分组加密算法 SMS4 的 14 轮 Square 攻击

钟名富, 胡予濮, 陈 杰

(西安电子科技大学 计算机网络与信息安全教育部重点实验室,陕西 西安 710071)

摘要:为了对分组加密算法 SMS4 进行新的安全性分析,基于 SMS4 的轮结构中的活跃字变化的特点,选择 1 个特定的明文形式来构造 1 个含 3 个活跃字的 Λ 集,通过观察平衡字的传播路径,在第 9 轮找到了 1 个平衡字,由此构建出 1 个新型的 12 轮区分器并对 14 轮 SMS4 进行 Square 攻击.研究结果表明:攻击所需的明文数据量为 2^{32} ,计算复杂度为 $2^{96.5}$,这说明 14 轮 SMS4 对 Square 攻击是不免疫的.

关键词: SMS4 算法;平方攻击;计算复杂度;分组加密

中图分类号:TN918.1 文献标识码:A 文章编号:1001-2400(2008)01-0105-05

Square attack on the 14-round block cipher SMS4

 $ZHONG\ Ming-fu\ ,\ HU\ Yu-pu\ ,\ CHEN\ Jie$ (Ministry of Education Key Lab. of Computer Network and Information Security, Xidian Univ. , Xi'an 710071, China)

Abstract: In order to make a new security evaluation for the block cipher SMS4, a certain plaintext is chosen to built a gamma set that contains three active words. Based on the character of the diversification of the active words in the round structure of SMS4, a balance word is found in the ninth round by observing the spread path of the balance words, and therefore a new 12-round distinguisher is constructed, by use of which a 14-round square attack is made on SMS4. In the attack 2³² chosen plaintexts are needed and the time complexity is about 2^{96.5}. Thus the 14-round SMS4 is not immune to the Square attack.

Key Words: SMS4; square attack; time complexity; block cipher

SMS4 是用于 WAPI 的分组密码算法,也是国内官方公布的第 1 个商用密码算法^[1].由于其公布时间的不长,目前对于它的攻击仍仅限于边信道攻击方面的结果^[2].如何对 SMS4 加密算法做出新的安全性评价,是当前的研究热点之一.

1997 年 Joan Daemen 等人针对类 Square 密码算法首次提出了 Square 攻击^[3]. Square 攻击是一种选择明文攻击,利用的是扩散层及活跃字节变化的特点进行分析;这种分析技术在 AES 等标准算法分析中发挥着重要的作用. 笔者基于 SMS4 的轮结构特点,构建出了 1 个新型的 12 轮区分器;并由此对 14 轮 SMS4 进行 Square 攻击. 研究结果表明:利用 Square 攻击对 14 轮 SMS4 进行攻击所需的明文数据量为 2³²,计算复杂度为 2^{96.5}.

1 SMS4 算法简介

SMS4 算法是一个分组密码算法,该算法的分组长度为 128 bit,密钥长度为 128 bit.加密算法与密钥扩展算法都采用 32 轮非线性迭代结果.解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序.

1.1 轮函数

算法采用非线性迭代结构,以字为单位进行加密运算,称一次迭代运算为一轮变换.

收稿日期:2007-03-29

基金项目:国家自然科学基金资助(60673072);国家密码发展基金资助

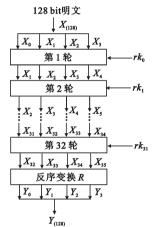
作者简介:钟名富(1983-),男,西安电子科技大学硕士研究生,E-mail: mfzh023@163.com.

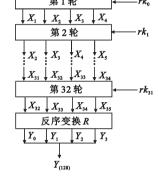
设输入为 $(X_0, X_1, X_2, X_3) \in (Z_3^{32})^4$,轮密钥为 $k \in Z_3^{32}$,则轮函数F为; $F(X_0, X_1, X_2, X_3, rk) = X_0 \oplus X_1$ $T(X_1 \oplus X_2 \oplus X_3 \oplus R)$,其中 T 为 $Z_2^{32} \to Z_2^{32}$ 的一个可逆变换,由非线性变换 τ 和线性变化 L 复合而成,即 $T(\bullet) = L(\tau(\bullet))$. 其中:非线性变换 τ 是由 4 个并行的 S 盒构成. 设输入为 $A = (a_1, a_2, a_3, a_4) \in (Z_2^8)^4$,输出 为 $B = (b_1, b_2, b_3, b_4) \in (Z_2^8)^4$,则有: $((b_1, b_2, b_3, b_4) = \tau(A) = (S_{\text{box}}(a_1), S_{\text{box}}(a_2), S_{\text{box}}(a_3), S_{\text{box}}(a_4))$.

线性变换 L:非线性变换 τ 的输出即为线性变换 L 的输入. 设输入为 $B \in \mathbb{Z}^3$,则有 $C = L(B) = B \oplus$ $(B \ll 2) \oplus (B \ll 10) \oplus (B \ll 18) \oplus (B \ll 24)$,其中 $\ll i$ 为32 bit循环左移 i 位.

1.2 加/解密算法

 $X_1, X_2, X_3 \in (Z_2^{32})^4$,密文输出为 $(Y_0, Y_1, Y_2, Y_3) \in (Z_2^{32})^4$,轮密钥为 $t_i \in Z_2^{32}, i = 0, 1, \dots, 31$. 则本算法的 加密变换为: $X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i) = X_i \oplus T(X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus rk_i), i = 0, 1, \dots, 31.$ $(Y_0, X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus rk_i), i = 0, 1, \dots, 31.$ Y_1, Y_2, Y_3) = $R(X_{32}, X_{33}, X_{34}, X_{35})$ = $(X_{35}, X_{34}, X_{33}, X_{32})$. 具体的加密算法结构如图 1 和图 2 所示.





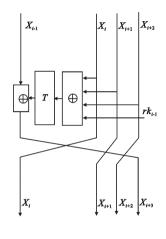


图 1 SMS4 加密算法整体结构

图 2 第 i 轮 SMS4 加密算法结构

算法的解密变换与加密变换结构相同,不同的仅是轮密钥的使用顺序.

加密时轮密钥的使用顺序为 $(rk_0, rk_1, \dots, rk_{31})$. 解密时轮密钥的使用顺序为 $(rk_{31}, rk_{30}, \cdots, rk_{0})$.

1.3 密钥扩展算法

算法中加密算法的轮密钥由加密密钥通过密钥扩展算法生成,

加密密钥 $M_K = (M_{K_0}, M_{K_1}, M_{K_2}, M_{K_3}), M_{K_i} \in \mathbb{Z}_2^{32}, i = 0, 1, 2, 3.$

 K_3) = $(M_{K_0} \oplus F_{K_0}, M_{K_1} \oplus F_{K_1}, M_{K_2} \oplus F_{K_2}, M_{K_3} \oplus F_{K_3}), \forall i = 0, 1, 2, \cdots, 31 \notin rk_i = K_{i+4} = K_i \oplus K_i \oplus K_i$ $T'(K_{i+1} \oplus K_{i+2} \oplus K_{i+3} \oplus C_{K_i})$,其中 T' 变换与轮函数中的 T 变换基本相同,只将其中的线性变换 L 修改为

系统参数 F_{κ} 的取值,采用 16 进制表示为: $F_{\kappa} = (F_{\kappa_0}, F_{\kappa_1}, F_{\kappa_2}, F_{\kappa_3})$,其中 $F_{\kappa_0} = (A3B1BAC6)$, $F_{K_1} = (56AA3350), F_{K_2} = (677D9197), F_{K_2} = (B27022DC).$

固定参数 $C_K = (C_{K_0}, C_{K_1}, \dots, C_{K_{31}})$ 为 32 个固定参数,其值参看相关标准^[1].

平方攻击的核心思想

2.1 平方攻击介绍

1997年 Joan Daemen 等人针对类 Square 密码算法首次提出了 Square 攻击,这种攻击主要利用了 Square 密码的块操作特性和 SPN 结构密码中每一变换的可逆性提出的一种攻击方法. 它对于攻击低轮数 类似 Square 密码是十分有效的[3~5]. 随后 N. Ferguson 和 H. Gilbert 等人分别利用动态规划和生日悖论的 技巧推广了 Square 攻击并都取得了很好的效果[6,7].

2.2 平方攻击基本思想

Square 攻击主要建立在以下两个重要概念── ∧ 集平衡性之上的一种选择明文攻击[8,9].

① \land 集是一个包含 2^{32} 个状态的集合,这些状态在某些字(称为活动字)上两两互异(因而遍历字的所有的可能值),而在其他字(称为非活动字)上则完全相同,即对任意状态 $A,B \in \land$ 有:

$$\begin{cases} A_{i,j} \neq B_{i,j} &, \quad \ddot{A}(i,j)$$
 位置上是活动字, $A_{i,j} = B_{i,j} &, \quad \ddot{A}(i,j)$ 位置上是非活动字.

② 对包含 2^{32} 个状态的集合 P,某个位置(i,j) 上的字是平衡的当且仅当所有状态在该位置上的字的异或结果为 0,即字(i,j) 是平衡的 $\Leftrightarrow \bigoplus_{i} A(i,j) = 0$.

基本的攻击过程是:

Step1 选择一个 / 集.

Step2 对此 / 集加密并观察加密过程中平衡字的传播路径(此过程包含密钥猜测).

Step4 输出正确的密钥.

3 14 轮 SMS4 平方攻击密码分析

3. 1 SMS4 的 12 轮 Square 攻击区分器的构造

选择具有形式为 $(\alpha,\alpha,\alpha,0)$ 的一个明文加密,其中 $\alpha \in \mathbb{Z}_2^{32}$,由 SMS4 的轮结构特点,则得到具体的明文加密时转移的情况如表 1 所示.

· 轮数 明文 · · · · · · · · · · · · · · · · · ·			
α	α	α	0
α	α	0	$\alpha \bigoplus T(r_{\scriptscriptstyle 0})$
α	0	$\alpha \bigoplus T(r_{\scriptscriptstyle 0})$	$\alpha \bigoplus T(T(r_0) \bigoplus r_1)$
0	$\alpha \bigoplus T(r_0)$	$\alpha \bigoplus T(T(r_0) \bigoplus r_1)$	$\alpha \bigoplus T(T(r_0) \bigoplus T(T(r_0))$
			$\bigoplus r_1) \bigoplus r_2)$
5 $\alpha \oplus T(r_0)$	$\alpha \bigoplus T(T(r_0) \bigoplus r_1)$	$\alpha \bigoplus T(T(r_{\scriptscriptstyle 0}) \bigoplus T(T(r_{\scriptscriptstyle 0})$	eta_1
		$\bigoplus r_1) \bigoplus r_2)$	
$6 \qquad \alpha \bigoplus T(T(r_0) \bigoplus r_1)$	$\alpha \oplus T(T(r_0) \oplus T(T(r_0)$	eta_1	eta_2
	$\bigoplus r_1) \bigoplus r_2)$		
$\alpha \bigoplus T(T(r_{\scriptscriptstyle 0}) \bigoplus T(T(r_{\scriptscriptstyle 0})$	$oldsymbol{eta}_1$	eta_2	*
$\bigoplus r_1) \bigoplus r_2)$			
$oldsymbol{eta}_1$	eta_2	*	*
eta_2	*	*	*
*	у	*	*
*	*	У	*
	$\begin{matrix} \alpha \\ \alpha \\ 0 \\ \end{matrix}$ $\begin{matrix} \alpha \oplus T(r_0) \\ \end{matrix}$ $\begin{matrix} \alpha \oplus T(T(r_0) \oplus r_1) \\ \end{matrix}$ $\begin{matrix} \alpha \oplus T(T(r_0) \oplus T(T(r_0)) \\ \oplus r_1) \oplus r_2) \\ \end{matrix}$ $\begin{matrix} \beta_1 \\ \beta_2 \\ * \end{matrix}$	$\begin{array}{lll} \alpha & & \alpha & & \alpha \\ \alpha & & 0 & & \\ 0 & & \alpha \oplus T(r_0) & & \\ \alpha \oplus T(r_0) & & \alpha \oplus T(T(r_0) \oplus r_1) & & \\ \alpha \oplus T(T(r_0) \oplus r_1) & & \alpha \oplus T(T(r_0) \oplus T(T(r_0)) \\ & \oplus r_1) \oplus r_2) & & \\ \alpha \oplus T(T(r_0) \oplus T(T(r_0)) & & \\ \beta_1 & & \beta_2 & & \\ \beta_2 & & & \\ * & & & & & & & \\ & & & & & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

表 1 12 轮明密文编排表

表 1 中 $0,\alpha,\beta_1,\beta_2$ 均取于 Z_2^{32} ,* 为任意数, $\beta_1 = T(\alpha \oplus T(r_0) \oplus T(T(r_0) \oplus r_1) \oplus T(T(r_0) \oplus T(T(r_0) \oplus T(T(r_0) \oplus r_1) \oplus r_2) \oplus T(\alpha \oplus T(r_0) \oplus T(T(r_0) \oplus r_1) \oplus T(T(r_0) \oplus T(T(r_0) \oplus r_1) \oplus r_2) \oplus r_3) \oplus r_4)$,又因密钥 r_0,r_1,r_2,r_4 都是固定的,所以经过变换 T之后仍然是个定值,则令 $T(r_0) \oplus T(T(r_0) \oplus r_1) \oplus T(T(r_0) \oplus r_1) \oplus T(T(r_0) \oplus T(T(r_0) \oplus T(T(r_0) \oplus T(T(r_0) \oplus r_1) \oplus T(T(r_0) \oplus T(T($

 r_1) \oplus r_2) $=B_2$,则 $\beta_2=\alpha\oplus B_1\oplus T(B_2\oplus T(\alpha\oplus A))$,其中 A, B_1 , B_2 都是定值.

而通过对线性层 L 的分析以及对 S 盒的测试能得到如下结论:

(1) 对于任意的 $a \in \mathbb{Z}_2^{32}$, $b \in \mathbb{Z}_2^{32}$, 若 $a \neq b$, 则有 $L(a) \neq L(b)$.

(2) 因为 S 盒是双射的,则对于任意的 $a \in \mathbb{Z}_2^{32}$, $b \in \mathbb{Z}_2^{32}$, $\ddot{A}a \neq b$,则有 $S(a) \neq S(b)$. 因此 $T(a) \neq T(b)$, 也即若 x 跑遍 0 到 $(2^{32}-1)$ 则 T(x) 也跑遍 0 到 $(2^{32}-1)$, $T(x \oplus A)$ 也跑遍 0 到 $(2^{32}-1)$, 再进一步则得 T(T(x)) 也跑遍 0 到 $(2^{32}-1)$. 同理得 $T(B_2 \oplus T(\alpha \oplus A))$ 也跑遍 0 到 $(2^{32}-1)$ 。

由以上结论可证明 $\sum_{\alpha} \beta_2 = 0$,因当 α 跑遍 0 到 $(2^{32}-1)$ 时,显然有 $\sum_{\alpha} \alpha = 0$, $\sum_{\alpha} T(B_2 \oplus T(\alpha \oplus A)) = 0$,则 $\sum_{\alpha} \beta_2 = 0 + 0 = 0$ 得证.

12 轮区分器为: $\sum_{y} y = 0$,输入特征为 $(\alpha,\alpha,\alpha,0)$,其中 $\alpha \in Z_2^{32}$.输出特征为 $(*,*,*,*,\sum_{y} y = 0)$,其中y为第 12 轮输出块,且 $y \in Z_2^{32}$.

3.2 14 轮平方攻击过程详述

具体攻击过程如下:

Step1 选择一个明文为 $(\alpha,\alpha,\alpha,0)$, 通过加密得到一个明文编排表 (表 1) 并得到经过 14 轮加密后的密文.

Step2 全猜测第 14 轮的子密钥 rk_{13} 并解密第 14 轮的密文,也即得到了第 13 轮的明文.

Step3 全猜测第 13 轮的子密钥 rk_{12} 并解密上一步所得到的第 13 轮的明文,也即得到了第 12 轮的明文.

Step 4 让 α 跑遍 0 到 $(2^{32}-1)$,并重复 Step 2 和 Step 3,把得到的 12 轮的明文的最后一个字 y 相加. 而 因最后一个字 y 的和为 0 的概率是 2^{-32} ,则一共有 $2^{32} \times 2^{32} \times 2^{-32} = 2^{32}$ 个密钥使得 $\sum_{y} y = 0$,也即能保留下来的可能的正确的密钥量为 2^{32} 个.

Step5 对这 2³²个可能的密钥进行全测试,直至得到惟一的正确的子密钥.

Step6 对余下的 128-64=64 bit 进行全搜索得到正确的子密钥,从而完全恢复出所有密钥.

3.3 复杂度分析

- (1) 在 Step 4 中需要对每一个 α 都分别猜测第 13 轮和第 12 轮的子密钥,每猜测一轮子密钥的计算复杂 度为 2^{32} ,而一共有 2^{32} 个 α , 所以这一步所需的计算复杂度为 $2^{32} \times 2^{32} \times 2^{32} = 2^{96}$.
 - (2) 在 Step 5 中需要对 232个可能的密钥每一个都进行测试, 所以这步的计算复杂度为 232.
- (3) 在 Step 6 中还需对剩下的 64 bit 子密钥进行全搜索,也即必须进行 2^{64} 次 14 轮加密,因此这一步的 计算复杂度为 2^{64} .

所以单轮计算复杂度为 $(2^{96}+2^{32})/14\approx 2^{93}$,而此攻击方法总共所需的计算复杂度为 $2^{96}+2^{32}+2^{64}\approx 2^{96.5}$. 故攻击 14 轮 SMS4 所需的复杂度为:明文数据量为 2^{32} ,计算复杂度为 $2^{96.5}$.

4 结束语

通过对 SMS4 加密算法中的线性变换 L 的特点以及平衡字节的变化情况进行了分析,并首次利用平方攻击方法对其进行攻击.结果表明:攻击所需的明文数据量为 2^{32} ,计算复杂度为 $2^{96.5}$,这说明 14 轮 SMS4 对 Square 攻击是不免疫的. 但目前为止还没有证据显示 32 轮的 SMS4 算法是否能足以抵抗文中算法的平方攻击.

参考文献:

- [1] Office of State Commercial Cipher Administration. Block Cipher for WLAN Products—SMS4[EB/OL]. [2006-12-23]. http://www.oscca.gov.cn/UpFile/2006021016423197990.
- [2] 张蕾,吴文玲. SMS4 密码算法的差分故障攻击[J]. 计算机学报,2006,29(9):1594-1600.
- [3] Daemen J, Knudsen R L, Rijmen V. The Block Cipher Square[C]//Fast Software Encryption. Berlin: Springer-Verlag, 1997: 149-165.
- [4] Daemen J, Rijmen V. AES Proposal: Rijndael Version 2[EB/OL]. [2006-11-10]. http://www.east.kuleuven.ac.be/~rijmen/rijndael.
- [5] Barreto P, Rijmen V. The ANUBIS Block Cipher[EB/OL]. [2005-08-23]. http://www.cryptonessie.org.
- [6] Ferguson N, Kelsey J, Schneier B, et al. Improved Cryptanalysis of Rijndael [C]//Proceedings of Fast Software Encryption Workshop: Vol 1978. Berlin: Springer-Verlag, 2000: 213-230.
- [7] Gilbert H, Minier M. A Collision Attack on 7 Rounds of Rijndael [EB/OL]. [2006-10-15]. http://csrc. nist. gov/eccryption/aes/round2/conf3/aes3papers.html.
- [8] 韦宝典, 刘东苏, 王新梅. 一种新的 Square 攻击[J]. 西安电子科技大学学报, 2003, 30 (4):473-476. Wei Baodian, Liu Dongsu, Wang Xinmei. A New Type of Square Attack[J]. Journal of Xidian University, 2003, 30 (4): 473-476.
- [9] 李清玲, 李超. 变种 Camellia 对 Square 攻击的安全性[J]. 应用科学学报, 2006, 24 (5): 485-490.

(编辑: 齐淑娟)

(上接第104页)

- [8] Wandell B A. Foundations of Vision. Sinauer Associates [M]. First Edition. Sunderland: Sinauer Associates, Inc, 1995.
- [9] Imgeun L, Jongsik K. Wavelet Transform Image Coding Using Human Visual System [C]//IEEE Asia-Pacific Conference on Circuits and Systems. Taipei: IEEE, 1994: 619-623,
- [10] Miloslavski M, Ho Y S. Zerotree Wavelet Image Coding Based on the Human Visual System Model [C]//IEEE Asia-Pacific Conference on Circuits and Systems. Chiangmai: IEEE, 1998: 57-60.
- [11] Nadenau M J, Julien R, Murat K. Wavelet-Based Color Image Compression: Exploiting the Contrast Sensitivity [J]. IEEE Trans on Image Processing, 2003, 1, 12(1): 58 70.
- [12] Sheikh H R, Wang Z, Bovik A C, et al. Image and Video Quality Assessment Research at LIVE [DB/OL]. [2003-10-12]. http://live.ece.utexas.edu/rese-arch/quality/.
- [13] VQEG. Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment [DB/OL]. [2003-03 -12]. http://www.vqeg.org/.

(编辑: 齐淑娟)