杨小秋,施小斌,许鹤华等.双探针型海底热流计的结构优化.地球物理学报,2009,52(5):1280~1288,DOI:10.3969/j.issn. 0001-5733.2009.05.017

Yang X Q, Shi X B, Xu H H, et al. Optimizing probe structure for dual-probe seafloor heat flow meter. *Chinese J*. *Geophys*. (in Chinese), 2009, **52**(5):1280~1288, DOI:10.3969/j.issn.0001-5733.2009.05.017

双探针型海底热流计的结构优化

杨小秋1,2,施小斌1,许鹤华1,徐 行3,李官保4,郭兴伟5,罗贤虎3

1 中国科学院边缘海地质重点实验室,南海海洋研究所,广州 510301

2 中国科学院研究生院,北京 100049

3 广州海洋地质调查局,广州 510760

4 国家海洋局第一海洋研究所,青岛 266061

5 青岛海洋地质研究所,青岛 266071

摘 要 本文在现有海底热流探针制作技术条件下,首先建立了脉冲式双探针海底测量单元的有限元数值模型, 模拟获得多组参数下的温度-时间数据,作为"实测"数据,再用脉冲加热有限长线热源(PFLS)模型求解待测介质热 导率及其相对误差上限($RE_{\lambda-UL}$),并以 $RE_{\lambda-UL}$ 最小为原则,对双探针热流计的结构进行优化.结果表明:(1)在不 同探针脉冲强度(q)、温度测量误差(ΔT_m)和探针长度(L)组合下,都存在最佳探针间距(Best_r),使得 $RE_{\lambda-UL}$ 降到 最低;(2)随着q增大或 ΔT_m 减小,Best_r逐渐增大;(3)当q、 ΔT_m 及探针半径(a)都给定时,Best_r与探针长度(L) 呈线性正相关;(4)当a=1.0 mm,且q、 ΔT_m 分别取为628.0~1100.0 J·m⁻¹、0.5~1.0 mK,若L在20.0~42.0 mm 之间时,则Best_r在18.0~30.0 mm之间,此时介质热导率相对误差上限可控制在5.5%以内,同时测量温度可在 6 min内达到最大值,即脉冲加热开始后,温度测量只需约7 min,便可满足介质热导率的求解,这比目前常用的 Lister型热流计所需海底测量时间缩短 8 min 左右.

关键词 双探针型海底热流计,结构优化,双探针脉冲法(DPHP),脉冲加热有限长线热源(PFLS)模型,有限元数值模拟

DOI:10.3969/j.issn.0001-5733.2009.05.017 中图分类号 P743,TK521 收稿日期 2008-09-05,2009-04-16 收修定稿

Optimizing probe structure for dual-probe seafloor heat flow meter

YANG Xiao-Qiu^{1,2}, SHI Xiao-Bin¹, XU He-Hua¹, XU Xing³,

LI Guan-Bao⁴, GUO Xing-Wei⁵, LUO Xian-Hu³

1 CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

2 Graduate University, Chinese Academy of Sciences, Beijing 100049, China

3 Guangzhou Marine Geological Survey, Guangzhou 510760, China

4 First Institute of Oceanography, State Oceanography Administration, Qingdao 266061, China

5 Qingdao Institute of Marine Geology, Qingdao 266071, China

Abstract This paper aims to optimize the probe structure for dual-probe seafloor heat flow meter. Firstly, with a constructed finite element model for seafloor pulsing dual-probe, a series of temperature-time data, which are used as the "observed" data, can be obtained by giving different probe structures and thermal properties. Then, we calculated medium thermal

基金项目 国家高技术研究发展计划(863 计划)项目(2006AA09A203)、国家重点基础研究发展 973 计划项目(2007CB41170104)、国家高技 术研究发展计划(863 计划)项目(2008AA09Z306)和国土资源部海洋油气资源与环境地质重点实验室基金项目(MRE200804)资助.

作者简介 杨小秋,男,1981年生,中国科学院南海海洋研究所博士研究生,主要从事地热学和构造应力场模拟研究. E-mail:yxq2081@scsio.ac.cn

conductivity and its corresponding maximum relative error $(RE_{\lambda-UL})$ by using Pulsed Finite Line Source (PFLS) model, and optimize the probe structure in which $RE_{\lambda-UL}$ is minimized. Finally, we optimized dual-probe structure with the now available manufacture technique of seafloor heat flow probe. Our results show that: (1) under each distinct combination of probe heat pulse strength (q), temperature measurement error (ΔT_m) and probe length (L), there must be a best probe spacing (Best_r), at that position, $RE_{\lambda-UL}$ is least; (2) Best_r can be accordingly increased with q increasing or ΔT_m decreasing; (3) when $q, \Delta T_m$ and probe radius (a) are given, there is a significant linear positive correlation between Best_r and L; (4) when a is 1.0 mm, q is from 628.0~ 1100.0 J \cdot m⁻¹, ΔT_m is from 0.5 mK to 1.0 mK, and L is from 20.0 mm to 42.0 mm, Best_r ranges from 18.0 mm to 30.0 mm. In this case, the maximum relative error in medium thermal conductivity is within 5.5%, meanwhile, it reaches the maximum measurement temperature within 6 minutes, which means that the temperature measurement just needs about 7 minutes to calculate medium thermal conductivity after the beginning of pulse heating, which is about 8 minutes shorter than that of the Lister-type heat flow meter.

Keywords Dual-probe seafloor heat flow meter, Structure optimization, Dual-probe heat pulse (DPHP) method, Pulsed Finite Line Source (PFLS) model, Finite element numerical modeling

1 引 言

海底热流探测是很重要的地球物理调查项目之 一,对地球动力学基础研究和包括天然气水合物在 内的油气资源评价都具有重要意义. 探针式热流计 是获取深水区热流的主要手段,而原位测量技术是 海底热流探测技术的发展方向.现今广泛使用的海 底热流探针属于单探针类,即热源的主动或被动激 发与温度的测量由同一探针完成.这类探针又可以 分为 Ewing 型和 Lister 型两类. Ewing 型探针^[1~5] 由多个微型自容式温度传感器按不同角度和一定间 距外挂固定在重力采样管或钢矛上,通过测量传感 器所处的环境温度获得该站位的地温梯度.Lister 型探针[6~11]由一根细管和一根加强钢杆构成,细管 中安装加热丝,同时等间距排列多个温度传感器,这 样不仅可测传感器所处的环境温度,而且可通过脉 冲激发加热后的温度衰减记录求得原位热导率.前 者所需的海上作业时间较短,但热流计算所需的沉 积物热导率需要取样后在室内测量.后者虽可求得 原位热导率,但要求脉冲加热后探针在沉积物中停 留较长的时间(约15 min),增加了海上作业的风险 性.为了缩短海底测量时间、降低海上作业风险,同 时又能获得原位地温梯度和热导率,李官保等[12,13] 创新地提出并开始着手制作双探针型海底热流计.

双探针型海底热流计也是由多个测量单元组成,每个测量单元的热源激发与温度测量分别由两

根平行且保持一定间距的细探针完成,其中一根为 加热探针,内部装有加热丝;另一根为温度记录探 针,内部装有温度传感器.其地温梯度的测量与 Ewing 型探针类似;同时,根据其工作原理,利用热 脉冲激发后温度探针记录到的最大温度及其对应时 间,就可以求得介质原位热导率等热物性参数[14~18]. 这样可以大大缩短探针在海底的工测量时间.但是, 介质热物性求解误差主要来源于模型误差和测量误 差,也即与所选用的简化模型和探针结构参数(探针 半径、长度及间距)、脉冲加热时间、功率及温度测量 分辨率等密切相关^[15~20]. Ham 等^[20] 曾为探讨双探 针脉冲法(DPHP: dual-probe heat pulse method) 中各因素是如何影响土壤热物性的测量而进行过定 性分析,但他们的分析仅基于瞬间加热无限长线热 源(IILS: instantaneous infinite line source)和脉冲 加热无限长线热源(PILS: pulsed infinite line source) 两简化模型,目受实际实验条件限制,只做了少数几 组实验.而我们[21]已基于双探针海底测量单元的有 限元数值模型,对各因素在 DPHP 法的 3 个线热源 简化模型中所引起的模型误差作了详细的分析和讨 论.并以模型误差最小为原则选取简化模型.结果表 明 PFLS(PFLS: pulsed finite line source)模型是 DPHP 法中求解介质热物性较为实用的简化模型. 但 PFLS 模型要求小的探针半径、宽的探针间距. 而 在实际海底热流测量时,为保障探针在快速插入沉 积物过程中不易弯曲或折断,要求探针有一定强度, 这样探针就不能太细长.同时,为了降低设备能耗,

应降低探针的脉冲功率.但探针温度测量的分辨率 又是有限的,为保障获得有效的温度变化数据,需要 足够大的脉冲功率和尽量小的探针间距.

为解决上述理论要求与实际条件限制之间的矛 盾,本文在现有的海底热流探针制作技术条件下,首 先根据双探针结构及其工作原理和海底作业环境特 征,建立双探针海底测量单元的有限元数值模型,并 计算出多组参数(附录1)下的温度-时间(*T*-*t*)数据, 然后将这些数据作为"实测"数据,利用 PFLS 简化 模型解算介质热物性参数及对应的相对误差上限, 并以相对误差上限最小为原则,对双探针型海底热 流计结构进行优化.

2 模型与实验方法

本文基于双探针静止停留在海底沉积物中的工作 特点,在实际利用简化模型进行热流解算中一般假设: (1)各双探针测量单元所处位置的介质是各向同性的; (2)探针与介质之间无接触热阻.在有限元模型中也作 这些假设,同时为了计算简便,我们还假设探针和介 质的初始温差为 0.0 K,该假设对结果没有影响.

2.1 理论简化模型

DPHP 法在理论上可从 3 个方面加以简化:(1) 加热方式为瞬间加热或脉冲加热;(2)探针长度是有限 长或无限长;(3)探针是线热源或圆柱体热源(图 1).

柱热源模型比线热源模型更接近双探针的实际 结构.但柱热源各简化模型中,只有瞬间加热无限长 柱热源模型(IICS: instantaneous infinite cylinder source model)给出了解析解^[22],而且解析解过于复 杂,不宜用来对实测数据进行解算.因此,为实用起 见,我们仅利用线热源中的3个简化模型(表1),对 实测数据进行解算,求取介质热物性参数及相应的 相对误差.

基于上述基本假设,这3个线热源简化模型的 解析解可表示如下:

IILS 模型 该模型将探针视为无限长线热源,同时将脉冲阶段加热丝所释放的总热量视为瞬间产生的总热量.则加热探针周围介质的温度分布为^[22]

$$T(r,t) = \frac{q}{4\pi\kappa Ct} \exp\left(-\frac{r^2}{4\kappa t}\right), \qquad (1)$$

其中各参数见表 2,下同.

PILS 模型 该模型将探针视为无限长线热源,

图 1 双探针型海底热流计结构及简化模型示意图¹⁾ (a)双探针结构;(b)无限长线热源简化模型;(c)有限长线热源简化模型; *a*表示探针半径,*L*表示探针长度,*r*表示探针间距.

Fig. 1 Schematic diagrams of the dual-probe seafloor heat flow meter's structure and its simplified models¹⁾

(a) dual-probe structure; (b) infinite line source model; (c) finite line source model a is probe radius, L is probe length, r is probe spacing.

表 1 简化模型特征								
Table 1 Characters of simplified models								
序号	简化模型	简写符号 -	加热方式		探针长度		热源形状	
			瞬间	脉冲	无限长	有限长	线热源	
1	瞬间加热无限长线热源	IILS	\checkmark		\checkmark		\checkmark	
2	脉冲加热无限长线热源	PILS		\checkmark	\checkmark		\checkmark	
3	脉冲加热有限长线热源	PFLS		\checkmark		\checkmark	\checkmark	

同时假定脉冲阶段加热丝以恒定的功率放热.脉冲 加热后,加热探针周围介质的温度分布可表示为^[22]

$$T(r,t) = \frac{q'}{4\pi\kappa C} \left\{ \text{Ei} \left[\frac{-r^2}{4\kappa(t-t_0)} \right] - \text{Ei} \left[\frac{-r^2}{4\kappa t} \right] \right\}$$
$$t > t_0. \tag{2}$$
PFLS 模型 该模型将探针视为有限长线热

源,同时假定脉冲阶段加热丝以恒定的功率放热.脉 冲加热后,加热探针中垂面上周围介质的温度分布 可表示为^[15]

$$T(r,t) = \frac{q'}{4\pi\kappa C} \int_{r^2/(4\kappa t)}^{r^2/(4\kappa t-t_0)} \frac{\exp(-u)}{u} \operatorname{erf}\left(\frac{L}{2r}\sqrt{u}\right) \mathrm{d}u$$
$$t > t_0. \tag{3}$$

表 2 参数说明 Table 2 Introduction of parameters

物理意义	单位	参数	物理意义	单位
探针热扩散率	$m^2 \cdot s^{-1}$	t	测量时间	5
探针体积热容	$J \cdot m^{-3} \cdot K^{-1}$	t_0	脉冲加热时间	S
探针热导率	$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	$t_{ m m}$	r 处达最大温度的时间	s
介质热扩散率	$m^2 \cdot s^{-1}$	T(r,t)	r 处 t 时刻的温度	Κ
介质体积热容	$\mathbf{J} \boldsymbol{\cdot} \mathbf{m}^{-3} \boldsymbol{\cdot} \mathbf{K}^{-1}$	$T_{\rm m}(r,t_{\rm m})$	r处的最大温度	Κ
介质热导率	$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	$\Delta T_{ m m}$	探针温度测量误差	Κ
介质热扩散率解算值	$m^2 \cdot s^{-1}$	A_0	加热探针体生热率	$J \cdot m^{-3} \cdot s^{-1}$
介质体积热容解算值	$\mathbf{J} \boldsymbol{\cdot} \mathbf{m}^{-3} \boldsymbol{\cdot} \mathbf{K}^{-1}$	$q' = A_0(\pi a^2)$	加热探针线生热率	$\mathbf{J} \boldsymbol{\cdot} \mathbf{m}^{-1} \boldsymbol{\cdot} \mathbf{s}^{-1}$
介质热导率解算值	$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	$q = q' t_0$	加热探针脉冲强度	$J \cdot m^{-1}$
探针半径	m	$RE_{\eta^{-}\mathrm{mod}}{}^{\dagger}$	介质热物性模型误差	%
探针长度	m	${RE_{\eta^-\mathrm{meas}}}^\dagger$	介质热物性测量误差	%
探针间距/径向半径	m	$RE_^\dagger$	介质热物性相对误差	%
最佳探针间距	m	$RE_{\eta^-UL}{}^{\dagger}$	介质热物性相对误差上限	%
有限元模型宽度	m	Ei[-x]	指数积分	
有限元模型深度	m	$\operatorname{erf}(x)$	误差函数	
	物理意义 探针热扩散率 探针热打散率 探针体积热容 探针热导率 介质热扩散率 介质体积热容 介质热扩散率解算值 介质体积热容解算值 介质体积热容解算值 介质体积热容解算值 探针半径 探针长度 探针间距/径向半径 最佳探针间距 有限元模型宽度 有限元模型深度	物理意义 単位 探针热扩散率 m ² ・s ⁻¹ 探针热打散率 J・m ⁻³ ・K ⁻¹ 探针热导率 W・m ⁻¹ ・K ⁻¹ 介质热扩散率 m ² ・s ⁻¹ 介质林积热容 J・m ⁻³ ・K ⁻¹ 介质体积热容 J・m ⁻³ ・K ⁻¹ 介质体积热容 J・m ⁻³ ・K ⁻¹ 介质热导率 W・m ⁻¹ ・K ⁻¹ 介质热导率 W・m ⁻¹ ・K ⁻¹ 介质林积热容解算值 J・m ⁻³ ・K ⁻¹ 介质热导率解算值 W・m ⁻¹ ・K ⁻¹ 介质林导率解算值 W・m ⁻¹ ・K ⁻¹ 介质林目空 m 探针半径 m 探针长度 m 探针长度 m 最佳探针间距 m 有限元模型宽度 m 有限元模型深度 m	物理意义 单位 参数 探针热扩散率 $m^2 \cdot s^{-1}$ t 探针热扩散率 $m^2 \cdot s^{-1}$ t 探针热导率 $W \cdot m^{-3} \cdot K^{-1}$ t_0 探针热导率 $W \cdot m^{-1} \cdot K^{-1}$ t_m 介质热扩散率 $m^2 \cdot s^{-1}$ $T(r,t)$ 介质体积热容 $J \cdot m^{-3} \cdot K^{-1}$ $T_m(r,t_m)$ 介质热导率 $W \cdot m^{-1} \cdot K^{-1}$ ΔT_m 介质热扩散率解算值 $J \cdot m^{-3} \cdot K^{-1}$ $q' = A_0(\pi a^2)$ 介质热导率解算值 $W \cdot m^{-1} \cdot K^{-1}$ $q = q't_0$ 介质热导率解算值 $W \cdot m^{-1} \cdot K^{-1}$ $q = q't_0$ 介质热导率解算值 $W \cdot m^{-1} \cdot K^{-1}$ $q = q't_0$ 介质热导率解算值 $W \cdot m^{-1} \cdot K^{-1}$ $q = q't_0$ 探针半径 m $RE_{\eta-mod}^+$ 探针长度 m $RE_{\eta-mod}^+$ 凝性採目面距/径向半径 m RE_{η}^+ 最佳探针间距 m $RE_{\eta-uL}^+$ 有限元模型宽度 m $Ei[-x]$ 有限元模型深度 m $erf(x)$	物理意义 単位 参数 物理意义 探针热扩散率 $m^2 \cdot s^{-1}$ t 测量时间 探针热打散率 $J \cdot m^{-3} \cdot K^{-1}$ t_0 脉冲加热时间 探针热导率 $W \cdot m^{-1} \cdot K^{-1}$ t_m $r \Delta t$ 出度的时间 介质热扩散率 $m^2 \cdot s^{-1}$ $T(r,t)$ $r \Delta t$ 出度) 介质热扩散率 $J \cdot m^{-3} \cdot K^{-1}$ $T_m(r,t_m)$ $r \Delta t$ 的最大温度 介质热打散率 $J \cdot m^{-3} \cdot K^{-1}$ $T_m(r,t_m)$ $r \Delta t$ 的最大温度 介质热导率 $W \cdot m^{-1} \cdot K^{-1}$ ΔT_m 探针温度测量误差 介质热打散率解算值 $m^2 \cdot s^{-1}$ A_0 加热探针体生热率 介质体积热容解算值 $J \cdot m^{-3} \cdot K^{-1}$ $q' = A_0 (\pi a^2)$ 加热探针外生热率 介质体积热容解算值 $J \cdot m^{-3} \cdot K^{-1}$ $q = q' t_0$ 加热探针外生热率 介质热导率解算值 $W \cdot m^{-1} \cdot K^{-1}$ $q = q' t_0$ 加热探针的建度 探针半径 m $RE_{\eta-mod}^+$ 介质热物性模型 RE_{η}^+ 介质热物性模型 探针长度 m RE_{η}^+ 介质热物性相对误差 RE_{η}^+ 介质热物性相对误差 最佳探针间距 m $RE_{\eta-UL}^+$ 介质热物性相对误差

† 其中 η=κ,C,λ

2.2 有限元数值模型与"实测"数据

假设双探针(半径为 a,长度为 L)在插入海底 沉积物后保持静止,并且与周围沉积物的初始温差 T(r,z,0)=0,在时段 $[0,t_0]$ 内,加热探针以恒定的 体生热率 A_0 加热.若以加热探针中心轴为 Z轴,过 探针中点的径向轴为 R轴(图 2),则双探针及周围 沉积物的温度变化量 T(r,z,t)在 ORZ 柱坐标系下 的热传导微分方程可表示为

$$C\frac{\partial T}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r}\frac{\partial T}{\partial r}\right) + \lambda \frac{\partial^2 T}{\partial z^2} + A, \quad (4)$$

初始条件:T(r,z,0)=0.

其中
$$C = C_1, \lambda = \lambda_1 \left(\mid r \mid \leq a, \mid z \mid \leq \frac{L}{2} \right);$$

 $A = A_0 \left(\mid r \mid \leq a, \mid z \mid \leq \frac{L}{2}, t \leq t_0 \right); A = 0$ (沉积
物区域).

我们利用 FEPG 有限元软件自动生成系统 (http://www.fegensoft.com/),生成求解方程(1)

图 2 双探针海底测量单元的有限元模型示意图(加热 探针和海底沉积物关于 R 轴和 Z 轴对称) Fig. 2 Schematic diagram of the finite element model for seafloor dual-probe (heater probe and seafloor sediment are symmetry about both *R*-axis and *Z*-axis)

的双探针海底测量单元的有限元数值模型.该模型 在给定沉积物热物性、探针热物性、结构参数、脉冲 时间以及探针体生热率条件下,可计算出探针及其 周围介质温度随时间的变化.

2.3 热物性参数求解

(1)热扩散率 上述 3 个理论简化模型 T-t 曲线和有限元数值模拟获得的 T-t 曲线^[15,21]表明: 在脉冲加热后,探针间距 r 处的温度先是逐渐升高, 达到极大值 T_m (对应的时刻记为 t_m)后再逐渐衰 减.因此,可据函数的极值原理,求取温度分布函数 (1)~(3)在 r 处的极值点,可得到 IILS、PILS 和 PFLS 3 个简化模型中热扩散率(κ)与最大温度时间 (t_m)的关系式分别为^[14,15,17]

$$\kappa = r^2/(4t_{\rm m}), \qquad (5)$$

$$\kappa = \frac{r^2 t_0}{4(t_{\rm m} - t_0) t_{\rm m} [\ln(t_{\rm m}) - \ln(t_{\rm m} - t_0)]}, \quad (6)$$

$$t_{\rm m} \exp\left[\frac{-r^2}{4\kappa(t_{\rm m}-t_0)}\right] \exp\left[\frac{L}{4\sqrt{\kappa(t_{\rm m}-t_0)}}\right]$$
$$= (t_{\rm m}-t_0) \exp\left[\frac{-r^2}{4\kappa t_{\rm m}}\right] \exp\left[\frac{L}{4\sqrt{\kappa t_{\rm m}}}\right]. (7)$$

根据(5)~(7)式,利用由实测 T-t 曲线读取的 (T_m , t_m),探针间距 r 以及脉冲时间 t_0 ,可分别求得 3 个简化模型中的热扩散率.

 (2)体积比热容 利用参数 r、t₀、t_m、T_m 及 κ, 根据方程(1)、(2)、(3),则可得到 IILS、PILS 和 PFLS
 3 个简化模型下的体积比热容,其表达式分别为^[14,17]

$$C = \frac{q}{e\pi r^2 T_{\rm m}},\tag{8}$$

$$C = \frac{q'}{4\pi\kappa T_{\rm m}} \left\{ \operatorname{Ei} \left[\frac{-r^2}{4\kappa (t_{\rm m} - t_0)} \right] - \operatorname{Ei} \left[\frac{-r^2}{4\kappa t_{\rm m}} \right] \right\}, (9)$$

$$C = \frac{q'}{4\pi\kappa T_{\rm m}} \int_{r^2/(4\kappa t_{\rm m})}^{r^2/(4\kappa (t_{\rm m} - t_0))} \frac{\exp(-u)}{u} \operatorname{erf} \left(\frac{L}{2r} \sqrt{u} \right) \mathrm{d}u .$$
(10)

(3)热导率 又因为热导率是热扩散率与体积热容的乘积,即

$$\lambda = \kappa C. \tag{11}$$

则将上面求得的 κ、C 代入(11)式,可得到各简化模型中的热导率.

2.4 相对误差计算

上述 3 个简化模型都对实际探针结构进行了不同程度的简化,则介质热物性的求解必然存在模型 误差,其大小与简化模型的选取有关.另外,由于探 针间距 r 处的最大温度 T_m 是个测量量,其测量误 差 ΔT_m 也会给热物性参数的求解带来误差.因此, 模型误差和测量误差是介质热物性误差的主要来源.

(1)模型误差 若把据 3 个简化模型求得的
 热扩散率、体积比热容和热导率分别记为 κ̂、Ĉ、λ̂,那
 么它们的模型误差可定义如下

$$RE_{\eta^{-\mathrm{mod}}} = \frac{\hat{\eta} - \eta}{\eta} \times 100\%, \qquad (12)$$

其中 $\eta = \kappa, C, \lambda$ (下同).

(2)测量误差 记探针间距 r 处最大温度升 高量 T_m 的测量误差为 ΔT_m ,将方程(5)~(11)对 T_m 进行泰勒展开,并作一阶近似,则可得到 ΔT_m 给 介质热物性参数带来的测量误差:

$$RE_{\kappa-\text{meas}}=0, \qquad (13)$$

 $RE_{C-\text{meas}} = -(\Delta T_{\text{m}}/T_{\text{m}}) \times 100\%, \quad (14)$

$$RE_{\lambda-\text{meas}} = -(\Delta T_{\text{m}}/T_{\text{m}}) \times 100\%, \quad (15)$$

(3)相对误差 介质热物性相对误差计算公 式可由模型误差与测量误差之和表示,即

$$RE_{\eta} = RE_{\eta - \mathrm{mod}} + RE_{\eta - \mathrm{meas}}, \qquad (16)$$

且其相对误差上限可表示为

$$RE_{\eta-UL} = |RE_{\eta-mod}| + |RE_{\eta-meas}|.$$
(17)

3 优化结果与讨论

探针脉冲加热时间(t₀)、体生热率(A₀)、热物性 (λ₁, C₁, κ₁)、探针长度(L)及半径(a), 在上述 3 个简 化模型中都会引起不同的模型误差.为此,我们[21] 已基于双探针海底测量单元的有限元数值模型,根 据方程(5)~(12),对双探针的脉冲加热时间、体生 热率、热物性、长度及半径等因素在上述 3 个线热源 简化模型中所引起的模型误差作了详细的分析和讨 论.并以模型误差最小为原则选取简化模型.结果表 明 PFLS(PFLS: pulsed finite line source)模型是 DPHP 法中求解介质热物性较为实用的简化模型, 它可消除加热时间、探针长度及探针热导率对介质 热物性参数求解的影响. 但是为了减小介质热物性 求解的模型误差, PFLS 模型要求小的探针半径、宽 的探针间距.而在实际海底热流测量时,为保障探针 在快速插入沉积物过程中不易弯曲或折断,要求探 针有一定强度,这样探针就不能太细长.同时,为了 降低设备能耗,应降低探针的脉冲功率.但探针温度 测量的分辨率又是有限的,为保障获得有效的温度 变化数据,需要足够大的脉冲功率和尽量小的探针 间距.为解决这对理论要求与实际条件限制之间的 矛盾,下面我们在现有的海底热流探针制作技术条 件下,基于有限元数值模型获取不同参数组合下的 T-t 数据,利用 PFLS 模型,对双探针型海底热流计 结构进行优化.

3.1 参数选取

通常情况下常见金属的热导率、体积热容和热扩

1285

散率变化范围分别为: $35.0 \sim 400.0 W \cdot m^{-1} \cdot K^{-1}$ 、 1. $4 \times 10^{6} \sim 4.0 \times 10^{6} J \cdot m^{-3} \cdot K^{-1}$ 、 $20.0 \times 10^{-6} \sim 130.0 \times 10^{-6} m^{2} \cdot s^{-1}$;而海底沉积物的热导率和 热扩散率变化范围分别为: $0.8 \sim 1.34 W \cdot m^{-1} \cdot K^{-1}$ [4.5.24]、 $0.22 \times 10^{-6} \sim 1.39 \times 10^{-6} m^{2} \cdot s^{-1}$ [19].因此,为尽量符合实际,本文的有限元模拟实验中,探 针及待测介质的热物性参数都在上述范围内取值 (附录 1).

据上述基本认识,进行双探针结构优化时,探针 热导率、体积热容及脉冲时间可分别取为 λ_1 = 40.0 W·m⁻¹·K⁻¹、 C_1 =3.6×10⁶ J·m⁻³·K⁻¹、 t_0 =10.0 s.而探针半径可据海底热流探针制作现有 技术条件取为a=1.0 mm,同时为探讨实际温度测 量误差 ΔT_m 和探针脉冲强度q是如何影响最佳探 针间距与探针长度之间的关系,我们在现有技术条 件下,可将探针温度测量分辨率 1.0 mK或其二分 之一作为 ΔT_m ,即 ΔT_m =1.0 mK、0.5 mK,同时令 q=1100.0 J·m⁻¹、628.0 J·m⁻¹(分别对应 A_0 = 3.6×10⁷ J·m⁻³·s⁻¹、2.0×10⁷ J·m⁻³·s⁻¹)(附 录 1 之 test18~test24、test27~test33).

3.2 优化结果

在如上选取的 (a, λ_1, C_1, t_0) 参数下,通过改变 探针长度 $(L = 20.0 \sim 42.0 \text{ mm})$ 及探针脉冲强度 $(q=1100.0 \text{ J} \cdot \text{m}^{-1}, 628.0 \text{ J} \cdot \text{m}^{-1})$,进行有限元数 值模拟得到 test18~test24 和 test27~test33 的 *T-t* "实测"数据. 再用 PFLS 模型求解 ΔT_m 分别为 1.0 mK和 0.5 mK 时的介质热物性参数及相对误 差,由式子(12)、(15)、(17)可得到介质热导率的相 对误差上限:

$$RE_{\lambda-UL} = \left(\left| \frac{\hat{\lambda} - \lambda}{\lambda} \right| + \left| \frac{\Delta T_{\rm m}}{T_{\rm m}} \right| \right) \times 100\% \quad (18)$$

并以此上限最小为原则,对各参数组合下的双探针 热流计结构进行优化.

图 3 是 q 为 628.0 J • m⁻¹ 或 1100.0 J • m⁻¹, 而 $\Delta T_{\rm m}$ 为 0.5 mK 或 1.0 mK 时的 $RE_{\lambda-m} - r$ 曲线图. 图 4 是不同 q 和 ΔT_m 组合时,最佳探针间距与探针 长度的线性关系图. 由图 3 可知: REa-un 随着探针间 距的增大,先是逐渐减小,达到极值后,又逐渐增大, 说明在不同的 $q,\Delta T_m$ 和L组合条件下,都存在最佳 探针间距(Best_r),使得所求介质热导率的相对误差 上限降到最低.同时,图3、图4及表3还表明:(1)当 $\Delta T_{\rm m}$ 一定而增大 q,或 q 一定而减小 $\Delta T_{\rm m}$ 时,最佳探 针间距也逐渐增大;(2)当q和 ΔT_{m} 都一定时,最佳 探针间距与探针长度呈线性正相关(图 4、表 3);(3) 当 a=1.0 mm, q 在 628. 0~1100. 0 J • m⁻¹, $\Delta T_{\rm m}$ 在 0.5~1.0 mK 之间时,若探针长度范围为 20.0~ 42.0 mm,则最佳探针间距在 18.0~30.0 mm 之 间,此时介质热导率的相对误差可控制在 5.5%以 内(表3、图3),探针测量温度达到最大时的时间(t_m) 在150.0~360.0 s之间(图5).

表 3 不同 q 和 ΔT_m 组合时,最佳探针间距与探针长度的线性关系 Table 3 Linear relation between Best_r and L at different combinations of q and ΔT_m

有限元实验	脉冲强度 $q/(J \cdot m^{-1})$	温度测量误差 $\Delta T_{\rm m} = 0.5 \times 10^{-3} \mathrm{K}$	温度测量误差 $\Delta T_{\rm m} = 1.0 \times 10^{-3} \mathrm{K}$
test18~test24	1100.0	Best_ r =0.2939× L +0.0160(R^2 =0.6523) 范围:(21.0~30.0)×10 ⁻³ m, $RE_{\lambda-UL}$ =3.5%	Best_ r =0.2918×L +0.0136(R^2 =0.7330) 范围:(18.0~26.0)×10 ⁻³ m, $RE_{\lambda-UL}$ =4.5%
test27~test33	628.0	Best_r=0.2826×L +0.0140(R^2 =0.8477) 范围:(19.0~26.0)×10 ⁻³ m, $RE_{\lambda-UL}$ =4.5%	Best_ r =0.1480× L +0.0158(R^2 =0.6875) 范围:(18.0~22.0)×10 ⁻³ m, $RE_{\lambda-UL}$ =5.5%

4 结 论

在现有的海底热流探针制作技术条件下(探针 半径 a 为 1.0 mm、探针脉冲强度 q 为 628.0 J·m⁻¹ 或 1100.0 J·m⁻¹、温度测量误差 ΔT_m 为 0.5 mK 或 1.0 mK),利用 PFLS 模型,对双探针热流计的结构 进行优化.通过对优化结果进行分析和讨论,获得以 下主要认识及结论:

(1)在不同的 $q_{\Lambda}\Delta T_m$ 和L组合下,都存在最佳

探针间距(Best_r),使得相对误差上限降到最低;

(2) 当 ΔT_{m} 一定而增大 q,或 q 一定而减小 ΔT_{m} 时,最佳探针间距也逐渐增大;

(3)当 $q,\Delta T_m$ 及a都给定时,最佳探针间距与 探针长度呈线性正相关;

(4)当a=1.0 mm,q在 628.0~1100.0 J·m⁻¹, $\Delta T_{\rm m}$ 在 0.5~1.0 mK 之间时,若探针长度在 20.0~ 42.0 mm 之间,最佳探针间距在 18.0~30.0 mm 之 间,此时介质热导率的相对误差可控制在 5.5%以 内,同时测量温度可在 6 min 内达到最大,即脉冲加

图 3 考虑 ΔT_m 时的 $RE_{\lambda-UL} - r$ 曲线 r 表示探针间距, $RE_{\lambda-UL}$ 表示介质热导率相对误差上限. Fig. 3 Curves of $RE_{\lambda-UL} - r$ when ΔT_m is taken into account

r is probe spacing, $RE_{\lambda-UL}$ is maximum relative error in thermal conductivity.

图 4 最佳探针间距与探针长度的线性关系 (test18~test24, test27~test33)

Fig. 4 Linear relation between Best_r and L
 (test18~test24, test27~test33)

L is probe length, Best_r is the best probe spacing

热开始后,温度测量只需约7 min,便可满足介质热物性参数的求解,这比目前常用的 Lister 型热流计所需的海底测量时间减少8 min 左右.

致 谢 中国科学院研究生院计算地球动力学重点 实验室张怀副教授和北京飞箭软件有限公司杨小军 高级工程师在有限元文件修改和数值模拟过程中给 予了指导和帮助;审稿专家对本文提出了建设性的 评审及修改意见,在此一并致谢!

Appendix 1 Experiments of finite element modeling											
	探针热物性参数		案针热物性参数 探针结构参数		探针脉冲加热参数		介质热物性参数		有限元几何模型		
test	$\lambda_1/(W \boldsymbol{\cdot} m^{-1}$	$C_1/(10^6 \mathrm{J} \cdot$	a/	L/	$A_0/(10^7 \mathrm{J} \cdot$		$\lambda/(W \cdot m^{-1}$	<i>C</i> /(10 ⁶ J •	W/	D/	
	• K^{-1})	$m^{-3} \cdot K^{-1}$)	$(10^{-3} m)$	$(10^{-3} m)$	$m^{-3} \cdot s^{-1}$)	ι_0 / s	• K^{-1})	$m^{-3} \cdot K^{-1}$)	$(10^{-3} m)$	$(10^{-3} \mathrm{m})$	_
18	40.0	3.6	1.0	20.0	3.5	10.0	1.2	2.5	65.0	65.0	
19	40.0	3.6	1.0	24.0	3.5	10.0	1.2	2.5	65.0	65.0	
20	40.0	3.6	1.0	28.0	3.5	10.0	1.2	2.5	65.0	65.0	
21	40.0	3.6	1.0	32.0	3.5	10.0	1.2	2.5	65.0	65.0	
22	40.0	3.6	1.0	36.0	3.5	10.0	1.2	2.5	65.0	65.0	
23	40.0	3.6	1.0	40.0	3.5	10.0	1.2	2.5	65.0	65.0	
24	40.0	3.6	1.0	42.0	3.5	10.0	1.2	2.5	65.0	65.0	
27	40.0	3.6	1.0	20.0	2.0	10.0	1.2	2.5	65.0	65.0	
28	40.0	3.6	1.0	24.0	2.0	10.0	1.2	2.5	65.0	65.0	
29	40.0	3.6	1.0	28.0	2.0	10.0	1.2	2.5	65.0	65.0	
30	40.0	3.6	1.0	32.0	2.0	10.0	1.2	2.5	65.0	65.0	
31	40.0	3.6	1.0	36.0	2.0	10.0	1.2	2.5	65.0	65.0	
32	40.0	3.6	1.0	40.0	2.0	10.0	1.2	2.5	65.0	65.0	
33	40.0	3.6	1.0	42.0	2.0	10.0	1.2	2.5	65.0	65.0	

附录 1 有限元模拟实验 pendix 1 Experiments of finite element modelin

参考文献(References)

- [1] Gerard R, Langseth M G, Ewing M. Thermal gradient measurements in the water and bottom sediment of western Atlantic. J. Geophys. Res., 1962, 67:785~803
- [2] Clark T F, Malcolm F J, Korgen B J. An improved Ewing heat probe frame. Mar. Geophys. Res., 1972, 1:451~455
- [3] Pfender M, Villinger H. Miniaturized data loggers for deep sea sediment temperature gradient measurements. Mar. Geol., 2002,186:557~570
- [4] 徐 行,施小斌,罗贤虎等.南海北部海底地热测量的数据 处理方法.现代地质,2006,20(3):454~464
 Xu X, Shi X B, Luo X H, et al. Data processing methods of marine geothermal measurement on the northern margin of the south china sea. *Geoscience* (in Chinese), 2006,20(3): 454~464
- [5] 徐 行,施小斌,罗贤虎等. 南海西沙海槽地区的海底热流测量. 海洋地质与第四纪地质, 2006, 26(4):51~58
 Xu X, Shi X B, Luo X H, et al. Heat flow measurements in the xisha trough of the south china sea. Marine Geology & Quaternary Geology (in Chinese), 2006, 26(4):51~58
- [6] Lister C R B. Measurement of in situ sediment conductivity by means of a Bullard-type probe. *Geophys. J. R. astr.* Soc., 1970, 19:521~532
- [7] Lister C R B. The pulse-probe method of conductivity measurement. *Geophys. J. R. astr. Soc.*,1979,**57**,451~461
- [8] Hyndman R D, Davis E E, Wright J A. The measurement of marine geothermal heat flow by a multipenetration probe digital acoustic telemetry an in-situ thermal conductivity.

Mar. Geophys. Res. ,1979,4:181~205

- [9] Villinger H, Davis E E. A new reduction algorithm for marine heat flow measurements. J. Geophys. Res., 1987, 92:12846~12856
- [10] Lister C R B, Sclater J G, Davis E E, et al. Heat flow maintained in ocean basins of great age: investigations in the north-equatorial West Pacific. *Geophys. J. Int.*, 1990, 120: 603~630
- [11] Hartmann A, Villinger H. Inversion of marine heat flow measurements by expansion of the temperature decay function. *Geophys. J. Int.*, 2002.148:628~636
- [12] 李官保,裴彦良,刘保华.海底热流探测技术综述.地球物 理学进展,2005.3:611~619
 Li G B, Pei Y L, Liu B H. Review of measurement techniques of seafloor heat flow. *Progress in Geophysics* (in Chinese), 2005,3:611~619
- [13] 李官保,刘保华.海底热流原位测量技术研究.海洋技术, 2006,2:28~33
 Li G B, Liu B H. Study on seafloor heat-flow in-situ measurement techniques. Ocean Technology (in Chinese), 2006,2:28~33
- [14] Campbell G S, Calissendorff C, Williams J H. Probe for measurement soil specific heat using a heat-Pulse method. Soil Sci. Soc. Am. J., 1991,55:291~293
- [15] Kluitenberg G J, Ham J M, Bristow K L. Error analysis of the heat pulse method for measuring the volumetric heat capacity of soil. Soil Sci. Soc. Am. J., 1993, 57:1444~1451
- [16] Kluitenberg G J, Bristow K L, Das B S. Error analysis of the heat pulse method for measuring soil heat capacity,

diffusivity, and conductivity. Soil Sci. Soc. Am. J., 1995, **59**:719~726

- [17] Bristow K L, Kluitenberg G J, Horton R. Measurement of soil thermal properties with a dual-probe heat-pulse technique. Soil Sci. Soc. Am. J., 1994, 58:1288~1294
- [18] Bristow K L, White R D, Kluitenberg G J. Comparison of single and dual probes for measuring soil thermal properties with transient heating. Aust. J. Soil Res., 1994, 32:447~464
- [19] Drury M J. A simple needle-probe method for measuring thermal diffusivity of unconsolidated materials. *Geothermics*, 1988,17(5-6):757~763
- [20] Ham J M, Benson E J. On the construction and calibration of dual-probe heat capacity sensors. Soil Sci. Am. J., 2004, 68:1185~1190
- [21] 杨小秋,施小斌,许鹤华等.双探针型海底热流计数据解算模

型选取.热带海洋学报,2009(待刊)

Yang X Q, Shi X B, Xu H H, et al. Selecting simplified model for dual-probe seafloor heat flow meter. *Journal of Tropical Oceanography* (in Chinese), 2009 (in press)

- [22] Carslaw H S, Jaeger J C. Conduction of heat in solids, Second Edition. London: Oxford University Press, 1959. 258~347
- [23] 杨世铭,陶文铨. 传热学(第三版). 北京:高等教育出版社, 1998. 420~421
 Yang S M, Tao W Q. Heat Transfer (Third Edition). Beijing: Higher Education Press, 1998. 420~421
- [24] Taylor A, Judge A and Allen V. Terrestrial heat flow from project CESAR, Alpha Ridge, Arctic Ocean. J. Geodyn., 1986,6:137~176

(本文编辑 汪海英)