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Abstract

We prove the law of large numbers for U–statistics whose underlying sequence of random
variables satisfies an absolute regularity condition (β–mixing condition) under suboptimal con-
ditions.

1 Introduction.

We consider the law of large numbers for U–statistics whose underlying sequence of random
variables satisfies a β–mixing condition. Let {Xn}∞n=1 be a sequence of random variables with
values in a measurable space (S,S). Given a kernel h, i.e. given a function h from Sm into
IR, symmetric in its arguments, the U–statistic with kernel h is defined by

(1.1) Un(h) :=
(n−m)!

n!

∑
1≤i1<···<im≤n

h(Xi1 , . . . , Xim).

We refer to Serfling (1980), Lee (1990), and Koroljuk and Borovskich (1994) for more in U–
statistics. For i.i.d.r.v.’s, assuming that E[|h(X1, . . . , Xm)|] < ∞, Hoeffding (1961; see also
Berk, 1966) proved the law of large numbers for U–statistics:

(1.2)
(n−m)!

n!

∑
1≤i1<···<im≤n

(h(Xi1 , . . . , Xim)− E[h(Xi1 , . . . , Xim)])→ 0 a.s.

Several authors have studied limit theorems for U–statistics under different dependence con-
ditions. Sen (1972), Yoshihara (1976) and Denker and Keller (1983) proved a central limit
theorem and a law of the iterated logarithm for U–statistics under different types of depen-
dence conditions. Qiying (1995) and Aaronson, Burton, Dehling, Gilat, Hill, and Weiss (1996)
studied the law of large numbers for U–statistics for stationary sequences of dependent r.v.’s.

13



14 Electronic Communications in Probability

Aaronson, Burton, Dehling, Gilat, Hill, and Weiss (1996) gave several sufficient conditions
for the law of large numbers over a ergodic stationary sequence of r.v.’s. It is shown in this
paper (Example 4.1) that even the weak law of large numbers for U–statistics is not true
just assuming finite first moment and ergodicity, that is the ergodic theorem is not true for
U–statistics. Thus further conditions must be imposed.
Qiying (1995) considered the law of large numbers under φ∗–mixing. But, there is a gap in
his proofs. In Equation (11), he claims that

∞∑
k=1

2−2k sup
m≥2

E|h(X1, Xm)|2I(|h(X1,Xm)|≤22k) ≤ A sup
m≥2

E|h(X1, Xm)|,

where A is an arbitrary constant. Qiying is using that there exist a universal constant A such
that for any sequence of r.v.’s {ξm},

∞∑
k=1

2−2k sup
m≥2

Eξ2
mI(|ξm|≤22k) ≤ A sup

m≥2
E|ξm|.

This claim is not true. Let us take ξm such that Pr(ξm = 22m) = 2−2m and Pr(ξm = 0) =
1− 2−2m. Then,

sup
m≥2

E|ξm| = 1

and
∞∑
k=1

2−2k sup
m≥2

Eξ2
mI(ξm≤22k) ≥

∞∑
k=1

2−2kEξ2
kI(ξk≤22k) =∞.

A similar comment applies to Equation (11) in Qiying (1995).

Instead of using φ∗–mixing, we use β–mixing. φ∗–mixing is one of the stronger mixing con-
ditions. The φ∗–mixing coefficient is bigger than the β–mixing. The dependence condition
we will consider is known as absolute regularity. Given a strictly stationary sequence {Xi}∞i=1

with values in a measurable space (S,S), let σl1 = σ(X1, . . . , Xl) and let σ∞l = σ(Xl, Xl+1, . . .),
the β–mixing sequence is defined by

(1.3) βk := 2−1 sup{
I∑
i=1

J∑
j=1

|Pr(Ai ∩Bj) − Pr(Ai) Pr(Bj)| : {Ai}Ii=1 is a partition in σl1

and {Bj}Jj=1 is a partition in σ∞k+l, l ≥ 1}.

We refer to Ibragimov and Linnik (1971) and Doukhan (1994) for more information in this
type of dependence condition.
We present the following theorem:

Theorem 1. Let {Xi}∞i=1 be a strictly stationary sequence of random variables with values
in a measurable space (S,S). Let h : Sm → IR be a symmetric function. Suppose that at least
one of the following conditions is satisfied:
(i) For some δ > 2, sup1≤i1 <···<im<∞E[|h(Xi1 , . . . , Xim)|δ] <∞ and βn → 0.

(ii) For some 0 < δ ≤ 1 and some r > 2δ−1, sup1≤i1 <···<im<∞E[|h(Xi1, . . . , Xim)|1+δ] < ∞
and βn = O((logn)−r)
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(iii) For some 0 < δ ≤ 1 and some r > 0,
sup1≤i1 <···<im<∞E[|h(Xi1, . . . , Xim)|(log+ |h(Xi1 , . . . , Xim)|)1+δ] <∞ and βn = O(n−r).
Then,

n−m
∑

1≤i1<···<im≤n
(h(Xi1 , . . . , Xim)− E[h(Xi1 , . . . , Xim)])→ 0 a.s.

Observe that the conditions in the previous theorem are very close to being optimal.

2 Proofs.

c will denote an arbitrary constant that may change from line to line. Given a r.v. Y , we define
‖Y ‖p = (E[|Y |])1/p, for and 1 ≤ p <∞; and we define ‖Y ‖∞ = inf{t > 0 : |Y | ≤ t a.s.}.
We need to recall some notation on U–statistics. We define

(2.1) πk,mh(x1, . . . , xk) = (δx1 − P ) · · · (δxk − P )Pm−kh,

where Q1 · · ·Qmh =
∫
· · ·
∫
h(x1, . . . , xm) dQ1(x1) · · ·dQm(xm). We say that a kernel h is

P–canonical if it is symmetric and

(2.2) E[h(x1, . . . , xm−1, Xm)] = 0 a.s.

It is known that

(2.3) Un(h) =
m∑
k=0

(
m

k

)
Un(πk,mh).

Previous inequality is known as the Hoeffding decomposition (Hoeffding, 1948, Section 5).
Observe that the Hoeffding decomposition is a decomposition in U–statistics of canonical
kernels (πk,mh is a canonical kernel).
The β–mixing condition allows to compare probabilities of the initial sequence with respect to
a sequence of r.v.’s with independent blocks. Explicitly, we have the following lemma:

Lemma 2. Let {Xj}∞j=1 be a stationary sequence of r.v.’s with values in a measurable space
(S,S). Let f be a measurable function on Sm. Let (m(i, j)) 1≤i≤k

1≤j≤ri
be integers such that

m(1, 1) < · · · < m(1, r1) < m(2, 1) < · · · < m(2, r2) < · · · < m(k, 1) < · · · < m(k, rk).

Let r =
∑k
i=1 ri. Let {ξj}rj=1 be a sequence of identically distributed r.v.’s with the distribution

of X1 such that

L(ξm(1,1), . . . , ξm(1,r1), ξm(2,1), . . . , ξm(2,r2), · · · , ξm(k,1), . . . , ξm(k,rk))

= L(Xm(1,1), . . . , Xm(1,r1))⊗ · · · ⊗ L(Xm(k,1), . . . , Xm(k,rk)).

Then,
(i)

|E[f(Xm(1,1), . . . , Xm(k,rk))]−E[f(ξm(1,1), . . . , ξm(k,rk))]| ≤ 2
k−1∑
i=1

β(m(i+1, 1)−m(i, ri))‖f‖∞.
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(ii) If 1 < p <∞,

|E[f(Xm(1,1), . . . , Xm(k,rk))]−E[f(ξm(1,1), . . . , ξm(k,rk))]|

≤ 4(
k−1∑
i=1

β(m(i + 1, 1)−m(i, ri)))
(p−1)/p

×max(‖f(Xm(1,1), . . . , Xm(k,rk))‖p, ‖f(ξm(1,1), . . . , ξm(k,rk))‖p).

Part (i) in previous lemma follows directly from the definition of β mixing (see the character-
ization of β–mixing on page 193 in Volkonskii and Rozanov, 1961) and induction (see Lemma
2 in Eberlein, 1984). Part (ii) follows directly from part (i) (see for example Lemma 2 in
Arcones, 1995).

The following lemma gives a bound on the second moment of a U–statistic over a degenerated
kernel.

Lemma 3. There is a universal constant c, depending only on m, such that for each
canonical kernel h and each p > 2,

E


 ∑

1≤i1<···<im≤n
h(Xi1 , . . . , Xim)

2
 ≤ cnmM2(1 +

n−1∑
j=1

jm−1β
(p−2)/p
j )

where
M := sup

1≤i1 <···<im<∞
(E[|h(Xi1 , . . . , Xim)|p]1/p.

Proof. We have that

E


 ∑

1≤i1<···<im≤n
h(Xi1 , . . . , Xim)

2


≤
∑

σ∈Γ(2m)

∑
1≤i1≤···≤i2m≤n

|E[h(Xiσ(1)
, . . . , Xiσ(m)

)h(Xiσ(m+1)
, . . . , Xiσ(2m)

)]|

where Γ(2m) is the collection of all permutations of 2m elements. Let j1 = i2 − i1, let
jl = min(i2l−1 − i2l−2, i2l − i2l−1) for 2 ≤ l ≤ m − 1, and let jm = i2m − i2m−1. If
j1 = max(j1, . . . , jm), we compare the initial sequence {X1, . . . , Xn} with the one having
the independent blocks {i1}, {i2, . . . , i2m} and the same block distribution. We claim that by
Lemma 2, we get that∑

1≤i1≤···≤i2m≤n
j1≥j2,...,jm

|E[h(Xiσ(1)
, . . . , Xiσ(m)

)h(Xiσ(m+1)
, . . . , Xiσ(2m)

)]|

≤ cnmM2(1 +
n−1∑
k=1

km−1β
(p−2)/p
k ).
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Observe that if i2 = i1 +k, i1 can take at most n different values. Assume that i3−i2 ≤ i4−i3,
then i3 − i2 ≤ k, so i3 can take at most k values and i4 can take at most n values. If
i4 − i3 ≤ i3 − i2, then i3 can take at most n values and i4 can take at most k values.
Proceeding in this way we obtain that the possible values for the variables i1 ≤ · · · ≤ i2m
(under the assumptions 1 ≤ i1 ≤ · · · ≤ i2m ≤ n and k = j1 ≥ j2, . . . , jm) is bounded by
nmkm−1.
If jl = max(j1, . . . , jm), for some 2 ≤ l ≤ m− 1, we compare the initial sequence with the one
with the independent blocks {i1, . . . , i2l−2}, {i2l−1} and {i2l, . . . , i2m}. A similar argument
applies to this case.
If jm = max(j1, . . . , jm), we compare the initial sequence with the one with the independent
blocks {i1, . . . , i2m−1} and {i2m}. 2

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. First, we consider the case (iii). We may assume that 0 < r < m. A
standard argument gives that it suffices to show that for each α > 1,

(2.4) n−mk
∑

1≤i1<···<im≤nk

h(Xi1 , . . . , Xim)→ E[h(Xi1 , . . . , Xim)] a.s.,

where nk = [αk]. Now, by the Hoeffding decomposition, it suffices to prove (2.4) for canonical
kernels. We are going to prove (2.4) by induction on m. The case m = 1 is the ergodic theorem
(see for example Theorem 6.21 in Breiman, 1992).
It is easy to see that it suffices to show that

n−mk

nk∑
im=nk−1+1

im−1∑
1≤i1<···<im−1

h(Xi1 , . . . , Xim)→ 0 a.s.

Take p > 2 and τ > 0 such that

(2.5) 2τ(p− 1) < r(p− 2).

Next we prove that

(2.6) n−mk

nk∑
im=nk−1+1

im−1∑
1≤i1<···<im−1

h(Xi1 , . . . , Xim)I|h(Xi1 ,...,Xim )|≥nτ
k
→ 0 a.s.

We have that

(2.7) E[
∞∑
k=1

n−mk

nk∑
im=nk−1+1

im−1∑
1≤i1<···<im−1

|h(Xi1 , . . . , Xim)|I|h(Xi1 ,...,Xim )|≥nτ
k
]

≤ c
∞∑
k=1

(lognτk)
−δ−1 <∞.

Therefore, (2.6) follows.
Thus, we must prove that

(2.8) n−mk

nk∑
im=nk−1+1

im−1∑
1≤i1<···<im−1

(h(Xi1 , . . . , Xim)I|h(Xi1 ,...,Xim)|<nτ
k
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−E[h(Xi1 , . . . , Xim)I|h(Xi1 ,...,Xim )|<nτ
k
]→ 0 a.s.

Using that
δx1 · · ·δxm − Pm

= (δx1 − P )Pm−1 + P (δx2 − P )Pm−2 + · · ·+ Pm−1(δxm − P )

+(δx1 − P )(δx2 − P )Pm−2 + · · ·+ (δx1 − P ) · · · (δxm − P ),

we get that (2.8) decomposes in sums of terms of the form

(2.9) n−mk

nk∑
im=nk−1+1

im−1∑
1≤i1<···<im−1

P j0(δxiα1
− P )P j1 · · · (δxiαl − P )P jlhI(|h| < nτk),

where 1 ≤ α1 < · · · < αl ≤ m, 1 ≤ l ≤ m, 0 ≤ j0, . . . , jl and l+ j0 + · · ·+ jl = m.
For 1 ≤ l ≤ m− 1, using that h is canonical,

P j0(δxiα1
− P )P j1 · · · (δxiαl − P )P j1hI(|h| < nτk)

= P j0(δxiα1
− P )P j1 · · · (δxiαl − P )P jlhI(|h| ≥ nτk).

Thus, (2.9) is bounded in absolute value by

n−mk
∑

1≤i1<···<im≤nk

P j0(δxiα1
+ P )P j1 · · · (δxiαl + P )P jl|h|I(|h| ≥ nτk).

Again, decomposing terms, we get that we have to deal with

n−mk
∑

1≤i1<···<im≤nk

P j0δxiα1
P j1 · · ·δxiαl P

jl|h|I(|h| ≥ nτk)

≤ cn−lk
∑

1≤i1<···<il≤nk

P j0δxi1P
j1 · · ·δxilP

jl |h|I(|h| ≥ nτk),

which goes to zero a.s. by the induction hypothesis.
To get the case l = m,

(2.10) n−mk

nk∑
im=nk−1+1

im−1∑
1≤i1<···<im−1

πm,m(hI(|h| < nτk)(Xi1 , . . . , Xim)→ 0 a.s.

By Lemma 3,

(2.11) E[(n−mk

nk∑
im=nk−1+1

im−1∑
1≤i1<···<im−1

πm,m(hI(|h| < nτk)(Xi1 , . . . , Xim))2]

≤ cn−mk (1 +

nk∑
j=1

jm−1β
(p−2)/p
j )( sup

i1<···<im
E[|h(Xi1, . . . , Xim)|pI(|h| < nτk)])

2/p

≤ cn−r(p−2)p−1+τ(p−1)2p−1

k ,

which by (2.5) implies (2.10).
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The proof in the case (ii) follows similarly, instead of truncating at nτk we truncate at k(1+ε)/δ,
where 2−1δr − 1 > ε > 0. We take p > 2 such that r > 2(p − 1 − δ)(1 + ε)δ−1(p − 2)−1. It is
easy to see that (2.7) and (2.11) hold.
In the case (iii), we truncate at nk and we take p = δ. It is easy to see that (2.11) is bounded
by

cn−mk (1 +

nk∑
j=1

jm−1β
(p−2)/p
j ),

which goes to zero. 2
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