Note

Comprehensive Analysis of Polyphenols in Fruits Consumed in Japan

Shigenori KUMAZAWA¹, Michiko IKENAGA¹, Yumiko USUI², Katsuko KAJIYA¹, Saeka MIWA¹, Junya ENDO¹, Chieko CHIKASAWA¹, Yukiko SUZUKI¹, Yuya SUZUKI¹, Kayoko SHIMOI² and Tsutomu NAKAYAMA^{1*}

¹Laboratory of Functional Food Science and Global COE Program in the 21st Century, School of Food and Nutritional Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan

²Institute for Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan

Received June 26, 2006; Accepted May 17, 2007

Polyphenols, a large group of natural antioxidants, are a versatile group of phytochemicals beneficial for disease prevention. In this study, we comprehensively analyzed polyphenols, catechins, procyanidins, simple polyphenols, anthocyanins and flavonoids, in fruits consumed in Japan by high performance liquid chromatography with photo-diode array and mass spectrometric detection to complete the database of food components.

Keywords: polyphenol, fruits, HPLC, PDA

Introduction

Polyphenols form a large versatile group of phytochemicals that are natural antioxidants found to be potentially beneficial for disease prevention. Epidemiologic studies have recently revealed the association of higher polyphenol intake from fruits and vegetables with decreased risk of cardiovascular diseases (Stoclet *et al.*, 2004; Manach *et al.*, 2005). Furthermore, the regular consumption of certain foods and beverages such as apples, berries, wine, coffee and tea may significantly influence the quantity of antioxidants in a diet (Scalbert and Williamson, 2000). Thus, it is important to determine the amounts and species of polyphenols in foods.

The most recent edition (fifth) of the "Standard Tables of Food Composition in Japan" edited by the Resources Council of the Science and Technology Agency of Japan published in 2000 serves as the database of food components in Japan. It lists the contents, such as proteins, lipids, carbohydrates, minerals and vitamins, of various foods consumed in Japan, but lacks data on polyphenols. For example, fruits are rich in polyphenols, but their polyphenol content is not given. Since the role of polyphenols in foods is gaining attention, we comprehensively analyzed the contents of polyphenols in fruits consumed in Japan to complete the database of food components.

There are over one million natural polyphenols, which generally occur as glycosides, and contain various sugar species with various binding forms (Wollenweber and Dietz, 1981). Aglycons of polyphenols can be generally classified into flavonoids and simple polyphenols. Flavonoids are a family of compounds with a C6-C3-C6 skeleton structure. Flavanols, flavonols and anthocyanins are included in this group. Most of them have been shown to possess antioxidant activity, which depends mainly on the number and position of hydroxyl groups in their structure (Rice-Evans *et al.*, 1996). There are two subgroups of simple polyphenols: benzoic acids (protocatechuic acid, gallic acid, etc.) and cinnamic acids (coumaric acid, caffeic acid, etc.) (Sakakibara *et al.*, 2003).

A high-performance liquid chromatography (HPLC) separation method with photo-diode array (PDA) detection has been proposed to determine and quantify polyphenols in fruits by several groups (Crozier *et al.*, 1997; Merken and Beecher, 2000). Although PDA is a useful technique for characterizing the aglycons of flavonoids, information on the molecular weight of compounds is not obtained from this method. Therefore, in addition to PDA, mass spectrometric (MS) detection technique in HPLC analysis has been applied for the identification of polyphenol compounds (Stobiecki, 2000). In the present study, we also used HPLC-PDA and HPLC-MS analysis to identify and quantify the polyphenols.

Materials and Methods

Materials Catechins were purchased from Sigma (St. Louis, MO, USA), anthocyanins and flavonoids were from Funakoshi (Tokyo, Japan), and simple polyphenols were from Wako Pure Chemicals Industries (Osaka, Japan). These chemicals were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 10 mM and stored at -20° C in the dark for up to 3 months. Calibration curves of these polyphenols in solutions ranging from 1.0 to 1000μ M were made by HPLC with PDA.

Extraction of polyphenols from fruits Fresh fruit was obtained from local markets in Shizuoka City or directly

^{*} To whom correspondence should be addressed. E-mail: nkymttm@u-shizuoka-ken.ac.jp

from the producers. The edible portions were taken randomly from several individual samples and washed with tap water. After being chopped, they were homogenized in liquid nitrogen with a Nissei AM-8 homogenizer (Nihonseiki, Osaka, Japan). The homogenized powders were lyophilized for 48 h and stored at -20° C until use. Each sample was weighed after lyophilization and the water content was also obtained. The stored powders (50 mg) were extracted with 2 mL of 80% methanol containing 0.5% acetic acid, after adding 50 nmol of flavone in DMSO as an internal standard. The solution was allowed to stand in a sonicator for 1 min, and the supernatant was recovered by centrifugation at 1610g for 10 min. After extraction three times, the extracts were concentrated with evaporator and dried with nitrogen gas. The residues were dissolved in 0.5 mL of 80% methanol or DMSO and filtered with a PTFE $0.45 \mu m$ membrane filter (Pall, East Hills, NY, USA) before HPLC analysis.

Total polyphenol contents Total polyphenol contents in the extracted powder from fruits were determined by the Folin-Ciocalteu colorimetric method (Kumazawa *et al.*, 2002). Methanol extracts of the powders (1 mg/mL)were mixed with 1 mL of the Folin-Ciocalteu reagent (Kanto Chemicals, Tokyo) and 1 mL of 10% Na₂CO₃, and the absorbance was measured at 760 nm after 1 h incubation at room temperature. Total polyphenol contents were expressed as μ mol/100 g gallic acid equivalents.

HPLC-PDA analysis The HPLC analysis of polyphenols was performed using a Jasco HPLC system (Tokyo) equipped with a PDA detector and a reversed phase column Capcell Pak C18 UG120 ($250 \times 4.6 \text{ mm}$ i.d., $5 \mu \text{m}$; Shiseido, Tokyo, Japan). The flow rate was 1.0 mL/min, the injection volume was 10μ L, and the oven temperature was 30°C. The following solvents were used for analysis of catechins, procyanidins, simple polyphenols and anthocyanins: A, 0.1% trifluoroacetic acid (TFA) in water, and B, methanol. The gradient condition 1:18% B (0-20 min), 18-22% B (20-25 min), 22% B (25-50 min), 22-100% B (50-80 min), was applied for analysis of catechins, procyanidins and simple polyphenols. The gradient condition 2: 22-50% B (0-50 min), 50-70% B (50-80 min), was used for analysis of anthocyanins. For analysis of flavonoids, solvent A, 1% acetic acid in 10% methanol, and solvent B, 1% acetic acid in 70% methanol were used and the gradient condition 3: 0-30% B (0-15 min), 30-35% B (15-45 min), 35-40% B (45-65 min), 40-50% B (65-70 min), 50-100% B (70-85 min), 100% B (85-95 min), was applied.

Quantification of polyphenols Polyphenols were quantified under the analytical conditions described in HPLC-PDA. Each sample was injected in triplicate, and the standard calibration curves were constructed with the specific wavelengths of standard chemicals: 280 nm for catechins, procyanidins and simple polyphenols; 520 nm for anthocyanins and anthocyanidins; 350 nm for flavones and flavonols; and 290 nm for flavanones.

Results and Discussion

Sakakibara *et al.* (2003) reported a method for simultaneously determining the polyphenols in foodstuffs. However, in the present study, we analyzed the polyphenols in 59 kinds (varieties) of fruits by different three HPLC conditions. Fruits used for the present experiment were purchased from a local supermarket or directly from the producers.

The detected polyphenol peaks from extracts of fruits were compared with respect to retention time with those of standard chemicals, and next the aglycons were identified by comparison with those spectra. When the detected polyphenol did not coincide with any of the standards, the food samples were subjected to hydrolysis or LC/MS analysis. Hydrolysis was performed by the method reported by Sakakibara *et al.* (2003).

Table 1 shows the water content (%), total polyphenol content ($\mu mol/100 \, g$) and polyphenol content ($\mu mol/100 \, g$ fresh edible part) of each fruit. Sakakibara et al. (2003) examined using Japanese radish root to determine the recovery with extraction, and they obtained recoveries 68-92% for added flavonoids, and the analytical precisions ranged from 1 to 9%. We also performed the recovery with extraction experiment, and obtained the similar results to those of Sakakibara et al. (data not shown). Sakakibara et al. (2003) used flavone as an internal standard, and they corrected the recovery rate with it. Thus, we also used flavone as an internal standard, and the same data analysis were carried out. The water content of each fruit was similar to that described in the Standard Table of Food Composition in Japan. The Folin-Ciocalteu method we used for determination of total polyphenol contents is interfered by reducing substances (Prior et al., 2005). For example, total polyphenol contents of acerolas show high values caused by the high ascorbic acid content (Hwang et al., 2001).

Catechins, procyanins and simple polyphenols were analyzed using HPLC condition 1. We detected (+)-catechin in atemoya, peach and plum, and (-)-epicatechin in apple, apricot and cherimoya. Although (+)-catechin and (-)-epicatechin have been reported to be in various fruits (Luo *et al.*, 2002; Yilmaz and Toledo, 2004), these compounds were not detected in the present study. This is assumed to be because we analyzed only the edible parts of the fruit not the skin or seed, where these compounds are mostly located.

Large amounts of procyanidins B1, B2 and C1, oligomers of catechins, were detected in atemoyas. Cherimoyas also contained considerable amounts of procyanidins. White sapotes also had high contents of procyanidin B1 and B2, especially the latter. Procyanidins are reported to be detected in various fruits such as apples and grapes (Peng *et al.*, 2001). Although procyanidins as well as catechins exist in the skins and seeds of fruits, we did not analyze polyphenols in the skins or seeds of these fruits. Thus, the contents of procyanidins we obtained were lower than the reported values. Most fruits containing large amounts of catechins and procyanidins belong to the rose family, such as example, apples, peaches and plums.

Of the simple polyphenols, chlorogenic acids were detected in many fruits especially marmelo. Other pears

Food (scientific name)	Water Total polyphe		nol Polyphenol content (μmol/100 g fresh edible part)				
Food (scientific name)	content (%)	content ^a (µmol/100 g)			simple polyphenols		
Acerola	90.0	19069	cyanidins ^b	43.1	_		
(Malpighia glabra)			total anthocyanins ^c	24.1			
			total anthocyanidins ^d	56.7			
			quercetin glycosides ^e	4.5			
Akebia (Akebia trifoliata)							
flesh	77.9	1008	_		_		
peel	86.5	5128	quercetin glycosides ^e	238.1	chlorogenic acid	339.6	
					neochlorogenic acid	227.1	
Apple	85.2-87.3	1043	(-)-epicatechin	6.5-9.8	chlorogenic acid	26.6-52.8	
(Malus domestica)			procyanidin B1	4.6-6.9			
			procyanidin B2	12.7-18.2			
			procyanidin C1	2.8-5.4			
Apricot	92.5	119	rutin	0.2	chlorogenic acid	29.5	
(Prunus armeniaca)					neochlorogenic acid	4.4	
Japanese apricot	91.2	502	(+)-catechin	12.2	caffeic acid	5.3	
(Prunus mume)			(-)-epicatechin	13.4	chlorogenic acid	22.5	
			procyanidin B2	6.1	neochlorogenic acid	81.0	
			procyanidin C1	2.7			
			rutin	0.3			
Atemoya	78.1	4410	(+)-catechin	107.5	_		
(Annona atemoya)			(-)-epicatechin	75.9			
			procyanidin B1	35.0			
			procyanidin B2	58.3			
			procyanidin C1	66.2			
Avocado (Persea americana)	66.9	344	—		p-coumaric acid	6.5	
, , , , , , , , , , , , , , , , , , ,	70.0 70.4	4400		40.70			
Banana (<i>Musa sapientum</i>)	70.3—79.4	1136	myricetin glycosides ^e	1.0-7.3	—		
Blue-berried honeysuckle	84.9	2211	(+)-catechin	4.8	chlorogenic acid	86.6	
(Lonicera caerulea			procyanidin B1	24.3			
subsp. <i>edulis</i>)			procyanidin B2	5.3			
			cyanidin-3-glucoside	26.0			
			pelargonidin-3-glucoside				
			cyanidin-3,5-diglucoside	1.8			
			cyanidins ^b	406.0			
			total anthocyanins ^c	65.6			
			total anthocyanidins ^d	423.0			
			rutin	23.4			
			quercetin glycosides ^e	16.2			

 Table 1-1.
 Polyphenol contents of fruits.

Food	(scientific name)	Water content	Total polyph content ^a	enol Polyphenol c	ontent (µmol/10	0 g fresh edible part)		
		(%)	(µmol/100 g)	flavonoids		simple polyphenols		
Blueb (Va	erry accinium spp.)	84.9-85.9	1104	malvidin-3-galactoside malvidin-3-glucoside cyanidins ^b delphinidins ^b malvidins ^b peonidins ^b total anthocyanins ^c total anthocysnidins ^d	8.7 - 18.2 $0.2 - 8.8$ $9.1 - 9.2$ $27.2 - 52.1$ $79.0 - 134.0$ $1.5 - 2.7$ $75.1 - 80.1$ $138.0 - 226.0$	cinnamic acid caffeic acid chlorogenic acid	1.7 88.8 57.4—270.1	
Cheri (<i>Aı</i>	moya nnona cherimola)	72.5	2612	(-)-epicatechin procyanidin B1 procyanidin B2 procyanidin C1	172.5 34.2 130.4 37.7	_		
Cherr	y <i>(Prunus avium)</i> Japan, sweet type	85.6	481	(+)-catechin (-)-epicatechin procyanidin B1 cyanidin-3-rutinoside cyanidins ^b rutin	11.6 11.5 3.5 0.5 8.1 1.9	chlorogenic acid neochlorogenic acid	6.7 57.8	
	U.S.A., sweet type	81.0—82.8	611	(+)-catechin (-)-epicatechin procyanidin B1 cyanidin-3-rutinoside cyanidins ^b rutin	13.4-14.6 6.9-37.0 0.0-12.0 2.7 25.7 1.2-1.9	chlorogenic acid neochlorogenic acid	10.0—16.1 51.9—266.2	
	ese bayberry yrica rubra)	90.2	772	cyanidin-3-glucoside myricetin glycosides ^e quercetin glycosides ^e rutin	0.7-1.1 16.7 1.4 0.3	_		
Coco	nut (<i>Cocos nucifera</i> coconut milk	· —	9245	_		_		
Date	(<i>Phoenix dactylifera</i> dried	15.2	1806	_		_		
Duria (Di	n urio zibethinus)	73.3	505	_		_		
Fig	(Ficus carica) raw	86.8	145	_		chlorogenic acid neochrologenic acid	1.6 3.0	
	dried	27.5	1343	rutin quercetin glycosides ^e kaempferol glycosides ⁶	2.1 1.6 9 0.5	neochrologenic acid	22.7	

Table 1-2. (Continued).

		Water	Total polyphe	enol Polypheno	ol content (µ	umol/100 g fresh edible	part)
Food (scientific name)		content content ^a (%) (µmol/100 g) [—]		flavonoids		simple polyphenols	
Garambola (A <i>verrhoa</i>	carambola)	91.2	632	(-)-epicatechin procyanidin B2 procyanidin C1	15.0 18.9 5.7	_	
Grape (<i>Vit</i> Delaware	tis spp.) unpeeled	78.3	2163	cyanidin-3-glucoside total anthocyanins ^c quercetin glycosides ^e	3.5 5.9 1.7	-	
pe	eeled	78.9	657	_		_	
(Rasins)	dried	10.7	3545	quercetin glycosides ^e	2.9	_	
Kyoho	unpeeled	78.5	2455	cyanidin-3-rutinoside cyanidin-3-glucoside malvidin-3,5-diglucoside malvidin-3-glucoside total anthocyanins ^c mirycetin glycosides ^e quercetin glycosides ^e	2.7 1.0 24.7 3.9 18.4 9.4 4.6	_	
	peeled	80.5	425	_		_	
Guava (Psidium g	guajava)	83.9	2807	_		_	
Japanese pe (<i>Diospyros</i> nonastrir	s kaki)	83.1	912	_		gallic acid	5.9
astringer	ncy removed	82.9	451	_		gallic acid	15.0
dried		19.0	1887	_		gallic acid	239.0
Jujube (<i>Zizyphus</i> dried	jujuba)	13.2	4160	rutin	3.5	-	
Kiwano (<i>Cucumis</i>	metuliferus)	90.3	85	_		_	
Kiwifruit (<i>Actinidia</i> (deliciosa)	83.9	1007	_		_	
Kiwifruit gol	d	83.3	1 743	_		chlorogenic acid	4.5
₋emon (C whole	Citrus limon) Ə	83.2	2712	diosmin hesperidin eriocitrin	134.4 917.4 367.4	_	

 Table 1-3.
 (Continued).

Polyphenols in Fruits

		Та	able 1-4. (Continued).		
	Water	Total polyphe	nol Polyphenc	ol content (µmol/	100 g fresh edible part)	
Food (scientific name)	content (%)	content ^a (µmol/100 g)	flavonoide	6	simple polyph	enols
Lemon (<i>Citrus limon</i>) fruit juice		148	diosmin hesperidin eriocitrin	12.0 26.4 17.0	_	
Lime (<i>Citrus aurantifolia</i>) fruit juice	—	310	diosmin hesperidin eriocitrin	10.2 44.9 13.4	-	
Longan (<i>Euphoria longana</i>) canned in light syrup	77.1	526	_		_	
Loquot (Eriobotrya japonica)	90.5	1064	(-)-epicatechin procyanidin B2	15.2 6.6	chlorognic acid neochlorogenic acid	95.2 89.7
Lychee (Litchi chinensis)	80.4	1894	rutin quercetin glycosides ^e	0.7 4.1	-	
Mango (Mangifera indica)	85.2	706	_		gallic acid	0.8
Apple mangoe	82.9	547	_		gallic acid	7.5
Mangosteen (Garcinia mangostana)	82.9	603	—		—	
Melon (<i>Cucumis melo</i>) green house culture	90.7	137	_		_	
open culture	85.8	327	_		_	
Oriental melon (<i>C. melo</i> var. <i>makuwa</i>)	93.1	304	_		_	
Oleaster (<i>Elaeagnus</i> spp.)	86.6	4999	_		_	
Oroblanco (<i>Citrus paradisi</i>) juice sacs	88.7	442	naringin narirutin hesperidin	51.9 107.0 0.8	cryptochlorogenic acid	4.1
Papaya (<i>Carica papaya</i>) early ripening type	88.9	1175	_		_	
normal ripening type	90.7	902	_		_	
Passion fruit (Passiflora edulis)	85.0	285	_		_	
Peache & (Purunus persica)	39.3-89.6	431	(+)-catechin procyanidin B1	10.1-11.9 4.1-5.0	0	6.3—7.0 0.2—12.0

Table 1-4. (Continued).

			able 1–5. (Continued).				
	Water Total polypl		enol Polyphenol	content (µmol/	/100 g fresh edible part)		
Food (scientific name)	content content ^a (%) (µmol/100 g)		flavonoids		simple polyphenols		
Nectarine (Purunus persica var. nucipersica)	90.4	563	(+)-catechin	12.6	chlorogenic acid neochlorogenic acid	31.3 14.1	
Pear Chinese pear (<i>Pyrus ussuriensis</i>)	87.4	547	-		chlorogenic acid	21.0	
European pear (<i>Pyrus communis</i>)	85.9-86.2	580	(-)-epicatechin procyanidin B2	0.0 4.4 0.0 6.2	chlorogenic acid	6.6—18.	
Japanese pear (<i>Pyrus pyrifolia</i> var. cu	85.8—88.2 Ita)	197	_		chlorogenic acid	3.1-7.2	
Marmelo (Pyrus cydonia)	79.1	3087	_		chlorogenic acid neochlorogenic acid	91.1 76.7	
Pineapple (Ananas comos	s 85.4	532	—		_		
Pitaya Red pitaya (Hylocereus costaricensis	85.2 s)	256	rutin	1.2	_		
Yellow pitaya (Selenicerus megalanthu	81.1 s)	456	_		_		
Plum							
European plum (Prunus	domestica)						
raw	85.3	3809	(+)-catechin procyanidin B1	19.9 17.9	caffeic acid chlorogenic acid cryptochlorogenic acic neochlogenic acid	5.5 30.8 4.0 223.0	
dried	39.7	3141	_		caffeic acid chlorogenic acid cryptochlorogenic acid neochlogenic acid	11.7 35.2 I 142.7 369.1	
Japanese plum (<i>Prunus salicina</i>)	91.1	1486	(+)-catechin (-)-epicatechin procyanidin B1 procyanidin B2 procyanidin C1	20.9 7.1 25.7 12.7 2.0	chlorogenic acid cryptochlorogenic acid neochlogenic acid	3.0 I 6.1 23.8	
Pomegranate (Punica granatum)	85.3	1447	cyanidin-3-glucoside cyanidin-3,5-diglucoside pelargonidin-3-glucoside cyanidins ^b delphinidins ^b total anthocyanins ^c total anthocyanidins ^d quercetin glycosides ^e	2.5 2.0 0.2 23.4-40.9 6.3-13.2 7.6-13.5 30.4-55.3 0.9	_		

	Water	Total polypher	nol Polypheno	ol content (µmo	l/100 g fresh edible part)	
Food (scientific name)	content (%)	content ^a (µmol/100 g)	flavonoids		simple polyph	
Quince (Cydonia oblonga)	79.1	3087	_		chlorogenic acid neochlorogenic acid	91.1 76.7
Chinese quince (Chaenomeles sinensis)	85.7	2702	procyanidin B2	4.9	chlorogenic acid neochlorogenic acid	53.0 75.6
Rasberry (<i>Rubus idaeus</i>)	87.5	2047	(-)-epicatechin cyanidin-3-rutinoside cyanidin-3-glucoside total anthocyanins ^c total anthocyanidins ^d quercetin glycosides ^e	8.5 0.3-1.6 0.6-1.2 41.8 116.0-141.0 1.6	_	
Satsuma mandarin (<i>Citrus unshiu</i>) segments						
early ripening type	90.2	956	hesperidin narirutin didmyn rutin	233.9 85.9 10.0 3.1	neochlorogenic acid	4.9
normal ripening type	88.7	972	hesperidin narirutin didmyn rutin	291.1 283.2 26.1 3.7	neochlorogenic acid	4.6
juice sacs early ripening type	90.8	712	hesperidin narirutin rutin	112.0 58.6 3.7	neochlorogenic acid	5.8
normal ripening type	89.8	962	hesperidin narirutin didmyn rutin	139.8 95.6 5.2 3.3	neochlorogenic acid	5.0
Strawberry 88 (Fragaria grandiflora =Fragaria × ananassa)	8.3—92.(987	(+)-catechin pelargonidin-3-glucoside cyanidins ^b pelargonidins ^b total anthocyanins ^c total anthocyanidins ^d quercetin glycosides ^e	8.6 1.7-4.1 8.9 23.3 2.9-6.3 45.6 0.4-3.4	_	
Sudachi (<i>Citrus sudachi</i>) fruit juice	_	313	narirutin hesperidin naringin eriocitrin neohesperidin	107.2 21.1 17.2 9.5 9.0	_	

Гable 1–6.	(Continued).
------------	--------------

	Water Total polypheno		ol Polyphenol content (µmol/100 g fresh edible part)			
Food (scientific name)	content	content ^a	flavonoids		simple polyphe	enols
	(%)	(µmol/100 g)				
Watermelon (<i>Citrullus vulgaris</i>)	91.7	181	_		_	
White sapote	81.8	980	procyanidin B2	87.1	caffeic acid	8.2
(Achras zapota)			procyanidin C1	25.8		
Yuzu (<i>Citrus junos</i>) fruit juice						
early ripening type	_	unexamined	narirutin	44.6	cryptochlorogenic acid	1.1
			hesperidin	18.8		
			naringin	10.4		
			neohesperidin	4.8		
normal ripening type	_	unexamined	narirutin	29.7	cryptochlorogenic acid	0.9
			hesperidin	14.9		
			naringin	7.3		
			neohesperidin	4.1		

Table 1–7.(Continued).

^a Total polyphenol contents were expressed as mmol/100 g gallic acid equivalents by the Folin-Ciocalteu method.

^bContents of these aglycons were determined by hydrolysis.

^cContents were determined using cyanidin-3-glucoside.

^d Contents were determined using cyanidin.

^eContents of these glycosides were determined using aglycons.

and Satsuma mandarins also had large amounts of chlorogenic acids. The efficiency of mass spectrometric techniques had been described in a review on phenolic acids in foods (Robins, 2003). In the present study, we used LC/ MS to identify the simple polyphenols.

Several analytical studies of anthocyanins in blueberries have been reported (Dugo et al., 2001; Faria et al., 2005). We identified each anthocyanin in blueberries using the HPLC conditions reported previously by comparison with standard anthocyanin compounds. Other red fruits such as acerolas, pomegranates and strawberries also have anthocyanins. Anthocyanidin peaks identified by hydrolysis were presented such as cyanidins and delphinidins. But anthocyanin peaks not in agreement with standard chemicals were quantified with cyaniding-3-glucoside and were presented as total anthocyanins. Anthocyanidin peaks obtained by hydrolysis of these unknown anthocyanins were similarly quantified with cyanidin and were presented as total anthocyanidins. Although red pitaya has a bright red color, no anthocyanidins were detected. Color pigments of this fruits were expected to be betacyanins not anthocyanins (Wybraniec and Mizrahi, 2002). We could not quantitatively analyze the betacyanins because the standard chemicals were not available.

Many flavonoids have been isolated and identified from various plants including fruits. Flavonoids have been the subject of considerable scientific and therapeutic researches (Havsteen, 2002). We identified each flavonoid glycoside using three HPLC conditions. Most flavonoids occur in glycoside forms. To identify the aglycon of each flavonoid, we performed hydrolysis or the LC/MS/MS analysis. The flavonoid glycoside peaks not in agreement with standard chemicals but with aglycons identifiable by hydrolysis were quantified their aglycons and were presented such as quercetin glycosides. Consequently, as shown in Table 1, quercetin glycosides have been detected in various fruits. The flavanones narirutin and hesperidin were detected only in citrus fruits such as Satsuma mandarins and sudachi, while eriocitrin was detected in lemons and limes. These results were in agreement with those reported by Sakakibara *et al.* (2003).

In the present study, we analyzed polyphenols in fruits consumed in Japan. Although there have been many reports on polyphenols, there are few on the sample preparation and analysis under systematic conditions. The present findings may be helpful for understanding the physiological properties of polyphenols in fruits. In this study, however, several components reported previously were not detected, or the values obtained were different from the reported values. This is considered to be due to the difference between the quality or harvest season of fruits used in this study. Analysis of only the edible parts of fruits in this study may also be a reason. Perishable foods such as fruits and vegetables are different in their seasonal nature. Furthermore flavonoid content is known to be highly dependent on the cultivar and growing and processing conditions (Harnly et al., 2006). In Table 1, the results analyzed three times from different fruits (same kind) were also shown. Thus, it is considered that the results with the wide range are due to the difference of samples not inaccuracy of the analytical methods.

Some of the present data are available through the web page (http://www.nihn.go.jp/FFF/). A more complete database of functional food factors will be useful for further analyses of their effects on human health. Furthermore, the present findings should prove valuable for elucidating the roles that polyphenols in fruits may play in promoting health in Japan.

Acknowledgements This work was supported by the Special Coordination Funds of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- Crozier, A., Jensen, E., Lean, M.E.J. and McDonald, M.S. (1997). Quantitative analysis of flavonoids by reversed-phase high performance liquid chromatography. J. Chromatogr. A., 761, 315–321.
- Dugo, P., Mondello, L., Errante, G., Zappia, G. and Dugo, G. (2001). Identification of anthocyanins in berries by narrow-bore highperformance liquid chromatography with electrospray ionization detection. J. Agric. Food Chem., 49, 3987–3992.
- Faria, A., Oliveira, J., Neves, P., Gameiro, P., Santos-Buelga, C., de Freitas, V. and Mateus, N. (2005). Antioxidant properties of prepared blueberry (*Vaccinium myrtillus*) extract. J. Agric. Food Chem., 53, 6896–6902.
- Harnly, J.M., Doherty, R.F., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Bhagwat, S. and Gebhardt, S. (2006). Flavonoid content of U.S. fruits, vegetables, and nuts. J. Agric. Food Chem., 54, 9966– 9977.
- Havsteen, B.H. (2002). The biochemistry and medical significance of the flavonoids. *Pharmacol. Therapeut.*, **96**, 67–202.
- Hwang, J., Hodis, H.N. and Sevanian, A. (2001). Soy and alfalfa phytoestrogen extracts become potent low-density lipoprotein antioxidants in the presence of acerola cherry extract. *J. Agric. Food Chem.*, **49**, 308–314.
- Kumazawa, S., Taniguchi, M., Suzuki, Y., Shimura, M., Kwon, M.-S. and Nakayama, T. (2002). Antioxidant activity of polyphenols in carob pods. J. Agric. Food Chem., 50, 373–377.
- Luo, X.-D., Basile, M.J. and Kennelly, E.J. (2002). Polyphenolic antioxidants from the fruits of Chrysophyllum cainito L. (star apple). J. Agric. Food Chem., 50, 1379–1382.

- Manach, C., Mazur, A. and Scalbert, A. (2005). Polyphenols and prevention of cardiovascular diseases. *Curr. Opin. Lipidol.*, 16, 77–84.
- Merken, H.M. and Beecher, G.R. (2000). Liquid chromatographic method for the separation and quantification of prominent flavonoid aglycones. J. Chromatogr. A., 897, 177–184.
- Peng, Z., Hayasaka, Y., Iland, P.G., Sefton, M., Høj, P. and Waters, E.J. (2001). Quantitative analysis of polymeric procyanidins (tannins) from grape (*Vitis vinifera*) seeds by reverse phase high-performance liquid chromatography. J. Agric. Food Chem., 49, 26–31.
- Prior, R.L., Wu, X. and Schaich, K. (2005). Standard methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 53, 4290– 4302.
- Rice-Evans, C.A., Miller, N.J. and Paganga, G. (1996). Structureantioxidant activity relationships of flavonoids and phenolic acids. *Free Radic. Biol. Med.*, 20, 391–399.
- Robbins, R. (2003). Phenolic acids in foods: an overview of analytical methodology. J. Agric. Food Chem., 51, 2866–2887.
- Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H. and Kanazawa, K. (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem., 51, 571–581.
- Scalbert, A. and Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. J. Nutr., 130, 2073S-2085S.
- Stobiecki, M. (2000). Application of mass spectrometry for identification and structural studies of flavonoid glycosides. *Phytochemistry*, 54, 237–256.
- Stoclet, J.C., Chataigneau, T., Ndiaye, M., Oak, M.H., El Bedoui, J., Chataigneau, M. and Schini-Kerth, V.B. (2004). Vascular protection by dietary polyphenols. *Eur. J. Pharmacol.*, 500, 299–313.
- Vrhovsek, U., Rigo, A., Tonon, D. and Mattivi, F. (2004). Quantitation of polyphenols in different apple varieties. J. Agric. Food Chem., 52, 6532–6538.
- Wollenweber, E. and Dietz, V.H. (1981). Occurrence and distribution of free flavonoid aglycones in plants. *Phytochemistry*, 20, 869–932.
- Wybraniec, S. and Mizrahi, Y. (2002). Fruit flesh betacyanin pigments in hylocereus cacti. J. Agric. Food Chem., 50, 6086–6089.
- Yilmaz, Y. and Toledo, R. (2004). Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem., 52, 255–260.