## 晶体光学和电光器件

## Crystal Optics and Electro－Optic Devices



陈根祥

北京交通大学全光网与现代通信网教育部重点实验室 2007－4－23
洪京交通大萼

## Integrated Mach－Zehnder Optical Modulators

＞Device Structure

$>$ Operating Principle

$$
\begin{aligned}
E_{\text {out }} & \propto E_{A} \cos (\omega t+\Delta \phi)+E_{B} \cos (\omega t-\Delta \phi) \\
& =2 E_{A} \cos (\Delta \phi) \cos (\omega t)
\end{aligned}
$$

$E_{A} \cong E_{B} \quad$ and $\quad \Delta \phi=\left(\pi / V_{\pi}\right) V(t)$
$P_{\text {out }}[V(t)]=P_{\text {out }}(0) \cos ^{2}\left[\left(\pi / V_{\pi}\right) V(t)\right]$


## Electro－Optic Directional Couplers and Modulators

## Device Structure

## Basic Principle



Consider only the coupling between TE fields：

$$
\mathbf{E} \cong \mathbf{e}_{x}\left[A(z) E_{A}(x, y) e^{-j \beta_{A} Z}+B(z) E_{B}(x, y) e^{-j \beta_{B^{Z}}}\right] e^{j \omega t}
$$

The general coupled wave Eqs．become：

$$
\begin{aligned}
& d A / d z=-j \eta_{A} A-j \kappa_{A B} B e^{j\left(\beta_{A}-\beta_{B}\right) z} \\
& d B / d z=-j \eta_{B} B-j \kappa_{B A} A e^{j\left(\beta_{B}-\beta_{A}\right) z}
\end{aligned}
$$



If A and B are exactly the same，we have：
$\Delta \beta=\beta_{A^{-}} \beta_{B}=0$ for $V=0$ ．Phase matching condition is perfectly satisfied and the two fields are strongly coupled．The power in A will be transferred to Bo
For $V \neq 0, \Delta \beta \approx 2 \Delta n(2 \pi / \lambda) . \Delta n=(1 / 2) n_{0} \gamma_{22}(V / d)$ ．The phase mismatch will destroy the coupling between the two fields and the power transfer decays．

## Solutions to The Coupled Wave Equations

$>$ Coupling Coefficiency

$$
\begin{array}{ll}
\kappa_{A B}=\frac{k_{0}}{2 n_{A}} \int_{\mathrm{inB}}\left(n_{B}^{2}-n_{s}^{2}\right) E_{A} E_{B}^{*} d x d y & \kappa_{B A}=\frac{k_{0}}{2 n_{B}} \int_{\mathrm{inA}}\left(n_{A}^{2}-n_{s}^{2}\right) E_{B} E_{A}^{*} d x d y \\
\delta_{A}=\frac{k_{0}}{2 n_{A}} \int_{\mathrm{inB}}\left(n_{B}^{2}-n_{s}^{2}\right)\left|E_{A}\right|^{2} d x d y & \delta_{B}=\frac{k_{0}}{2 n_{B}} \int_{\mathrm{inA}}\left(n_{A}^{2}-n_{s}^{2}\right)\left|E_{B}\right|^{2} d x d y
\end{array}
$$

## ＞Standard Form of The CWE

$$
\Longrightarrow \begin{array}{lll}
A(z)=R(z) e^{-j\left[\eta_{A}+\delta\right] z} & B(z)=S(z) e^{-j\left[\eta_{B}-\delta\right] z} & (\delta=\Delta \beta / 2) \\
R^{\prime}-j \delta R=-j \kappa_{A B} S & S^{\prime}-j \delta S=-j \kappa_{B A} R & (R(0)=1, \quad S(0)=0)
\end{array}
$$

## ＞Solutions

$$
\begin{array}{cl}
R(z)=\cos (\Omega z)+j \delta[\sin (\Omega z) / \Omega] & S(z)=-j \kappa[\sin (\Omega z) / \Omega] \\
\kappa=\left|\kappa_{A B}\right| \approx\left|\kappa_{B A}\right| & \Omega=\sqrt{\kappa^{2}+\delta^{2}}
\end{array}
$$

For $\Delta \beta=P_{A}(z)=\cos ^{2}(\kappa z) \quad P_{B}(z)=\sin ^{2}(\kappa z) \Longrightarrow P_{A}(z)+P_{B}(z)=1$ Generally：$\quad P_{B}(z)=P_{i n}\left(\kappa^{2} / \Omega^{2}\right) \sin ^{2}(\Omega z) \quad P_{A}(z)=P_{i n}-P_{B}(z)$

## Summary

$>$ Length of the Coupler for Fully Power Transfer

$$
\pi L=\pi / 2
$$

$\longmapsto P_{A}(0)=1 P_{A}(L)=0$ and $P_{B}(0)=0 P_{B}(L)=1$ for $\Delta \beta=0(V=$
$>$ Switching Voltage

$$
\begin{gathered}
\delta L=\Delta \beta L / 2=n_{o}^{3} \gamma_{22} L(V / d)(\pi / \lambda)=\sqrt{3} \pi / 2 \quad \Longleftrightarrow \Omega L=\pi \\
\longmapsto P_{A}(0)=1 P_{A}(L)=1 \text { and } P_{B}(0)=0 P_{B}(L)=0 \text { for } V=\sqrt{3} \lambda d / 2 n_{o}^{3} \gamma_{22} L
\end{gathered}
$$

$>$ Coupling Efficiency

(b)


## High Frequency Modulation：A Simple Case

## $>$ Structure and Equivalent Circuit



## Effective Applied Voltage

$$
V_{e o}(\omega) \propto \frac{1}{\sqrt{1+\omega^{2} R_{s}^{2} C_{e o}^{2}}}
$$

$R_{s}$ is the internal resistance of the signal source；$C_{e o}=\varepsilon S / d$ is the capacitance of the modulator

$$
f_{\max }=1 /\left(2 \pi \sqrt{R_{s} C_{e o}}\right)
$$

Reduce $R_{s}$ and $C_{e o}=\varepsilon S / d$ to achieve high frequency modulation


## High Frequency Modulation：Improvement

## $>$ Equivalent Circuit

＞The Effective Applied Voltage

$$
V_{e o}(\omega) \propto \frac{1}{\sqrt{\left(\omega-\omega_{0}\right)^{2}+\left(1 / 2 R_{p} C_{e o}\right)^{2}}}
$$

The efficiency is maximum at $\omega=\omega_{0}$

$$
\omega_{0}=1 / \sqrt{L C_{e o}}
$$

is the center frequency of the modulator

## ＞Modulation Bandwidth

$$
\Delta f=1 /\left(2 \pi R_{p} C_{e o}\right)
$$

## $>$ Comments



Reduce $R_{s}$ ，L，and $C_{e o}$ to achieve high frequency modulation
$R_{p}$ should be properly selected

## Transit－Time Limitations

## －EO Retardation under High Speed Modulation

The EO phase retardation due to a low frequency field $E$ can be written as：

$$
\Delta \phi=\phi(E)-\phi(0)=a E L
$$

For high speed modulation field $E(t)$ ，the retardation should be：

$$
\Delta \phi=a \int_{0}^{L} E(z) d z=\frac{a c}{n} \int_{t-\tau}^{t} E\left(t^{\prime}\right) d t^{\prime} \quad \tau=\frac{n L}{c} \text { is the transit-time }
$$

$>$ Transit－Time Reduction Factor
Consider a sinusoid applied field：$\quad E(t)=E_{m} e^{j \omega_{m} t}$

$$
\Delta \phi=\frac{a c}{n} E_{m} \int_{t-\tau}^{t} e^{j \omega_{m} t^{\prime}} d t^{\prime}=a E_{m} L\left[\frac{1-e^{-j \omega_{m} \tau}}{j \omega_{m} \tau}\right] e^{j \omega_{m} t}
$$

$$
r=\left(1-e^{-j \omega_{m} \tau}\right) /\left(j \omega_{m} \tau\right) \text { is the reduction factor }
$$

For $\omega_{m} \tau \ll 1, r=1$ ，and $\Delta \phi=a E(t) L$


The Highest Modulation Frequency
$r=0.9$ for $\omega_{m} \tau=\pi / 2,\left(f_{m}\right)_{\max }=c /(4 n L)$ ．For $n=2.2, L=1 \mathrm{~cm},\left(f_{m}\right)_{\max }=3.4 \mathrm{GHz}$

## Traveling－Wave Modulators

$>$ The Traveling Modulation Field

$$
E(z, t)=E_{m} e^{j\left(\omega_{m} t-k_{m} z\right)}=E_{m} e^{j \omega_{m}\left(t-z / c_{m}\right)}
$$

## $>$ The Phase Retardation

Consider the optical field entering at time $t$ ．
 At some later time $t^{\prime}$ ，the field arrives at $z\left(t^{\prime}\right)=(c / n)\left(t^{\prime}-t\right)$ ．At this point，the modulation field is：

$$
E(z, t)=E_{m} e^{j \omega_{m}\left[t^{\prime}-c\left(t^{\prime}-t\right) /\left(n c_{m}\right)\right]}
$$

At time $t+\tau(\tau=n L / c)$ ，the optical field comes out from the crystal，and the total phase retardation obtained by the optical field is：

$$
\Delta \phi=\frac{a c}{n} \int_{t}^{t+\tau} E\left(t^{\prime}, z\left(t^{\prime}\right)\right) d t^{\prime}=a E_{m} L e^{j \omega_{m} t}\left[\frac{e^{j \omega_{m} \tau\left(1-c / n c_{m}\right)}-1}{j \omega_{m} \tau\left(1-c / n c_{m}\right)}\right]
$$

## The Reduction Factor and The Maximum Useful Frequency

$$
r=\frac{e^{j \omega_{m} \tau\left(1-c / n c_{m}\right)}-1}{j \omega_{m} \tau\left(1-c / n c_{m}\right)} \quad \Longleftrightarrow \quad\left(f_{m}\right)_{\max }=\frac{c}{4 n L\left(1-c / n c_{m}\right)}
$$



## Circular Birefringence Representation（CPR）

## －The Basis Vectors in CPR

In CPR，the orthogonal and complete unit basis vector set are the CCW and CW rotating CP waves defined as $(1,0)^{\mathrm{T}}$ and $(0,1)^{\mathrm{T}}$ ．Arbitrary transverse field can be described as：

$$
\mathbf{V}=V_{+}\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}+V_{-}\left\{\begin{array}{l}
0 \\
1
\end{array}\right\}=\left\{\begin{array}{l}
V_{+} \\
V_{-}
\end{array}\right\}
$$

In rectangular representation，the same field is described as：

## －The Transform Matrix

$$
\mathbf{V}=V_{x}\binom{1}{0}+V_{y}\binom{0}{1}=\left\{\begin{array}{l}
V_{x} \\
V_{y}
\end{array}\right\}
$$

The two representation can be related by a transform matrix：

$$
\left\{\begin{array}{l}
V_{+} \\
V_{-}
\end{array}\right\}=T\binom{V_{x}}{V_{y}} \text { and }\binom{V_{x}}{V_{y}}=T^{-1}\left\{\begin{array}{l}
V_{+} \\
V_{-}
\end{array}\right\}
$$

From $\{0,1\}^{\mathrm{T}}=T(1, j)^{\mathrm{T}},\{1,0\}^{\mathrm{T}}=T(1,-j)^{\mathrm{T}}$ ，we get：

$$
T=\frac{1}{2}\left(\begin{array}{cc}
1 & j \\
1 & -j
\end{array}\right) \quad \text { and } \quad T^{-1}=\left(\begin{array}{cc}
1 & 1 \\
-j & j
\end{array}\right)
$$

## Wave Propagation in Circularly Birefringent Medium

## ＞The Jones Matrix of a Circularly Birefringent Medium

 In a CB medium，the indices of CCW and CW CP waves are denoted by $n_{+}$and $n_{\text {＿}}$ ．The Jones matrix of CB medium of length $L$ in CPR is：$$
J=\left(\begin{array}{cc}
e^{-j \theta_{+}} & 0 \\
0 & e^{-j \theta_{-}}
\end{array}\right)=e^{-j\left(\theta_{+}+\theta_{-}\right) / 2}\left(\begin{array}{cc}
e^{j \theta} & 0 \\
0 & e^{-j \theta}
\end{array}\right) \quad\left\{\begin{array}{l}
\theta_{+}=k_{0} n_{+} L, \theta_{-}=k_{0} n_{-} L \\
\theta=\left(\theta_{-}-\theta_{+}\right) / 2
\end{array}\right.
$$

$\theta_{+}$and $\theta_{-}$are the rotated angles of CCW and CW waves，respectively．Ignoring the common phase factor，the Jones matrix becomes：

$$
J=\left(\begin{array}{cc}
e^{j \theta} & 0 \\
0 & e^{-j \theta}
\end{array}\right)
$$

The matrix in rectangular representation is obtained by transformation matrix $T$ ：

$$
J^{\prime}=T^{-1} J T=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=R(-\theta) \longmapsto\binom{V_{x}(L)}{V_{y}(L)}=J^{\prime}\binom{V_{x}(0)}{V_{y}(0)}
$$

## $>$ Rotation of Polarization States

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{1}{0}=\binom{\cos \theta}{\sin \theta}
$$

A linearly－polarized input field is rotated by an angle $\theta$ after propagation in the CB medium．

## Magneto－Optic（Faraday）Effects

## ＞Faraday Rotation

Some materials exhibit circular birefringence when a magnetic field is applied along the wave propagation direction．The birefringence $\Delta n=n_{+}-n_{-}$is proportional to the applied magnetic field，so the rotation angle can be written as（Faraday effect）：
$\theta=V B L \quad V$ is the Verdet constant of the material
$\theta$ is the rotation angle about the direction of propagation．

## ＞Nonreciprocal Property of Faraday Rotation

For a wave traveling in the－B direction，the rotation is－$\theta$ about the new direction of propagation．So the Faraday rotation is nonreciprocal．For a given material，the rotation direction depends only on the direction of B．


## Optical Isolator

－Basic Principle


Forward Propagation Wave


Backward propagation Wave
＞Improvement：Polarization Insensitivity


