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Dickey and Fuller proposed tests for the unit root hypotheses in a uni-variate time

series. Perron (1989) extended the t-ratio type unit-root tests so that they allow for a

break in the deterministic trend and/or in the intercept term. In practice, it seems not

easy to specify the break point correctly. Zivot and Andrews (1992) proposed a test

in which the break point is estimated by repeated calculations. Morimune and

Nakagawa (1999) studied the effect of a misspecified break point on the Perron tests,

and the accuracy of the asymptotic expression is examined under various specifica-

tions of the error. This paper proposes to set an interval that possibly covers a break

point in the Perron tests. The χ2 type test statistic which is termed Ψ and defined by

the equation (9) is calculated for all possible sub-intervals, and the mean of all Ψ

values is used as a test statistic. The critical values of the mean-Ψ test are calculated

by simulation.
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1. Introduction

Dickey and Fuller proposed the tests for unit root hypotheses in a uni-variate

time series. Perron (1989) extended the t-ratio type unit-root tests so that they

allow for a break in the deterministic trend and/or in the intercept term. In practice,

it seems difficult to specify the break point correctly. Zivot and Andrews (1992)

proposed a test in which the break point is statistically determined but their test

does not necessarily lead to an empirically satisfactory break point. Morimune and

Nakagawa (1999) studied the effect of a misspecified break point on the Perron

tests, and the accuracy of the asymptotic expression is examined under various

specifications of the error. This paper proposes to set a break interval that possibly

covers a break point in the Perron tests. It is difficult to specify a break point but
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easier to set a break interval in empirical studies. Tests lose power by setting break

intervals, but it helps to avoid misspecifying the break point. The unit root test is

less susceptible to the choice of a particular break point.

Test is applied to the US macro series. In this application, the break intervals

used in our study is varied from the shortest 1930–1930 to the longest 1930–1941

interval in most cases. The χ2 type test statistic Ψ defined by the equation (9) is

calculated for all possible sub-intervals, and the mean of all Ψ values is chosen as

a test statistic. Simulation under the null hypothesis is used to find the critical

values of the mean-Ψ test.

2. Model

The alternative regression of the test by Perron (1989) for the unit root which

allows for a break in the deterministic trend as well as in the intercept term is

y
t
= ∑

i=1,2
(α+

i
+ β+

i
t)DU

it
+ γD

B+1,t
+ u

t
, u

t
= (1 + φ)u

t–1
+ ε

t
(1)

where ε
t
 is the white noise with variance σ2. This regression equation is called the

C model by Perron. The A and B tests by Perron include the shifting intercept but

the common trend terms or the shifting intercept and trend terms where the latter is

continuous at the break point, respectively. They are formulated in Appendix A.

Extensions of our analyses to A and B tests are straightforward1. The null hypothe-

sis of the test is H
0
: φ = 0. The sub-interval dummy variables DU

1t
 and DU

2t
 are 1

for 1 ≤ t ≤ B and B + 2 ≤ t ≤ T, and 0 otherwise, respectively, D
B+1,t

 is a shock

dummy variable which is 1 when t is at the break point B + 1, and 0 otherwise.

This shock dummy variable has an effect of jumping the observation at the break

point in the estimation. If the Cochrane-Orcutt transformation is applied to the

equation (1), it is recast as

∆y
t
= φy

t–1
+ ∑

i=1,2
(α

i
+ β+

i
φt)DU

it
+ γD

B+1,t
+ ε

t
. (2)

In this equation, α
i
 is newly defined. The Dickey-Fuller type t-test is derived as the

t-ratio of the φ coefficient on y
t–1

 in this regression equation neglecting the

nonlinear constraints on the trend coefficients. Lack of the shock dummy variable

causes inconsistency of the test. See Morimune and Nakagawa (1999, 2001).

Using the shock dummy variables to jump observations in the break interval (B,

B + m) that is m consecutive points after B, the regression equation under the alter-

 1 Estimating (1) by OLS and calculating residuals û
t
, the test statistic is the t-ratio of the φ coefficient in

the regression ∆û
t
=φû

t−1
+ γD

B+1,t
+ error. This approach to the unit root test is found in Schmidt and

Phillips (1992), Oya and Toda (1995), and Morimune and Nakagawa (2001). The F-ratio type test

denoted Ψ does not follow from this formulation. (Once φ is estimated, α+ and β+ coefficients can be re-

estimated using φ+. This leads to the nonlinear estimation of φ and the resulting test statistics may have

more complicated properties than that of the t-ratio of the φ coefficient in (2)).
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native hypothesis of the test is specified as

∆y
t
= φy

t–1
+ ∑

i=1,2
(α

i
+ β

i
t)DU

it
+ ∑

i=1,m
γ

i
D

B+i,t
+ ε

t
. t = 2, ..., T (3)

In this equation, β
i
 is newly defined. Each of the shock dummy variable D

B+i,t
 is 1

when t is B + i and 0 otherwise, i = 1, 2, ..., m. These m observations are not used

in estimating coefficients such as φ, α, and β. This alternative modeling may

reduce the risk of specifying an erroneous break point when the break point is not

known.

The null hypothesis φ = 0 automatically implies β = 0 as can be seen by the

equation (2). The null hypothesis leads to the regression equation with a break in

the intercept term

∆y
t
= ∑

i=1,2
α

i
DU

it
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i=1,m
, γ

i
D

B+i,t
+ ε

t
.

However, the null regression used in Section 5 is

∆y
t
= α + ∑

i=1,m
, γ

i
D

B+i,t
+ ε

t
. t = 2, ..., T (4)

by the same reason as that found by Zivot and Andrews (1992). The equation (4) is

nested by the alternative regression (3). The break interval (B, B + m’) under the

null hypothesis needs not be the same as that under the alternative hypothesis. It

can be shorter under the alternative hypothesis. However, m’ is set equal to m in all

the tests below, for simplicity.

3. Outlier Models

The regression equation (3) is augmented as

∆y
t
= φy

t–1
+ ∑

i=1,2
(α

i
+ β

i
t)DU

it
+ ∑

i=1,m
γ

i
D

B+i,t
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k=1,s
θ

k
∆y

t–k
+ ε

t
, (5)

t = S + 2, ..., T. This augmented equation can be interpreted as outlier models by

which the sudden break point is transformed into gradual changes. Assume A(L) to

be a finite order polynomial equation of the lag operator so that A(0) = 0, and the

zeroes of the equation 1 − A(L) = 0 lie outside the unit circle. The same condition

apply to other polynomial equations such as B(L) and C(L) below. Perron (1989)

defines an additive outlier model as

A(L){y
t
− α

1
− β

1
t − (α

2
+ β

2
t)DU*

2t
} = B(L)ε

t
, (6)

where the regression is written in terms of the common intercept, trend terms, and

the outlier terms, and DU*

2t
 is 1 for B + 1 ≤ t ≤ T since shock dummy is not

included in the equation. Equation (5) follows from dividing both sides of (6) by

B(L), and expanding A(L)/B(L) as {∆ − φL − ∑
i=1,s

θ
i
Li∆}. ((∆ − ∑

i=1,s
θ

i
Li∆)(α

2
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+ β
2
t)DU*

2t
= ∑

i=0,s
θ

i
D

B+1,t–i
+ αDU

2t
 by using the same notations for newly

defined coefficients freely, and the properties of shock dummy variable such that

D
B+1,t–S

= D
B+1+S,t

). Similarly, since u
t
= ε

t
/(1 − φL) by equation (1), an innovative

outlier model with autoregressive error is

(1 − φL)A(L)(y
t
− α

1
− β

1
t) = (1 − φL)B(L)(α

2
+ β

2
t)DU*

2t
+ C(L)ε

t
. (7)

The outlier part can be combined together with the error term if (1−φL)B(L) and

C(L) are the same as in Perron (1989). This is in line with Fox (1972). Equation (5)

follows from dividing both sides of the equation by C(L), and expanding A(L)/

C(L) and B(L)/C(L) as before. The left hand side leads to an augmented auto-

regressive equation and a step function, and the right hand side leads to a step

function and shock dummy variables.

4. Test Statistics

The number of observations in the first and the second intervals are B and T −
B − m, respectively, since the break interval includes m observations. The t-ratio

of the φ coefficient in the equation (3) is a simple extension of the  test statistic

by Dickey and Fuller (1981). Denote this t-ratio  again, the weak convergence

under the null hypothesis is given by

(8)

where λ
i
, i = 1, 2, are the break ratios of the two intervals B/(T − m) and (T − B −

m)/(T − m), respectively, the sum of which is one. The demeaned and detrended

Brownian motions are 
i
(r) = B

i
(r) −

i
(s)ds − 12(r − )

i
(s)(s − )ds, i = 1, 2

defining the mutually independent standard Brownian motions B
i
(r). The number

of observations m in the break interval can increase in this asymptotic analysis. B

and (T − B − m) must increase so that B/(T − m) and (T − B − m)/(T − m) con-

verge to fixed values. The  test is consistent.

The χ2 type test Ψ is also used for testing the unit root. The sum of the squared

residuals denoted RSS hereafter is calculated under the null as well as the alterna-

tive regression equation (4) and (3), respectively. Ψ is defined as

Ψ = . (9)

The distribution of Ψ under the null hypothesis is calculated by Perron (1989) and

Perron and Vogelsang (1993). It is well known that the asymptotic distributions of

 and Ψ tests under the null hypothesis are not affected by augmenting the regres-

sion equations to higher order terms.
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5. Hansen Test

Since the length of break interval m is unknown, we calculate the test statistic

under the assumption that the break interval is a sub-interval (B, B + k), k = 1, 2,

..., m, of the maximum break interval (B, B + m). In the case of Ψ test, Ψ
k
 in which

a break interval is taken as the sub-intervals (B, B + k) is calculated for each k,

k = 1, 2, ..., m, and denoted {Ψ
1
, Ψ

2
, ..., Ψ

m
}. The minimum, mean, median, and

maximum of m values {Ψ
1
, Ψ

2
, ..., Ψ

m
} with a priori given maximum value of m

are used as test statistics. Similarly,  test statistic is calculated for various

subintervals, and the minimum, mean, median, and maximum of m squared values

of  are used as the test statistics. Since minimum, mean, median, and maximum

lead to similar results, the mean test statistic is used in the next section (Hansen

(1996) and Zivot and Andrews (1992)).

Even if the break point is not in the interval (B, B + k) for some values of k, the

statistic Ψ
k
 does not diverge under the null model since only the shock dummy

variables are allowed under the null model. Misspecification of the break point

does not affect the asymptotic distribution (Montanes (1997)). This ensures that

the mean Ψ
k
 converges in distribution as the number of observations diverges.

Simulations were used to calculate the critical values of these tests. Since results

followed from various test statistics were similar, the mean statistic is used in the

empirical studies.

The null model satisfies the following conditions. (1) The break point lies in the

interval (B, B + m). (2) Only shock dummy variables reflect the break interval. (3)

Deviations from the mean function follow a unit root process. If either of these

conditions is violated, the null model is rejected, and the alternative model is

accepted.

6. US Macro Series

The tests are applied to the US macro series. The lag orders of the augmented

regressions are chosen by the same rule as Perron. The highest order term is kept in

the regression when the t-ratio is larger than 1.6, but removed when it is less than

1.6 in most series. Choosing twelve for m a priori, the Ψ test statistic is calculated

for the twelve break intervals starting from the shortest 1930–1930 break point to

the longest 1930–1941 break interval. All results are summarized in Table 1.

6.1. Nominal GNP (1909–1988)

The A-model is used for this series as Perron did where the trend term is

common but intercept terms are different in the sub-intervals. Figures 1.1 shows

the natural log of the original series and the first difference. Ψ and the squared 

curves are plotted in Figure 1.2. These two curves move closely. Ψ is almost

significant by the 1% test in the 1930–1930 break point test, but is insignificant by

the 10% test when the break interval is longer than two years. Since the nominal

GNP returned to the 1930 level in 1938, it may be fair to say that the unit root

τ̂τ

τ̂τ

τ̂τ
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hypothesis cannot be rejected by the Ψ test once the break interval is taken into

account. (Mean-Ψ is 11.2, and the 10% value is 12.6.) This diagnosis coincides

with the standard DF test without a break. (The t-ratio of φ is −1.5.) The A-model

and the DF regression model are different only in the break in the intercept term.

The 1930–1930 break point test is solely giving the trend stationary result.

6.2. Real Wage (1900–1988)

The C-model defined by equation (3) is used in this series. The lag order for this

series is selected by the same rule as the nominal GDP, but the selection started

from sixth term instead of twelfth term since longer lag orders resulted in positive

φ values. Time series is explosive if φ is positive. Figures 2.1 shows the results on

the natural log and the first difference. Ψ and the squared  are plotted in Figure

2.2. The squared  values show that the null hypothesis of unit root cannot be

rejected by the break interval as well as the 1930–1930 break point test. The Ψ
values are insignificant for most break intervals including the 1930–1930 break

point test. Then, the null hypothesis of the unit root cannot be rejected by this test

either. (Mean-Ψ is 10.9, and the 10% value is 14.3.) This result is the same by

the standard DF test without a break. (The t-ratio of φ is −1.7.)

Figure 1.1 Natural log of nominal GNP and the first difference.

Figure 1.2 Interval Ψ and squared τ ratios (A model). From the top, 1%, 5%, 10% critical values of Ψ

test statistic, Ψ, τ2 and DF stats are plotted. DF is the squared Dickey-Fuller value, and P is the Perron

value.

τ̂τ
τ̂τ
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6.3. Real GNP (1909–1988)

The A-model is used where the trend term is common but intercept terms are

different in the sub-intervals. The differences between Ψ and  values are small.

The null hypothesis is rejected by the 5% test up to 1930–1937 interval, and even

by the 1% test for the longer intervals. The  test gives the similar results as the Ψ
test. The 1930–1930 break point test is also significant. This series is trend station-

ary. (Mean-Ψ is 21.9, and the 1% value is 18.8.) Similarly, the standard DF test

without a break is marginally significant by the 5% test. (The t-ratio of φ is −3.5.)

6.4. GNP Deflator (1989–1988)

The A-model is used where the trend term is common but intercept terms are

different in the sub-intervals. Ψ curve is flat. Results of the break point and break

interval tests in this series are all insignificant. (Mean-Ψ is 9.7, and the 10% value

is 12.6.) This result is the same as the DF test without a break. (The t-ratio of φ is

−1.6.) There remains the inconsistency among the nominal GNP, real GNP and the

GNP deflator series. The real GNP is marginally significant but others are insignif-

icant. The DF test without a break also brings about the same inconsistency.

Figure 2.1 Natural log of real wage and the first difference.

Figure 2.2 Interval Ψ and τ2 ratios (C model).

τ̂τ

τ̂τ



48 K. Morimune and M. Nakagawa

Figure 3.1 Natural log of real GNP and the first difference.

Figure 3.2 Interval Ψ and τ2 ratios (A model).

Figure 4.1 Natural log of GNP deflator and the first difference.

Figure 4.2 Interval Ψ and τ2 ratios (A model).
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6.5. Real GNP per capita (1909–1988)

The A-model is used where the trend term is common but intercept terms are

different in the sub-intervals. This series is trend stationary once a break interval

longer than two is taken into account. (Mean-Ψ is 23.3, and the 1% value is 18.8.)

This is opposite from the 1930–1930 break point test which is insignificant by the

10% test. Ψ and  values are very close. Traces of the test statistics are similar to

those in the Figure 3 of the real GNP. Since the t-ratio of φ in the DF test is −3.5

which is marginally significant by the 5% test, only the 1930–1930 break point and

the 1930–1931 break interval tests lead to the insignificant result. This series is

trend stationary.

6.6. Nominal Wage (1900–1988)

This series is trend stationary by the 5% test if the 1930–1930 break point test is

used. It is non-stationary if the break interval is between two to four years. It is

trend stationary by the 5% test if the break interval is longer than or equal to five

years. (Mean-Ψ is 19.3, and the 1% value is 18.6.) This series is trend stationary.

The Ψ ratio is mostly accounted by the  value, and both test statistics give the

same results. It seems adequate to take the break interval longer than four years by

checking the Figure 6.1. The DF test without a break is insignificant. (The t-ratio

of φ is −1.1.)

Figure 5.1 Natural log of real GNP per capita, and the first difference.

Figure 5.2 Interval Ψ and τ2 ratios (A model).

τ̂τ

τ̂τ
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6.7. Summary Table

Diagnoses of all tests are summarized in Table 1. The DF test without a break

and the 1930–1930 break point test give different results only in five series.

Among these five series, the break interval test supports the DF test in the nominal

GNP and the GNP per capita. The break interval test supports the break point test

in the nominal wage, S & P 500 and the velocity of money.

7. Conclusion

It is reasonable to specify a break interval instead of a break point since the test

has a higher probability of including the true break point in the interval. This is

also natural since, for example, the exact break point of the Japanese economy

caused by the oil shock in 1973 is difficult to specify but an interval of a few years

is easy to set. Setting a break interval does not guarantee avoiding a misspecifica-

tion but it is more likely to avoid one. If the true break point is in a break interval,

bias of the test is avoided even though the power of the test is less than that of a

correct break point test. The break point test with an erroneously determined break

point is inconsistent.

Figure 6.1 Natural log of nominal wage and the first difference.

Figure 6.2 Interval Ψ and τ2 ratios (A model).
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A formal procedure to select a correct interval is not proposed by this paper. We

have proposed to calculate Ψ for plausible sub-intervals, and to use the mean of Ψ
values as the test statistic. The same procedure applies to . A typical example is

found in the nominal GNP series where the break interval and the break point tests

show opposite results. It is concluded that the discontinuous trend unit root test is

susceptible to the choice of a break interval.

The Zivot and Andrews (1992) test avoids specifying the break point prior to the

test, and the break point is statistically determined by the first round test. However,

there is no guarantee that the chosen break point is correctly specified. It seems

appropriate to set a break interval so that it covers a break point selected by the

Zivot and Andrew test. It is also shown in the Appendix C that the Ψ test statistic

is a sum of the ( )2 statistic and the nuisance term.

Appendix A: Model A, B and C

The Model A which has an intercept break but no trend break can be formulated

by

y
t
= ∑

i=1,2
α+

i
DU

it
+ β+t + γD

B+1,t
+ u

t
, u

t
= (1 + φ)u

t–1
+ ε

t
. (A1)

Table 1 Summary of tests

DF Interval Perron Mean-Ψ CV Model

Nominal GNP DS DS TS (1%)* 11.2 14.1 (10%) A

Real Wages DS DS DS 10.9 17.6 (10%) C

Real GNP TS (5%) TS (1%) TS (5%) 21.9 21.2  (1%) A

GNP Deflator DS DS DS 9.7 13.5 (10%) A

GNP per capita TS (5%) TS (1%) DS* 23.3 21.2  (1%) A

Nominal Wages DS TS (5%)* TS (5%)* 19.3 20.4 (1%) A

S & P500 DS TS (5%)* TS (1%)* 24.8 21.0 (5%) C

Velocity DS TS (1%)* TS (1%)* 26.4 20.1 (1%) A

Real Rate of Interest DS DS DS 14.2 13.7 (10%) A

CPI DS DS DS 11.2 13.5 (10%) A

Employment TS (5%) TS (5%) TS (1%) 19.0 15.6 (5%) A

Money Stock DS DS DS 8.5 13.5 (10%) A

Unemployment Rate TS (1%) TS (1%) TS (5%) 19.6 16.7 (1%) No Trend

Industrial Product DS DS DS 10.0 13.5 (10%) A

DS and TS impliy difference stationarity and trend stationarity, respectively.

* marks series in which results of the Perron and DF tests are inconsistent, and CV implies

critical values.

τ̂τ

τ̂τ
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The Cochrane-Orcutt transformation of (A1) yields

∆y
t
= φy

t–1
+ βt + ∑

i=1,2
α

i
DU

it
+ γD

B+1,t
+ ε

t
. (A2)

The Model B has only a kinked trend break

y
t
= α + β+

1
t + (β+

2
− β+

1
)(t − B)DU

2t
+ γD

B+1,t
+ u

t
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t
= (1 + φ)u

t–1
+ ε

t
(A3)

and two trends are continuous at B. Model B can be transformed as

∆y
t
= φy

t–1
+ α

1
+ β

1
t + α

2
DU

2t
+ β

2
(t − B)DU

2t
+ γD

B+1,t
+ ε

t
. (A4)

If the model is with a break interval (B, B + m), it is necessary to include the m

shock dummy variables as the equation 3. The Model C has both a trend and an

intercept break which is formulated by (1).

Appendix B: The weak convergence of the t statistic

The regression model for the Dickey-Fuller type test is the equation 3. Applying

the orthogonal transformation, (3) is

∆y
t
= φy+
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+ ∑
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where the mean of y
t–1

 and trend in the first interval are y 4+ 
1
≡ ∑
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y
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/(B − 1) and

t 4+
1
≡ (B + 2)/2, respectively; the regression coefficient of y

t–1
 on the trend in the first
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1
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2
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2
, and β ,

2
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in the second interval; the residual series from the regression of y
t–1

 on all other

explanatory variables in (3) is
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and, finally, α
i

**, β
i

**, γ+

i
 are defined so that the equality holds. Since the explanatory

variables are orthogonal, the estimate of φ is

φ , = . (B3)

The t statistic of φ is

τ
τ

= . (B4)

The t-ratio of the φ coefficient is a simple extension of the  test statistic by
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Dickey and Fuller (1981). Jumping observations over the break interval (B,

B + m), the t-ratio is defined as

(B5)

The arrow implies the weak convergence under the null hypothesis, λs are the

break ratio of the two intervals the sum of which is one, 2 is the mean of the

squared residuals calculated under the alternative regression, and 
 i
(r), i = 1, 2,

are the demeaned and detrended Brownian motions. It is easy to prove that  test

is consistent. This formulation of the equation (B5) suggests other tests. For exam-

ple, the t-ratio of β
i
 coefficient in (3) is an extension of the  test statistic by

Dickey and Fuller.

Appendix C: Orthogonal Decomposition of Ψ

The F-ratio type test Ψ is also used for testing the unit root in the augmented

regression model. The regression equation includes lagged differenced terms so

that

∆y
t
= φy

t–1
+ ∑

i=1,2
[α

i
+ β

i
(t − t 4

i
)]DU

it
+ ∑

i=1,m
γ

i
D

it
+ ∑

k=1,L
θ

k
∆y

t–k
+ ε

t
, t = L + 2,...,T

(C1)

and the null regression is

∆y
t
= ∑

i=1,2
α

i
DU

it
+ ∑

i=1,m
γ

i
D

it
+ ∑

k=1,L
θ

k
∆y

t–k
+ ε

t
, t = L + 2,...,T (C2)

The regression equation (C2) is transformed as

∆y
t
= φy*

t–1
+ ∑

i=1,2
β

i

** t
i

*+ ∑
i=1,2

α
i

**DU
it

+ ∑
i=1,m

γ
i
D

it
+ ∑

k=1,L
θ

k

*∆y
t–k

+ ε
t
, (C3)

t = L + 2, ..., T, where y*

t–1
 is the residual from regressing y

t–1
 on constant dummy

variables, dummy trend variables, and also on all the lagged differenced variables;

t
1

* and t
2

* are the residuals from regressing (t − t 44
1
)DU

lt
 and (t − t 44

2
)DU

2t
 on all lagged

differenced variables, respectively. Defining Q as the matrix of the whole observa-

tions on the lagged variables, (T − 1 − m − L) × 2 matrix T* is defined as

T* = (t
1

*,t
2

*) = {I − Q(Q'Q)–1Q'} . (C4)

The regression coefficients in (C3) are adjusted according to these transformations

of variables, but the φ coefficient is untouched. Observations in the break interval

are not used in these calculations of residuals. The t-ratio on φ is denoted . The

F-ratio type statistic is decomposed as

τ̂τ ττ
λi B̃i r( ) B̃i r( )d

0

1

∫i 1 2,=∑

λi

2
B̃i r( )2

rd
0

1

∫i 1 2,=∑
-----------------------------------------------------≡⇒

σ̂
B̃

τ̂τ

τ̂βτ

t1 t1– 0

0 t2 t2– 
 
 
 

τ̂τ
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Ψ = = ( )2 + τ
t
⇒ (τ

τ
)2 + χ2(2) (C5)

where

τ
t
= ∆y'T*(T*'T*)–1T*'∆y. (C6)

τ
t
 is the F-ratio statistic associated with β

1

** and β
2

** coefficients. The arrow implies

the weak convergence again under the null hypothesis. τ
t
 is the χ2 random variable

with two degrees of freedom.

The difference between the two RSS is decomposed into the sum of two ortho-

gonal terms. Implication of each term in this decomposition is of interest. The first

term is the ( )2 test statistic. The second term does not affect the power of the test.

This is proven by replacing ∆y for a vector of ε
t
 under the null, and for ∆ε

t
 under

the alternative hypotheses since a constant term is orthogonal to T*. Since y
t
 is a

stationary process with trend, ∆y
t
 is a constant plus a process of ∆ε

t
 under the alter-

native hypothesis. Under the null hypothesis, ∆y
t
 is a constant plus ε

t
. This decom-

position implies that τ
t
 is a nuisance for testing the unit root.

In the case of the equations (4) and (3), τ
t
 is decomposed as the sum τ

t1
+ τ

t2

where

τ
t1

= , τ
t2

= , (C7)

respectively, which are the squared t-ratios of β
1

** and β
2

** coefficients. Two extra

terms are the correlation between ∆y and the trend in each interval, in short. These

terms do not reflect the violations from the null hypothesis. The asymptotic distri-

bution is derived by replacing ∆y
t
 for ε

t
 under the null hypothesis. Under the alter-

native hypothesis, ∆y
t
 is replaced by ∆ε

t
, in short. Then a large Ψ value does not

necessarily imply a large  value. It can be resulted from a high correlation

between ∆y and the trend in either or both of the two sub-intervals.

If a model is misspecified, and ∆y
t
 is a trend plus ε

t
 under the null hypothesis,

then τ
t
 term diverges to infinity even though ( )2 converges to zero as the sample

size increases to the infinity ( 2 = O(n2), ∑
t=2,B

∆y
t
(t − t 4

1
) = O(n3), ∑

t=2,B
(t − t 4

1
)2

= O(n3), ∑
t=2,B

∆y
t
y+

t–1
= O(n4), ∑

t=2,B
(y+

t–1
)2 = O(n5)).
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