

晶体光学和电光器件 Crystal Optics and Electro-Optic Devices (二)

陈根祥

北京交通大学全光网与现代通信网教育部重点实验室 2007-4-23

Integrated Mach-Zehnder Optical Modulators

> Operating Principle $E_{out} \propto E_A \cos(\omega t + \Delta \phi) + E_B \cos(\omega t - \Delta \phi)$ $= 2E_A \cos(\Delta \phi) \cos(\omega t)$ $E_A \cong E_B$ and $\Delta \phi = (\pi/V_{\pi})V(t)$ $P_{out}[V(t)] = P_{out}(0) \cos^2[(\pi/V_{\pi})V(t)]$ Bias Voltage u_{a} u_{a} u

Electro-Optic Directional Couplers and Modulators

Device Structure

Basic Principle

Consider only the coupling between TE fields: $\mathbf{E} \cong \mathbf{e}_{x} \Big[A(z) E_{A}(x, y) e^{-j\beta_{A}z} + B(z) E_{B}(x, y) e^{-j\beta_{B}z} \Big] e^{j\omega t}$

The general coupled wave Eqs. become: $dA/dz = -j\eta_A A - j\kappa_{AB} B e^{j(\beta_A - \beta_B)z}$ $dB/dz = -j\eta_B B - j\kappa_{BA} A e^{j(\beta_B - \beta_A)z}$

If A and B are exactly the same, we have:

Cross-section $j\omega t$ yCoupled waveguides n_A n_B n_s A d B n_s x

 $\Delta \beta = \beta_A - \beta_B = 0 \text{ for } V = 0. \text{ Phase matching condition is perfectly satisfied} and the two fields are strongly coupled. The power in A will be transferred to B. For <math>V \neq 0$, $\Delta \beta \approx 2 \Delta n(2 \pi / \lambda)$. $\Delta n = (1/2)n_o Y_{22}(V/d)$. The phase mismatch will destroy the coupling between the two fields and the power transfer decays.

Solutions to The Coupled Wave Equations

Coupling Coefficiency

$$\kappa_{AB} = \frac{k_0}{2n_A} \int_{inB} (n_B^2 - n_s^2) E_A E_B^* dx dy \qquad \kappa_{BA} = \frac{k_0}{2n_B} \int_{inA} (n_A^2 - n_s^2) E_B E_A^* dx dy$$
$$\delta_A = \frac{k_0}{2n_A} \int_{inB} (n_B^2 - n_s^2) |E_A|^2 dx dy \qquad \delta_B = \frac{k_0}{2n_B} \int_{inA} (n_A^2 - n_s^2) |E_B|^2 dx dy$$

Standard Form of The CWE

$$A(z) = R(z)e^{-j[\eta_{A}+\delta]z} \quad B(z) = S(z)e^{-j[\eta_{B}-\delta]z} \quad (\delta = \Delta\beta/2)$$

$$R' - j\delta R = -j\kappa_{AB}S \quad S' - j\delta S = -j\kappa_{BA}R \quad (R(0) = 1, S(0) = 0)$$
Solutions

$$R(z) = \cos(\Omega z) + j\delta[\sin(\Omega z)/\Omega] \quad S(z) = -j\kappa[\sin(\Omega z)/\Omega]$$

$$\kappa = |\kappa_{AB}| \approx |\kappa_{BA}| \qquad \Omega = \sqrt{\kappa^{2} + \delta^{2}}$$
For $\Delta \beta = P_{A}(z) = \cos^{2}(\kappa z) \quad P_{B}(z) = \sin^{2}(\kappa z) \implies P_{A}(z) + P_{B}(z) = 1$

Generally: $P_B(z) = P_{in} \left(\kappa^2 / \Omega^2 \right) \sin^2(\Omega z)$ $P_A(z) = P_{in} - P_B(z)$

Summary

Length of the Coupler for Fully Power Transfer

 $\kappa L = \pi/2$ $\implies P_A(0) = 1 \ P_A(L) = 0 \text{ and } P_B(0) = 0 \ P_B(L) = 1 \ \text{for } \Delta \ \beta = 0 \ (V = 0)$ $\implies \text{Switching Voltage}$ $\delta L = \Delta \beta L/2 = n_o^3 \gamma_{22} L(V/d) (\pi/\lambda) = \sqrt{3}\pi/2 \quad \implies \Omega L = \pi$ $\implies P_A(0) = 1 \ P_A(L) = 1 \ \text{and} \ P_A(0) = 0 \ P_A(L) = 0 \ \text{for } V = \sqrt{3} 2 d/2r^3 r L$

 $P_{A}(0) = 1 P_{A}(L) = 1 \text{ and } P_{B}(0) = 0 P_{B}(L) = 0 \text{ for } V = \sqrt{3\lambda d} / 2n_{o}^{3} \gamma_{22} L$

Coupling Efficiency

北京交通大學

High Frequency Modulation: A Simple Case

Structure and Equivalent Circuit

Effective Applied Voltage

$$V_{eo}(\omega) \propto rac{1}{\sqrt{1+\omega^2 R_s^2 C_{eo}^2}}$$

 R_s is the internal resistance of the signal source; $C_{eo} = \varepsilon S/d$ is the capacitance of the modulator

$$f_{\rm max} = 1 / \left(2\pi \sqrt{R_s C_{eo}} \right)$$

Reduce R_s and $C_{eo} = \varepsilon S/d$ to achieve high frequency modulation

北京交通大学

High Frequency Modulation: Improvement

> The Effective Applied Voltage

$$V_{eo}(\omega) \propto \frac{1}{\sqrt{(\omega - \omega_0)^2 + (1/2R_p C_{eo})^2}}$$

The efficiency is maximum at $\omega = \omega_0$

$$\omega_0 = 1 / \sqrt{LC_{eo}}$$

is the center frequency of the modulator

- Modulation Bandwidth
 - $\Delta f = 1/(2\pi R_p C_{eo})$

Comments

Reduce R_s , L, and C_{eo} to achieve high frequency modulation

 R_p should be properly selected

Transit-Time Limitations

EO Retardation under High Speed Modulation

The EO phase retardation due to a low frequency field *E* can be written as:

$$\Delta \phi = \phi(E) - \phi(0) = aEL$$

For high speed modulation field E(t), the retardation should be:

$$\Delta \phi = a \int_0^L E(z) dz = \frac{ac}{n} \int_{t-\tau}^t E(t') dt' \quad \tau = \frac{nL}{c}$$
 is the transit-time

> Transit-Time Reduction Factor Consider a sinusoid applied field: $E(t) = E_m e^{j\omega_m t}$

$$\Delta \phi = \frac{ac}{n} E_m \int_{t-\tau}^t e^{j\omega_m t'} dt' = aE_m L \left[\frac{1 - e^{-j\omega_m \tau}}{j\omega_m \tau} \right] e^{j\omega_m \tau}$$

 $r = (1 - e^{-j\omega_m \tau}) / (j\omega_m \tau)$ is the reduction factor For $\omega_m \tau \ll 1$, r = 1, and $\Delta \phi = aE(t)L$

- > The Highest Modulation Frequency
 - r = 0.9 for $\omega_m \tau = \pi / 2$, $(f_m)_{\text{max}} = c/(4nL)$. For n = 2.2, L = 1 cm, $(f_m)_{\text{max}} = 3.4$ GHz

北京交通人

Traveling-Wave Modulators

> The Traveling Modulation Field

$$E(z,t) = E_m e^{j(\omega_m t - k_m z)} = E_m e^{j\omega_m (t - z/c_m)}$$

The Phase Retardation

Consider the optical field entering at time *t*.

At some later time t', the field arrives at z(t')=(c/n)(t'-t). At this point, the modulation field is:

$$E(z,t) = E_m e^{j\omega_m[t'-c(t'-t)/(nc_m)]}$$

At time $t + \tau$ ($\tau = nL/c$), the optical field comes out from the crystal, and the total phase retardation obtained by the optical field is:

$$\Delta \phi = \frac{ac}{n} \int_{t}^{t+\tau} E(t', z(t')) dt' = aE_{m} Le^{j\omega_{m}t} \left[\frac{e^{j\omega_{m}\tau(1-c/nc_{m})} - 1}{j\omega_{m}\tau(1-c/nc_{m})} \right]$$

> The Reduction Factor and The Maximum Useful Frequency

$$r = \frac{e^{j\omega_{m}\tau(1-c/nc_{m})} - 1}{j\omega_{m}\tau(1-c/nc_{m})} \longrightarrow (f_{m})_{\max} = \frac{c}{4nL(1-c/nc_{m})}$$

Ti Diffused LiNbO₃ MZ High Speed Modulators

北京交通

Circular Birefringence Representation (CPR)

The Basis Vectors in CPR

In CPR, the orthogonal and complete unit basis vector set are the CCW and CW rotating CP waves defined as $(1, 0)^{T}$ and $(0, 1)^{T}$. Arbitrary transverse field can be described as:

$$\mathbf{V} = V_{+} \begin{cases} 1\\ 0 \end{cases} + V_{-} \begin{cases} 0\\ 1 \end{cases} = \begin{cases} V_{+}\\ V_{-} \end{cases}$$

In rectangular representation, the same field is described as:

$$\mathbf{V} = V_{x} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + V_{y} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{cases} V_{x} \\ V_{y} \end{cases}$$

> The Transform Matrix

The two representation can be related by a transform matrix:

$$\begin{cases} V_+ \\ V_- \end{cases} = T \begin{pmatrix} V_x \\ V_y \end{pmatrix} \text{ and } \begin{pmatrix} V_x \\ V_y \end{pmatrix} = T^{-1} \begin{cases} V_+ \\ V_- \end{cases}$$

From $\{0, 1\}^T = T(1, j)^T$, $\{1, 0\}^T = T(1, -j)^T$, we get:

$$T = \frac{1}{2} \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix} \text{ and } T^{-1} = \begin{pmatrix} 1 & 1 \\ -j & j \end{pmatrix}$$

Wave Propagation in Circularly Birefringent Medium

- > The Jones Matrix of a Circularly Birefringent Medium
 - In a CB medium, the indices of CCW and CW CP waves are denoted by n_+ and n_- . The Jones matrix of CB medium of length *L* in CPR is:

$$J = \begin{pmatrix} e^{-j\theta_{+}} & 0 \\ 0 & e^{-j\theta_{-}} \end{pmatrix} = e^{-j(\theta_{+}+\theta_{-})/2} \begin{pmatrix} e^{j\theta} & 0 \\ 0 & e^{-j\theta} \end{pmatrix}$$

 θ_{+} and θ_{-} are the rotated angles of CCW and CW waves, respectively. Ignoring the common phase factor, the Jones matrix becomes:

$$\begin{cases} \theta_{+} = k_{0}n_{+}L, \ \theta_{-} = k_{0}n_{-}L\\ \theta = (\theta_{-} - \theta_{+})/2 \end{cases}$$
$$J = \begin{pmatrix} e^{j\theta} & 0\\ 0 & e^{-j\theta} \end{pmatrix}$$

The matrix in rectangular representation is obtained by transformation matrix T:

 $J' = T^{-1}J T = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = R(-\theta) \Longrightarrow \begin{pmatrix} V_x(L) \\ V_y(L) \end{pmatrix} = J' \begin{pmatrix} V_x(0) \\ V_y(0) \end{pmatrix}$

Rotation of Polarization States

 $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}$

A linearly-polarized input field is rotated by an angle θ after propagation in the CB medium.

Magneto-Optic (Faraday) Effects

Faraday Rotation

Some materials exhibit circular birefringence when a magnetic field is applied along the wave propagation direction. The birefringence $\Delta n = n_+ \cdot n_-$ is proportional to the applied magnetic field, so the rotation angle can be written as (Faraday effect):

 $\theta = VBL$ V is the Verdet constant of the material

 $\boldsymbol{\theta}$ is the rotation angle about the direction of propagation.

> Nonreciprocal Property of Faraday Rotation

For a wave traveling in the –B direction, the rotation is - θ about the new direction of propagation. So the Faraday rotation is *nonreciprocal*. For a given material, the rotation direction depends only on the direction of B.

Optical Isolator

Basic Principle

Forward Propagation Wave

Backward propagation Wave

> Improvement: Polarization Insensitivity

