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Abstract. Suppose that X is a strictly stable process under P and denote its
running maximum to time t ≥ 0 by X t. Suppose that for z ≥ 0, Y under Pz has
the same law as the process {(z ∨X t)−Xt : t ≥ 0} under P. Let σ[0,1] be the first
passage time of the process Y over the level 1. We give in explicit terms the law of
Yσ[0,1] under Pz for any z ≥ 0.

1. Introduction

Let X = {Xt : t ≥ 0} be a strictly stable process on R with probabilities
{Px : x ∈ R} (and corresponding expectation operators {Ex : x ∈ R}). That is to
say X is a member of the family of Lévy processes whose characteristic exponent
Ψ(θ) := − logE0(e

iθX1) is given by

Ψ(θ) =

{

c|θ|α(1 − iβsgn(θ) tan(πα/2)) for α ∈ (0, 1) ∪ (1, 2), β ∈ [−1, 1], c > 0
c|θ| + idθ for α = 1, d ∈ R, c > 0

for all θ ∈ R.
Following a number of articles through the 1960s concerning exit problems of

symmetric stable processes, Rogozin (1972) established, with an elementary proof,
the law of the overshoot distribution for the above class of processes when exiting
the interval [0, 1]. We shall state Rogozin’s result shortly, however before doing so,
let us note the following facts about strictly stable processes.

Strictly stable processes are called so on account of a scaling property which, for
our purposes, can be stated as follows. For all t ≥ 0

Xt
d
= t1/αX1.
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In particular, this means that P(Xt ≥ 0) is a constant which we denote ρ. Zolotarev
(1986) computes this constant in the following form

ρ =
1

2
+

1

πα
arctan(β tan(πα/2)).

One consequence of this formula is that for α ∈ (0, 1), ρ ranges over [0, 1] with the
boundary points ρ = 1 and ρ = 0 corresponding to the cases that X is an ascending
and descending subordinator respectively, that is to say β = 1,−1 respectively.
When α ∈ (1, 2), ρ ranges over [1−1/α, 1/α] with the boundary points ρ = 1−1/α
and ρ = 1/α corresponding to the cases that X is spectrally positive or spectrally
negative processes respectively (again β = 1,−1 respectively). When α = 1 then
ρ ∈ (0, 1) without restriction. Finally when α = 2 then necessarily ρ = 1/2; this is
the case of a Gaussian process.

Theorem 1.1 (Rogozin). Let

τ [0,1] = inf{t > 0 : Xt 6∈ [0, 1]}

(i) Two sided jumps: For α ∈ (0, 2), ρ ∈ (1 − 1/α, 1/α), x ∈ [0, 1] and

y ∈ [0,∞],

Px(Xτ [0,1] ∈ (1, 1 + y])

=
sin παρ

π
(1 − x)αρxα(1−ρ)

∫ y

0

t−αρ(t + 1)−α(1−ρ)(t + 1 − x)−1dt,

Px(Xτ [0,1] ∈ [−y, 0))

=
sin πα(1 − ρ)

π
(1 − x)αρxα(1−ρ)

∫ y

0

t−α(1−ρ)(t + 1)−αρ(t + x)−1dt.

(ii) Spectrally negative: For α ∈ (1, 2), ρ = 1/α, x ∈ [0, 1] and y ∈ [0,∞],

Px(Xτ [0,1] ∈ (1, 1 + y]) = xα−1,

Px(Xτ [0,1] ∈ [−y, 0))

=
sin π(α − 1)

π
xα−1(1 − x)

∫ y

0

t−(α−1)(t + 1)−1(t + x)−1dt.

In fact the main result of Rogozin (1972) was more complete than the version
presented here, covering subordinators, the spectrally positive case and Brownian
motion. However, as these shall be of no further consequence we have excluded
them. (Note however that the spectrally negative case follows from the spectrally
positive case by simple change of variables). In addition, Rogozin showed that a
number of the identities given above when y = ∞ simplify further. For example in
case (i) of the above theorem, when x ∈ [0, 1], one may also write

Px(Xτ [0,1] > 1) =
1

B(αρ, α(1 − ρ))

∫ x

0

tαρ−1(1 − t)α(1−ρ)−1dt

where B(·, ·) is the Beta function.

The purpose of this note is to combine Rogozin’s result with a martingale tech-
nique developed in Avram et al. (2004) and compute the distribution of the over-
shoot of level 1 by the process equal in law to a strictly stable processes reflected
in its supremum. (Note that the overshoot distribution of an arbitrary level can be
obtained from the latter by rescaling). To be precise, suppose that X is any strictly
stable process and define its running maximum at time t ≥ 0, X t = sups≤t Xs. The
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strong Markov process we are interested in, Y = {Yt : t ≥ 0} with probabilities
{Pz : z ≥ 0}, is equal in law to the process {(z ∨ Xt) − Xt : t ≥ 0} under P0.
Note that Y is [0,∞)-valued with a reflecting barrier at 0 and further, that Y0 = z.
Define

σ[0,1] = inf{t > 0 : Yt 6∈ [0, 1]}.

We are thus interested in characterizing the law of Yσ[0,1] under Pz for each z ∈ [0, 1].
We shall not consider however the cases that the underlying process X is either an
ascending or descending subordinator as the problem is degenerate for these cases.
Further, the case that X is spectrally positive is also excluded due to the overshoot
being zero. Our main result is stated as follows.

Theorem 1.2. Suppose that (Y, Pz) is a strictly stable process reflected in its supre-

mum as described above.

(i) Two sided jumps: For α ∈ (0, 2), ρ ∈ (1 − 1/α, 1/α), z ∈ [0, 1] and

y ∈ [0,∞],

Pz(Yσ[0,1] ∈ (1, 1 + y])

=
sin πα(1 − ρ)

π
zαρ(1 − z)α(1−ρ)

∫ y

0

t−α(1−ρ)(t + 1)−αρ(t + 1 − z)−1dt

+

∫ y

0
t−α(1−ρ)(t + 1)−αρ−1dt ·

∫ 1−z

0
tαρ−1(1 − t)α(1−ρ)−1dt

B(αρ, α(1 − ρ))
∫∞

0 t−α(1−ρ)(t + 1)−αρ−1dt
.

(ii) Spectrally negative: For α ∈ (1, 2), ρ = 1/α, z ∈ [0, 1] and y ∈ [0,∞],

Pz(Yσ[0,1] ∈ (1, 1 + y])

=
sin π(α − 1)

π
(1 − z)α−1z

∫ y

0

t−(α−1)(t + 1)−1(t + 1 − z)−1dt

+(1 − z)α−1

∫ y

0
t−(α−1)(t + 1)−2dt

∫∞

0 t−(α−1)(t + 1)−2dt
.

Before moving to the proof, let us make the following remarks in the special case
that z = 0 where the formulae tidy up somewhat. For both cases considered, one
sees that

P0(Yσ[0,1] ∈ (1, 1 + y]) =

∫ y

0 t−α(1−ρ)(t + 1)−αρ−1dt
∫∞

0 t−α(1−ρ)(t + 1)−αρ−1dt
.

(Note in case (ii) of the theorem that αρ = 1). An elementary change of variable
on both the left and right hand side now show that

P0((Yσ[0,1] )−1 ≤ x) =

∫ x

0
(1 − s)−α(1−ρ)sα−1ds

∫ 1

0
(1 − s)−α(1−ρ)sα−1ds

.

In other words, (Yσ[0,1])−1 has a Beta(1 − α(1 − ρ), α) distribution.

2. Proof

We give the proofs in steps.

Step 1. First apply the Strong Markov Property and note that

Pz(Yσ[0,1] ∈ (1, 1 + y]) = P1−z(Xτ [0,1] > 1)P0(Yσ[0,1] ∈ (1, 1 + y])

+P1−z(Xτ [0,1] ∈ [−y, 0)) (2.1)
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The two probabilities with respect to P1−z are given by Theorem 1.1. Hence the
crux of the proof is to establish an expression for P0(Yσ[0,1] ∈ (1, 1 + y]).

Step 2. Let {(t, εt) : t ≥ 0} be the (killed) Poisson point process of excursions.
Here the index t is measured in units of local time at the maximum, denoted by
the process {Ls : s ≥ 0}. Let L−1 the right inverse of L. If for t > 0 we have
L−1

t − L−1
t− > 0 then εt = {εt(s) : s ≤ ζt} where ζt > 0 is the duration (in real

time) of the excursion. See Bertoin (1996) for an account of excursion theory in
the context of Lévy processes. Further, under these circumstances, write εt for the

height of the excursion and let T
[0,1]
t = inf{s > 0 : εt(s) > 1}. We have

P0(Yσ[0,1] ∈ (1, 1 + y]) = E0

(

∑

g

1(suph<g εh≤1)1(εg>1,εg(T
[0,1]
g )∈(1,1+y])

)

where the indices g and h are taken over left end points of excursions. The com-
pensation formula now gives

P0(Yσ[0,1] ∈ (1, 1 + y]) =

E0

(
∫ ∞

0

1(suph<Ls
εh≤1)dLs

)

n(ε > 1, ε(T [0,1]) ∈ (1, 1 + y]))

where n is the excursion measure for X reflected in its maximum and ε, ε and T [0,1]

are the the analogues of εt, εt and T
[0,1]
t for the generic excursion. Continuing we

have,

P0(Yσ[0,1] ∈ (1, 1 + y]) =

∫ ∞

0

P0(sup
h<t

εh ≤ 1, t < L∞)dt

× n(ε(T [0,1]) ∈ (1, 1 + y])|ε > 1)n(ε > 1)

=

∫ ∞

0

e−n(ε>1)tdt · n(ε(T [0,1]) ∈ (1, 1 + y])|ε > 1)n(ε > 1)

= n(ε(T [0,1]) ∈ (1, 1 + y])|ε > 1). (2.2)

Step 3. Define the probability measure on the space of excursions, Q(·) = n(·|ε >
1) and for θ ∈ (0, 1], let Gθ = σ(ε(s) : s ≤ T [0,θ]) where T [0,θ] = inf{s > 0 : ε(s) >
θ}. Define the process

Mθ = Q(ε(T [0,1]) ∈ (1, 1 + y]|Gθ), =
n(ε(T [0,1]) ∈ (1, 1 + y], ε > 1|Gθ)

n(ε > 1|Gθ)
θ ∈ (0, 1],

and note that it is a martingale. Appealing to the Strong Markov Property for
excursions we see that

n(ε(T [0,1]) ∈ (1, 1 + y], ε > 1|Gθ) = P1−ε(T [0,θ])(Xτ [0,1] ∈ [−y, 0))

for θ ∈ (0, 1]. Similarly

n(ε > 1|Gθ) = P1−ε(T [0,θ])(Xτ [0,1] < 0)

for θ ∈ (0, 1]. In the previous two expressions, when 1 − ε(T [0,θ]) < 0, we interpret
the probabilities on the right hand sides in the literal sense. For example in the first
expression the probability is taken as equal to 1(ε(T [0,θ])∈[−y,0)) on {1−ε(T [0,θ]) < 0}.
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Now noting that M1 = 1(ε(T [0,1])∈(1,1+y]), Q-almost surely, it follows by the
conservation of martingale expectations that

Q(ε(T [0,1]) ∈ (1, 1 + y]) = lim
θ↓0

Q(Mθ) = lim
θ↓0

P1−ε(T [0,θ])(Xτ [0,1] ∈ [−y, 0))

P1−ε(T [0,θ])(Xτ [0,1] < 0)
. (2.3)

Step 4. For the final part, we need the following fact, ε(0+) := limθ↓0 ε(T [0,θ]) =
0. One may deduce from Millar (1977) that this is the case if and only if 0 is
regular for (−∞, 0). However, it is a well known fact that the latter regularity
holds for all stable processes which are not subordinators. (Indeed this follows
easily from Rogozin’s integral test for regularity, see Proposition VI.3.11 in Bertoin
(1996)). The proof is now completed by inserting the two sided exit formulae from
Rogozin’s Theorem into (2.3), taking limits to establish an expression for (2.2) and
then plugging this into (2.1). �

The proof also shows that for a general Lévy processes, provided one is in pos-
session of the overshoot distribution for the two sided exit problem and 0 is regular
for (−∞, 0), then one may establish the overshoot distribution for the reflected exit
problem explicitly. The only two cases known to the author however are those of a
spectrally negative processes, handled in Avram et al. (2004), and the other being
the case at hand.
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