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Integrated Mach-Zehnder Optical Modulators
Device Structure 
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Electro-Optic Directional Couplers and Modulators
Device Structure

Basic  Principle
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Consider only the coupling between TE fields:
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The general coupled wave Eqs. become:
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Δβ = βA- βB = 0 for V= 0. Phase matching condition is perfectly satisfied 
and the two fields are strongly coupled. The power in A will be transferred to 
B.For V ≠ 0, Δβ≈ 2Δn(2π /λ). Δn = (1/2)noγ22(V/d). The phase 
mismatch will destroy the coupling between the two fields and the power 
transfer decays.

If A and B are exactly the same, we have:



Solutions to The Coupled Wave Equations
Coupling Coefficiency
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Standard Form of The CWE
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Summary
Length of the Coupler for Fully Power Transfer

 2πκ =L
for Δβ =  0  (V = 
0)
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High Frequency Modulation: A Simple Case
Structure and Equivalent Circuit

Effective Applied Voltage
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Rs is the internal resistance of the signal 
source;    Ceo = ε S/d is the 
capacitance of the modulator

Reduce Rs and Ceo = ε S/d to 
achieve high frequency modulation
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High Frequency Modulation: Improvement

Modulation Bandwidth
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Equivalent Circuit

The Effective Applied Voltage
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The efficiency is maximum at ω = ω0

is the center frequency of the modulator

fΔ

Rp should be properly selected

Reduce Rs , L, and Ceo to achieve high frequency modulation
Comments



Transit-Time Limitations
EO Retardation under High Speed Modulation
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The EO phase retardation due to a low frequency field E can be written as:

is the transit-time

For high speed modulation field E(t), the retardation should be:
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Transit-Time Reduction Factor
Consider a sinusoid applied field: tj
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For ωmτ << 1, r = 1, and Δφ = aE(t)L
τωm

The Highest Modulation Frequency
r = 0.9 for ωmτ =π/2, (fm)max= c/(4nL). For n =2.2, L = 1cm, (fm)max=3.4GHz



Traveling-Wave Modulators
The Traveling Modulation Field

)()(),( mmmm cztj
m

zktj
m eEeEtzE −− == ωω

At time t + τ (τ = nL/c), the optical field comes out from the crystal, and the 
total phase retardation obtained by the optical field is:

Consider the optical field entering at time t. 
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The Phase Retardation

At some later time t’, the field arrives at z(t’)=(c/n)(t’-t). At this point, the 
modulation field is:

The Reduction Factor and The Maximum Useful Frequency
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Ti Diffused LiNbO3 MZ High Speed Modulators



Circular Birefringence Representation (CPR)
The Basis Vectors in CPR
In CPR, the orthogonal and complete unit basis vector set are the CCW and 
CW rotating CP waves defined as (1, 0)T and (0, 1)T. Arbitrary transverse 
field can be described as:
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In rectangular representation, the same field is described as:
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The Transform Matrix
The two representation can be related by a transform matrix:

⎭
⎬
⎫

⎩
⎨
⎧

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎭
⎬
⎫

⎩
⎨
⎧

−

+−

−

+

V
V

T
V
V

V
V

T
V
V

y

x

y

x 1    and    

From {0, 1}T=T(1, j)T, {1, 0}T=T(1,-j)T, we get:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= −

jj
T

j
j

T
11

    and    
1
1

2
1 1



Wave Propagation in Circularly Birefringent Medium
The Jones Matrix of a Circularly Birefringent Medium
In a CB medium, the indices of CCW and CW CP waves are denoted by n+ and 
n-. The Jones matrix of CB medium of length L in CPR is:

θ+ and θ- are the rotated angles of CCW and 
CW waves, respectively. Ignoring the common 
phase factor, the Jones matrix becomes:
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The matrix in rectangular representation is obtained by transformation matrix T:
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A linearly-polarized input field is rotated by an angle θ after propagation in the 
CB medium.

Rotation of Polarization States
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Magneto-Optic (Faraday) Effects
Faraday Rotation
Some materials exhibit circular birefringence when a magnetic field is applied 
along the wave propagation direction. The birefringence Δn = n+-n- is 
proportional to the applied magnetic field, so the rotation angle can be written 
as (Faraday effect):

V is the Verdet constant of the materialVBL=θ
θ is the rotation angle about the direction of propagation. 

Nonreciprocal Property of Faraday Rotation
For a wave traveling in the –B direction, the rotation is -θ about the new 
direction of propagation. So the Faraday rotation is nonreciprocal. For a given 
material, the rotation direction depends only on the direction of B.



Optical Isolator
Basic Principle

Forward Propagation Wave Backward propagation Wave

Improvement: Polarization Insensitivity
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