l-function lm,ξ of νm can be expressed as (4.2). This shows the “only if”
part of the theorem, but the argument above and (4.1) also show the “if” part.
The proof is complete �

Another view about lm.ξ is the following. The function lm,ξ(r) is completely
monotone, namely, Laplace transform of some measure. But, the measure depends
on m. We are interested in how. We are going to show it in some sense below.
(The following is based on a discussion with K. Sato.)

For any measurable function f , write Laplace transform depending on f as

L(f)(x) =

∫ ∞

0

e−xyf(y)dy

and define

Inv(f)(x) = x−1f(x−1).

Then

(L ◦ Inv)(f)(r) := L(Inv(f))(x) =

∫ ∞

0

e−rxx−1f(x−1)dx.
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Theorem 4.3. The l-function lm,ξ(r) of the Lévy measure of some distribution in

Bm(Rd) can be expressed as

lm,ξ(r) = (L ◦ Inv) ◦ · · · ◦ (L ◦ Inv)︸ ︷︷ ︸
m times

(l0,ξ)(r),

where l0,ξ is the l-function of the Lévy measure of some distribution in B0(R
d).

Proof. By Theorem 2 with m = 1, we have

l1,ξ(r) =

∫ ∞

0

t−1l0,ξ(t
−1r)e−tdt =

∫ ∞

0

s−1l0,ξ(s
−1)e−srds = (L ◦ Inv)(l0,ξ)(r).

Thus, the assertion is true for m = 1. Suppose that the assertion is true for some
m ≥ 1. Then, by Theorem 4.2 and Proposition 2.1, we have, by using Fubini
theorem twice,

lm+1,ξ(r) = −

∫ ∞

0

t−1l0,ξ(t
−1r)dεm(t)

=

∫ ∞

0

t−1l0,ξ(t
−1r)dt

∫ ∞

0

e−t/uu−1(−ε′m−1(u))du

=

∫ ∞

0

u−1(−ε′m−1(u))du

∫ ∞

0

t−1l0,ξ(t
−1r)e−t/udt

=

∫ ∞

0

u−1(−ε′m−1(u))du

∫ ∞

0

s−1l0,ξ(u
−1s−1r)e−sds

=

∫ ∞

0

s−1e−sds

∫ ∞

0

u−1l0,ξ(u
−1s−1r)(−ε′m−1(u))du

=

∫ ∞

0

s−1e−sds

∫ ∞

0

u−1l0,ξ(u
−1s−1r)dεm−1(u)

=

∫ ∞

0

s−1e−slm,ξ(s
−1r)ds

= (L ◦ Inv)(lm,ξ)(r).

Thus, by the induction hypothesis, the assertion is also true for m + 1. This
completes the proof. �

Remark 4.4. Theorem 4.3 shows us that lm,ξ(r) is Laplace transform of a special
function

(Inv) ◦ (L ◦ Inv) ◦ · · · ◦ (L ◦ Inv)︸ ︷︷ ︸
(m − 1) times

(l0,ξ)(r),

depending on m in this way.

5. The class B∞(Rd)

Finally, we study the class B∞(Rd). The main result is the statement (iii) in the
following theorem that all stable distributions belong to B∞(Rd).

Theorem 5.1. (i) The class B∞(Rd) is invariant under Υ-mapping.

(ii) The class B∞(Rd) is the largest class among the classes which are invariant
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under Υ-mapping.

(iii) All stable distributions belong to B∞(Rd).

Proof. (i) By Lemma 4.1 of Barndorff-Nielsen et al. (2006), Υ(B∞(Rd)) ⊂ B∞(Rd).
Conversely, let µ̃ ∈ B∞(Rd). Then µ̃ ∈ Bm(Rd) for any m ≥ 0. Fix m and suppose
µ̃ ∈ Bm(Rd). Then there exists uniquely µm ∈ Bm−1(R

d) such that µ̃ = Υ(µm).
However, the µm is the same for all m. Thus we can say that there exists a
µ ∈ Bm(Rd) for all m such that µ̃ = Υ(µ). Hence µ̃ ∈ Υ(B∞(Rd)). This completes
the proof of (i).

(ii) Let H be a class of infinitely divisible distributions such that Υ(H) = H .
Then for any m,

H = Υm(H) ⊂ Υm(I(Rd)) = Bm−1(R
d).

Hence

H ⊂ ∩∞
m=1Bm(Rd) = B∞(Rd).

This completes the proof of (ii).
(iii) Let m ≥ 1. When µA is Gaussian with zero mean and covariance matrix A,

suppose {Xt} is a Gaussian Lévy process such that the covariance matrix of X1 is

c−1
m A, where cm =

(∫ 1

0
ε∗m(t)2dt

)
. Then we have

µA = L

(∫ 1

0

ε∗m(t)dXt

)
∈ Bm(Rd)

for any m ≥ 1. Hence µ ∈ B∞(Rd). If µ is Gaussian with mean γ and covariance
matrix A, it is trivial that µ also belongs to B∞(Rd), because µ = µA ∗ δγ .

When µ is non-Gaussian α-stable with the Lévy measure ν, we have

ν(B) =

∫

S

λ(dξ)

∫ ∞

0

1B(rξ)
1

r1+α
dr =

∫

S

λm(dξ)

∫ ∞

0

1B(rξ)
cm

r1+α
dr,

where

cm =

∫ 1

0

ε∗m−1(t)
αdt and λm(dξ) = c−1

m λ(dξ).

We also have

cmr−(1+α) = −r−(1+α)

∫ ∞

0

uαdεm−1(u)

= −

∫ ∞

0

u−1
(
ur−1

)1+α
dεm−1(u)

= −

∫ ∞

0

u−1l0,ξ

(
u−1r

)
dεm−1(u),

where

l0,ξ(x) = x−(1+α),

which is completely monotone. Thus, by Theorem 4.2, cmr−(1+α) can be regarded
as lm,ξ(r), implying that ν is the Lévy measure of a distribution in Bm(Rd). This
is true for all m, and thus µ ∈ B∞(Rd). This completes the proof. �
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