北秦岭造山带加里东期低 Al-TTD 系列: 岩石 特征、成因模拟及地质意义^{*}

田 伟^{**} 魏春景

(北京大学地球与空间科学学院,造山带与地壳演化教育部重点实验室,北京 100871)

摘要 北秦岭存在一套低 AI 的奥长花岗岩-英云闪长岩-闪长岩系列岩石, 其形成时代在 430~399 Ma 之间, 并具有正*ε*_{Nd}(*t*)特征. 地球化学特征和微量元素模拟计算表明, 它们由二郎坪 群中的变拉斑玄武质岩石重熔而来, 不同残留相和熔融程度形成了不同岩石类型. 重熔过程残留 相的热力学分析显示, 该岩石系列代表温度升高、压力降低的过程, 表明存在加厚地壳的拉张减 薄作用.

关键词 北秦岭 加里东运动 二郎坪群 微量元素模拟 同位素定年 实验岩石学

北秦岭加里东运动的性质一直存在着争议.持碰撞造山观点者认为加里东期华北和扬子陆块已发生对接,但对碰撞时间有不同认识^[1-5].持俯冲观点者认为北秦岭加里东期以洋壳俯冲消减为主,即便存在造山运动也是源于局部的弧、陆碰撞^[6,7],并将二郎坪群中的基性火山岩与洋壳逆冲作用联系,称之为岛弧型蛇绿岩,认为与之伴生的斜长花岗岩是蛇绿岩套的组成部分^[8,9].还有观点认为,北秦岭不存在造山性质的加里东运动,而是以裂谷为主的拉张体制^[10,11].

在二郎坪群所处范围不仅存在类似斜长花岗岩 的低K岩石,还产出大量加里东期的闪长岩、石英闪 长岩、英云闪长岩和奥长花岗岩,这类岩石总体上具 有低AI特征,可以称为低AI-TTD系列^[12].对于该类 岩石,一种观点认为其来自幔源熔浆上涌,岩性的差 异是由于混染了地壳物质^[8,9];也有观点认为其源于 壳(洋壳)源熔浆在上升过程中,混杂其间的幔源岩块 发生了不同程度的部分熔融^[13],但都将其成因归于 俯冲背景下岛弧环境中幔源物质的直接演化.但是, 在二郎坪地区不仅存在加里东期的基性岩浆活动, 也有规模可观的晚元古-早古生代变基性火山岩^[14]. 如果北秦岭在加里东期以汇聚体制为主,这类岩石 在下地壳组成中也将占重要地位.那么这类岩石与 TTD系列之间的关系如何?这种关系反映怎样的构 造背景?本文试图通过对北秦岭东部一套加里东期 低AI-TTD系列岩石的研究.得出一些当时区域下地

²⁰⁰⁴⁻⁰⁹⁻²⁴ 收稿

^{*}教育部博士点基金项目(批准号: 20010001015)、国家自然科学基金项目(批准号: 40172031)和北京大学测试基金资助

^{**} E-mail: daoidtian@pku.edu.cn

壳演化的特征,对北秦岭加里东运动的特性提供 限定.

1 区域地质及岩石学特征

研究区位于北秦岭东段(见图 1), TTD 系列岩体 夹持于商南-丹凤断裂和洛南-栾川断裂之间, 主要侵 入二郎坪群变基性岩(主要为斜长角闪岩和细碧岩)和 低压变泥质岩中, 少量侵入宽坪群. 根据岩石学特征 和空间分布, 划分为三个单元: 板山坪单元、二郎坪 单元和张家大庄单元.

(1) 板山坪单元总面积约 400 km², 分布于板山 坪-南召. 岩石序列为闪长岩-石英闪长岩-英云闪长 岩-奥长花岗岩, 由多个岩体组成, 统称板山坪岩体. 西侧以闪长岩为主, 东侧以石英闪长岩为主, 两种岩 性渐变过渡, 构成板山坪单元主体. 单元内还有数个 英云闪长岩、奥长花岗小岩体断续分布, 侵入前者. 主要矿物组成为石英、斜长石、角闪石、黑云母, 钾 长石很少(<3%). 岩体所受变形较弱, 在野外可见此 单元侵入二郎坪群. 在本单元还见似斑状二长花岗 岩,限于本次工作范围,未作详细调查,但因其侵入 板山坪岩体,应为更晚期.

(2) 二郎坪单元岩体总面积不超过 50km²,由太 平镇一带向东至乔端-洞街一线. 岩体呈近东西向带 状分布,与东西两个单元相接且岩性有重叠,为一过 渡单元. 岩石类型包括片麻状英云闪长岩和奥长花 岗岩,在野外后者侵入于前者. 矿物组成中基本无钾 长石,暗色矿物以角闪石为主,含少量黑云母. 在太 平镇附近见此单元英云闪长岩侵入二郎坪群.

(3) 张家大庄单元总面积近 200 km², 从桑坪以 北张家大庄一带延伸到二郎坪地区. 侵入二郎坪群 变泥质岩和斜长角闪岩. 岩石类型为奥长花岗岩, 主 要矿物为石英、斜长石、黑云母、角闪石. 其内夹有 大量闪长质包体, 主要矿物为角闪石、斜长石, 含少 量黑云母, 呈水滴状、透镜状等分散在奥长花岗岩中. 而在东部板山坪单元奥长花岗岩中则少见包体.

张家大庄岩体变形较强烈, 具片麻理, 镜下石英 具明显波状消光, 这应为晚期构造作用造成: 同一岩 石样品(Z07)的锆石 U-Pb 年龄在加里东期, 而 Rb-Sr

图 1 北秦岭二郎坪一带区域地质及低 AI-TTD 系列分布简图(主要岩体界线据文献[15]) 1. 秦岭群中压中高级变质岩系; 2. 二郎坪群中-低压变质岩系; 3. 宽坪群中压变质岩系; 4. 加里东期闪长岩、石英闪长岩; 5. 加里东期奥长花岗岩(淡色云英闪长岩); 6. 加里东期英云闪长岩; 7 燕山期花岗岩(部分岩体时代可能有疑问); 8. 断层(F1: 商南-丹凤断裂; F2: 洛南-栾川断裂); 9. 采样点及所测年代

矿物、全岩内部等时线年龄则为燕山期¹⁾,说明后期 的构造事件至少已将其 Rb-Sr 同位素体系重置,二郎 坪单元和张家大庄单元片麻理的产生应与后期改造 作用有关.

总体上,三个单元的岩石构成闪长岩-英云闪长 岩-奥长花岗岩系列.

2 岩石化学特征

选择不同单元的代表性岩体, 共采 17 个样品进 行分析. 常量元素在北京大学地质学系分析室分析 (碱熔, K 和 Na 利用火焰分光光度计, 其他元素利用 ICP-MS). 稀土和微量元素分别在北京大学地质系分 析室(常压、酸溶,利用 MC-ICP-MS 分析)和中国科学院地质与地球物理研究所微量元素室分析(采用高压釜、高温酸溶, ICP-MS 分析),详见表 1.

将主元素分析结果投影到TAS图解(图 2),构成 一个辉长闪长岩-闪长岩-英云闪长岩-奥长花岗岩系 列,与矿物鉴定结果一致.全碱含量均较低, K₂O+Na₂O在4%~6.76%,各种岩石的Rittman指数限 定在0.5~1.5,说明其源岩成分相似.图2中,奥长花 岗岩范围据Barker^[18]的定义单独划出.整个系列的 Al₂O₃, K₂O, CaO, MgO和全Fe含量与SiO₂相关性较好. 在Al₂O₃-SiO₂ 图解(图 3(a))中, 绘出Al₂O₃ 含量随 SiO₂ 的变化趋势线,在SiO₂ = 70% 处Al₂O₃ 低

图 2 北秦岭低 Al-TTD 系列岩石的 TAS 分类图解

据文献[16]修改,并在图中标注出不同 Rittman 指数的等值线,用浅灰色虚线表示.空心菱形引自文献[13]和[17],实心菱形为本研究数据.后同

¹⁾ 田 伟. 东秦岭加里东期花岗岩的区域岩石成因及大地构造环. 北京大学地球与空间科学学院博士论文. 2003

中国科学 D 辑 地球科学

表1 北秦岭低 Al-TTD 系列代表性样品常量元素(%,质量百分比)、部分微量和稀土元素(µg/g)分析

样号	B01	Bsp38	Z05	Z08	Z06	Bp5b8	E105	E103	E104	Bsp03	El26	El29d	Z03b	Z04	Z07	E109	E119
	a)	a)	b)	b)	a)	a)	a)	a)	b)	a)	a)	a)	a)	a)	a)	b)	a)
SiO_2	46.75	56.42	56.53	58.71	59.90	60.30	63.51	64.05	67.05	70.69	71.97	71.36	71.97	72.56	73.78	75.26	75.69
TiO_2	1.00	0.67	0.59	0.66	0.67	0.60	0.50	0.48	0.55	0.26	0.33	0.34	0.42	0.39	0.38	0.17	0.16
Al_2O_3	16.28	17.42	16.04	15.97	15.64	16.80	16.00	15.47	14.84	14.17	13.69	13.84	14.17	13.64	12.96	13.68	13.09
Fe_2O_3	5.00	4.00	6.01	5.94	4.34	2.12	2.69	2.57	1.91	1.49	1.96	2.06	2.51	2.25	1.82	0.46	0.46
FeO	5.80	3.70	4.71	4.20	5.20	3.34	3.30	3.40	2.34	0.75	1.02	0.93	1.96	1.97	1.90	0.52	0.70
MnO	0.14	0.11	0.34	0.30	0.22	0.10	0.12	0.13	0.19	0.08	0.09	0.12	0.13	0.11	0.12	0.02	0.01
MgO	9.62	3.97	2.88	2.97	3.10	3.92	2.33	2.43	2.37	0.74	1.09	1.12	0.90	0.81	0.82	0.71	0.59
CaO	8.09	7.00	6.01	5.99	5.64	5.69	5.91	5.65	5.49	2.86	3.27	3.33	2.55	2.82	2.52	1.19	0.97
Na ₂ O	3.26	3.95	4.11	3.95	4.05	4.07	4.01	3.52	3.23	3.94	4.05	4.04	3.37	3.37	3.30	5.78	5.59
K_2O	0.91	1.16	0.33	0.26	0.19	1.88	0.59	0.66	0.77	2.24	1.37	1.60	0.96	0.97	1.00	0.98	1.01
P_2O_5	0.14	0.22	0.19	0.18	0.14	0.21	0.10	0.07	0.11	0.09	0.10	0.12	0.11	0.13	0.12	0.05	0.11
LOI	2.38	1.17	2.03	1.03	0.86	0.97	1.23	0.99	1.07	1.96	1.44	1.13	1.03	0.99	0.99	0.81	1.25
总量	99.37	99.77	99.77	100.16	99.95	100.00	100.29	99.42	99.92	99.27	100.38	99.99	100.08	100.01	99.71	99.63	99.63
A/CNK	0.77	0.85	0.89	0.90	0.91	0.88	0.89	0.92	0.92	1.00	0.97	0.96	1.32	1.25	1.29	1.07	1.09
Rb	11	17	15	12	12	47	27	32	26	29	40	17	9.9	6.5	11	30	27
Sr	199	701	449	493	489	788	347	339	351	273	473	368	180	302	304	238	247
Y	20	14	69	81	77	12	19	19	21	14	12	13	30	35	39	10	10
Zr	47	69	55	66	75	102	80	89	68	84	93	95	120	104	94	88	94
Nb	8.1	2.7	1.4	1.1	1.3	4.5	1.9	2.1	2.3	2.0	4.3	3.6	3.2	1.2	0.85	5.9	6.1
Ba	252	391	576	481	487	1187	330	341	311	896	786	788	359	443	743	499	465
Th	1.6	4.6	1.0	0.6	0.5	4.2	3.0	3.0	4.0	4.4	21.1	21.1	2.3	1.6	1.8	4.0	21.0
La	10.00	24.82	9.44	8.69	8.21	28.36	9.75	12.11	11.00	13.16	56.55	71.66	12.30	12.03	11.45	42.91	33.40
Ce	20.54	50.23	28.59	26.35	25.78	56.65	20.55	22.26	21.71	24.63	93.00	104.80	30.17	28.44	28.92	67.69	61.22
Pr	2.68	5.87	4.70	4.62	4.32	6.55	2.37	2.28	2.37	2.58	8.37	7.78	4.60	3.93	4.17	5.46	6.02
Nd	12.24	24.88	28.99	29.35	28.24	26.73	10.70	11.13	12.20	10.84	28.59	28.15	20.56	19.99	21.71	22.06	19.96
Sm	3.42	4.68	9.53	9.61	9.82	4.30	2.75	2.32	2.55	2.11	3.55	3.24	5.65	5.18	5.72	2.88	3.09
Eu	1.17	1.27	2.47	2.47	2.39	1.44	0.86	0.86	0.91	0.82	1.01	0.920	1.45	1.49	1.68	0.59	0.64
Gd	3.86	4.67	10.48	13.17	12.18	4.55	3.31	2.99	3.47	2.34	4.00	3.91	5.84	6.27	6.94	3.16	3.12
Tb	0.67	0.59	2.03	2.35	2.19	0.49	0.55	0.43	0.54	0.38	0.40	0.50	1.04	1.04	1.14	0.37	0.35
Dy	4.44	3.06	13.99	15.62	14.61	2.56	3.37	3.17	3.30	2.29	2.03	2.19	6.93	6.71	7.87	1.76	1.80
Но	0.93	0.57	2.93	3.47	3.23	0.50	0.72	0.72	0.73	0.53	0.42	0.48	1.40	1.46	1.69	0.35	0.32
Er	2.80	1.71	9.19	9.99	9.74	1.41	2.27	2.00	1.98	1.64	1.31	1.57	4.27	4.54	4.75	1.32	1.00
Tm	0.40	0.27	1.27	1.60	1.41	0.21	0.36	0.30	0.28	0.26	0.23	0.23	0.62	0.73	0.69	0.19	0.16
Yb	2.65	1.48	8.63	9.29	9.11	1.31	2.27	2.12	1.90	1.83	1.58	1.60	4.28	4.24	4.67	1.24	1.24
Lu	0.41	0.22	1.21	1.44	1.36	0.20	0.34	0.37	0.24	0.30	0.26	0.30	0.62	0.68	0.77	0.23	0.21

a) 微量和稀土元素分析在中国科学院地质与地球物理研究所完成; b) 微量和稀土分析在北京大学地质系分析室完成.所有常量元素均在北京大学地质系分析室分析.B01为变拉斑玄武质枕状熔岩; Bsp38, Z05, Z08 和 Z06 为闪长岩; Bp5b8 为石英闪长岩; El05, El03, El04 和 Bsp03 为英 云闪长岩; El26, El29d, Z03b, Z04, Z07, El09 和 El19 为奥长花岗岩 田

+ 代表 SiO₂在 70%时 Al₂O₃为 15%. 此点上部虚线代表高 Al 系列(Riggins, 奥长花岗岩和伟晶岩; Norway, 挪威闪长岩、英云闪长岩、奥长花岗 岩; Kroenke, 花岗闪长岩、奥长花岗岩; Trinity Alps, 石英闪长岩-奥长花岗岩). 下部细实线代表低 Al 系列(Twilight, 奥长花岗质片麻岩; Webb Canyon, 低 Al 片麻岩). 以上各岩体数据均引自文献[16]). 灰色粗实线为本岩体系列所测数据的趋势线

于 15%, 应属低 Al-TTD 系列. 在 K₂O-SiO₂ 图解中(图 3(b)), 投影点主要落于拉斑玄武质岩系列, 少量落于 中 K 钙碱性系列. A/CNK 值 0.7~1.1, 表现出从准铝向 过铝过渡的趋势. Na₂O 含量均大于 3%, Na₂O 和 K₂O 比值大于 2, 属富 Na 类型.

微量元素方面,所有岩石具 Nb, P和 Ti 强烈亏损 (图 4),表现出下地壳演化特征.Ba 含量 391×10⁻⁶~ 1187×10⁻⁶,具一定程度富集,Sr 也有不同程度富集. Rb/Sr 比值为 0.02~0.12,高于通常斜长花岗岩,而与 岛弧型类似,但张家大庄单元的奥长花岗岩介于两 者之间,说明其成因与斜长花岗岩有相似之处(图 5). Y 含量差别较大,但总体 Sr/Y 比值很低,为 6~64.

稀土元素方面, 三个单元表现出明显差异. 稀土 分布模式可分为三类(图 6), 与三个单元对应: A 型 (板山坪单元), 轻、重稀土分馏强烈, (La/Yb)_N 为 11.6~34.0, 无 Eu 异常到具明显负 Eu 异常(δEu = 0.64~1.02), 并具有一定程度的中稀土亏损; B 型(二 郎坪单元), 轻稀土稍富集, (La/Yb)_N 为 2.0~4.5, 基本 无 Eu 异常(δEu=0.9~1.1), 中稀土略亏损; C 型(张家 大庄单元), 近平坦型分布, 轻稀土微富集, Eu 负异常 明显(δEu = 0.77~0.82), 同时给出张家大庄单元闪长 质包体的分布模式, 与奥长花岗岩比较相近, 但其轻 稀土明显亏损, 重稀土不亏损, 稀土总量高.

3 同位素年代学及同位素地球化学

为确定低Al-TTD系列的年代,取其基性和酸性 端元样品Bsp38和Z07分别测定锆石U-Pb年龄.数据 的测定在中国科学院地质与地区物理研究所同位素 室完成,U和Pb同位素比值采用²⁰⁵Pb-²³⁵U混合同位素 稀释法测定^[23](表 2).利用Isoplot程序^[24]计算的等时 线年龄见图 7,Z07为399±14 Ma,Bsp38为430±16 Ma,说明该TTD系列时间范围在430~399 Ma之间, 对板山坪单元中的奥长花岗岩曾获得391 Ma的锆石 U-Pb年龄^[13],与其相近.Xue等^[25]采用锆石蒸发法给 出西庄河岩体年龄为480 Ma,说明该岩体应属于更 早的构造岩浆事件产物.

根据Nd-Sr同位素特征可以对花岗岩的源岩作出 限定.选取该系列中 5 个代表性样品测定了全岩 Sm-Nd和Rb-Sr同位素,测定结果见表 3.除包体(Z08) 外,各种主岩的T_{DM}值在 806~977 Ma,与二郎坪群细 碧岩年龄^[18]接近, *e*_{Nd}(*t*)均为正值,说明其源岩来自具 亏损地幔成分的基性岩石,未受到壳源物质的明显 混染,与之相对应的应为二郎坪群的基性火山岩.全 岩Sr同位素比值在 0.7053~0.7064,比正常拉斑玄武 岩偏高,而与细碧岩^[18]接近,考虑其*e*_{Nd}(*t*)为正值,因 此造成偏高的原因很可能是海水的改造,这与二郎

图 4 北秦岭低 Al-TTD 系列岩石的微量元素原始地幔标 准化图解 标准化数值据文献[19]

图 5 Rb-Sr 比值双对数图解(据文献[20])

坪群中细碧岩的海相特征相符.

4 稀土元素模拟

稀土元素的复杂特征表明,该低 Al-TTD 系列不 是由单一岩浆源演化而来.但是不同分布模式所指 示的演化过程又表现出明显的共性: A 和 B 两种类型 (图 6)都有中稀土亏损,可以用角闪石析出解释; C 型 奥长花岗岩在其形成过程中肯定无石榴石析出,明 显的 Eu 负异常表明斜长石是重要的析出相;重稀土 轻微亏损说明可能有少量角闪石的析出.

Nd-Sr 同位素特征表明, 二郎坪群变基性火山岩可能是该低 Al-TTD 系列的源岩.为进一步确定二者

表 2 锆石 U-Pb 同位素分析结果 a)

样中	元素含	量/pmol	普通铅测定		同位素比值		表面年龄/Ma			
1+5 -	U	Pb	²⁰⁶ Pb/ ²⁰⁴ Pb	207Pb/235U	206Pb/238U	²⁰⁷ Pb/ ²⁰⁶ Pb	207Pb/235U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb	
Z07-1	98.6	7.02	1488	0.4416	0.0584	0.0548	371.3	366	404.9	
Z07-2	49.1	3.8	1102	0.4754	0.0618	0.0558	394.9	386.6	444	
Z07-3	25.9	2.05	1769	0.4819	0.0638	0.0547	399.3	399	399.2	
Z07-4	80.2	5.73	1254	0.4473	0.0582	0.0557	375.4	364.9	441	
Z07-6	53.8	3	702	0.3499	0.0422	0.0602	304.7	266.3	610.1	
Z07-7	138.3	9.76	1650	0.4452	0.0586	0.0551	373.9	367.1	416	
Z07-8	42.5	3.3	1471	0.4693	0.0618	0.0551	390.7	386.5	415	
BSP38-1	1676.1	94.03	822	0.2649	0.0468	0.041	238.6	295	-283.6	
BSP38-2	1617.1	116.54	2359	0.4321	0.0607	0.0516	364.6	379.9	268.4	
BSP38-3	252.9	24.51	1152	0.5651	0.0727	0.0564	454.9	452.5	467	
BSP38-4	104.2	9.53	4777	0.5534	0.0712	0.0564	447.2	443.2	468	
BSP38-5	181.2	16.13	5640	0.5513	0.0707	0.0566	445.8	440.2	475.1	

a)分析由中国科学院地质与地球物理研究所完成.全流程本底小于 0.021 pga

 \mathbb{H}

图 6 北秦岭低 Al-TTD 系列岩石稀土元素的球粒陨石标准化图解((a), (c), (e))和模拟计算结果((b), (d), (f)) (a), (b) A 型; (c), (d) B 型; (e), (f) C 型.标准化数值据文献[21],模拟计算方法及分配系数见文献[22].Hb,角闪石; Pl,斜长石; Cpx,单斜辉石; Opx,斜方辉石; Grt,石榴石; Ilm,钛铁矿, Mag,磁铁矿.下同

关系,采用二郎坪群变火山岩中最常见的两种稀土 分布模式代表源岩,定量模拟了各个单元在重熔过 程中稀土元素分布模式的变化,并确定了其残余相 的组成(见图 6).由于二郎坪地区的变火山岩成分并 不均一,因此没有从主元素组成出发计算残余相矿物组成,而是采用 Al 含量及 A/CNK 值的变化趋势来限定主要残留矿物相,如角闪石、斜长石、石榴石等的相对含量.为保证由源岩部分熔融产生的熔浆为

图 7 Z07 和 Bsp38 锆石 U-Pb 等时线 计算方法据文献[24]

低 Al 熔浆, 其残留相中斜长石应不少于 25%.

由模拟结果看出,A型岩石需要由含 5%石榴石的斜长角闪岩不同程度的部分熔融形成,源岩的稀土组成与B01 拉斑玄武岩相同;奥长花岗岩(El09,

El29d等)与计算曲线有一定的差异,特别是Eu负异常 难以解释,说明其演化过程比较复杂,可能与侵位过 程中在浅部有少量斜长石分离结晶有关, 也可能其 源岩中含有少量泥质岩石,样品El29d较低的 $\varepsilon_{Nd}(t)$ 支 持这一可能. B型岩石需要由稀土分布模式近平坦的 拉斑玄武岩(如J42^[7])部分熔融形成,其残余相中无石 榴石, 而以角闪石、斜长石和辉石为主, C型奥长花岗 岩的分布模式与斜长花岗岩类似,表明其形成过程 是以斜长石、单斜辉石、钛铁矿作为堆积相(大洋斜 长花岗岩形成中的主要堆积相^[20]). 其源岩应为稀土 分布模式平坦的拉斑玄武质岩石,近似于N-型 MORB. 但根据模拟结果并不能确定张家大庄单元 的奥长花岗岩是高程度结晶分异成因还是低程度部 分熔融成因,考虑到其锆石年龄与模式年龄之间有 较大差别, 部分重熔模式应更合理, 以Z08 为代表的 包体富含角闪石. 表明其不可能是残留体. 利用结晶 分异模型对 Z07 和Z08 之间的关系进行了模拟. 将 Z07 视为熔体相, 计算出的以角闪石为主的堆晶体的 REE分布模式与Z08 非常接近(见图 6).

5 讨论

低Al-TTD系列的成因被认为有 3 种模式^[13]:(1) 玄武质岩石的部分重熔,其残留体富含斜长石;(2) 岛弧环境下安山质熔浆的分离结晶;(3) 与蛇绿岩相 关的斜长花岗岩,是玄武岩浆结晶分异的晚期产物. 造成低Al的主要原因是斜长石作为重要残留相对熔 体的影响.

北秦岭低 Al-TTD 系列规模很大,而且在加里东 期并无大量基性火山活动,其 Rb/Sr 比值不同于斜长 花岗岩,而且模式年龄与侵位年龄的差别较大;而二

表 3 北秦岭低 Al-TTD 系列部分样品 Sm-Nd 和 Rb-Sr 同位素分析结果 a)

样号	$Sm/\mu g \cdot g^{-1}$	Nd/ μ g • g ⁻¹	$^{147}{\rm Sm}/^{144}{\rm Nd}$	143Nd/144Nd	$\pm 2\sigma$	$T_{\rm DM}/{ m Ma}$	$\varepsilon_{\rm Nd}(t)$	Rb/µg•g ⁻	1 Sr/µg • g ⁻¹	$^{87}\mathrm{Rb}/^{86}\mathrm{Sr}$	⁸⁷ Sr/ ⁸⁶ Sr	$\pm 2\sigma$
Z07	6.12	21.2	0.1746	0.512840	± 9	881	5.1	12.6	352	0.103935	0.705300	± 20
Z08	10.6	29.6	0.2166	0.512916	± 12	5547	4.4	13.3	604	0.063711	0.704543	± 16
Bsp03	2.19	10.7	0.1240	0.512596	± 9	806	2.9	32.4	315	0.297526	0.706401	± 18
Bsp38	4.53	23.1	0.1186	0.512451	± 7	977	0.6	19.0	755	0.072933	0.705744	± 18
El29d	4.60	34.4	0.0808	0.512356	± 10	819	0.4	69.5	655	0.307024	0.705867	± 20

a)由中国科学院地质与地球物理研究所分析.BCR-1 Nd:¹⁴³Nd/¹⁴⁴Nd=0.512652±10; NBS607 Sr: ⁸⁷Sr/⁸⁶Sr =1.20071±20, 对 Bsp38 采用 t =430 Ma,其他样品采用 t =399 Ma

郎坪地区大量存在晚元古到早古生代的变基性火山 岩^[14],中性火山岩的比重也非常小^[2].因此,用玄武 质岩石的部分重熔解释其成因最合理.另外,从主元 素来看,即便最基性的Bsp38,其SiO₂含量也与二郎 坪群拉斑玄武岩相差较大,这种非连续的演化与结 晶分异特征不符,应为重熔过程.

缺流体相情况下, 玄武质岩石在下地壳的部分 重熔是由角闪石的分解反应控制,当角闪石大量分 解时可产生大量准Al质熔浆^[26],这一模式对A型中的 闪长岩和石英闪长岩是适用的. 但对A型中的奥长花 岗岩,必须是低程度的部分熔融才能形成这种低Al 的奥长花岗质熔浆,即奥长花岗岩是这一前进脱水 熔融过程的早期阶段[27]. 而野外所见却是奥长花岗 岩侵入闪长岩和石英闪长岩,因此A型(板山坪单元) 中的奥长花岗岩与闪长岩、石英闪长岩可能来自两个 不同的熔融过程,而且奥长花岗岩的重熔时间更晚. 二郎坪单元的英云闪长岩和奥长花岗岩(B型)残余相 中无石榴石, 表明该单元的形成压力低于石榴石稳 定压力. C型(张家大庄单元)中奥长花岗岩的成因基 本没有角闪石的影响,但其包体中却含大量角闪石, 需要用两阶段模式来解释:在其重熔发生时,角闪石 不能作为液相线(liquidus)矿物存在,残留体以辉石和 斜长石为主;在固结过程中,温度的降低使得角闪石 可以发生分离结晶,从而形成闪长质包体.实验岩石 学研究[28]指出,拉斑玄武质岩石经海水侵蚀后的脱 水重熔可以形成类似的奥长花岗质岩浆.因此,这一 模式是可行的.

在变基性岩重熔实验的相图(图 8)中标出 3 类岩 石残留体组合的位置. C 型(张家大庄单元)奥长花岗 岩中有大量闪长质包体,说明其分离程度较弱,具有 含流体相情况下重熔岩浆的特征,因此可能压力会 更低,即便 C 型是结晶分异成因,其形成条件仍是压 力最低、温度最高(接近玄武岩浆温度). 由图 8 可看 出,北秦岭低 Al-TTD 系列的演化轨迹代表一个升温 和减压的过程. 即便不能确定流体相在整个系列演 化中的作用,其温、压的变化趋势仍基本相同.

斜长角闪岩重熔形成 TTD 系列的构造模式有多种解释. 俯冲条件下, 英云闪长岩的形成于俯冲洋壳

图 8 北秦岭低 Al-TTD 系列在重熔过程中的演化轨迹 图示饱水简单斜长角闪岩脱水重熔时,残留相的温压分布区间,据文 献[29]. A, B, C 含义及矿物缩写同图 6,矿物组合中未列入 Fe 和 Ti 氧化物. 灰色箭头示含水斜长角闪岩脱水熔融过程中 TTD 系列的演化轨迹

的脱水重熔, 但是其成分是高Al的^[13], 这并不能解释 低Al-TTD系列的成因, 中等程度的地壳加厚过程(例 如碰撞造山作用)可以使大量的基性下地壳岩石堆 叠、埋深,引发缺流体相条件下的重熔,但要达到较 高程度的部分重熔还需要更高的温度(>850℃)^[30],这 种高温可以由加厚地壳的伸展过程提供[31],并伴随 低压-高温的区域变质作用[32].板块俯冲结束后,碰 撞造山过程可以使岛弧物质增生至下地壳深部(压力 >0.8 GPa), 通过主要由角闪石和石榴石控制的重熔 作用形成TTD系列岩浆^[33].从Sr-Nd同位素特征来看, 二郎坪群火山岩作为北秦岭低Al-TTD系列的源岩是 合适的. 对二郎坪群中低压-高温变质岩系的研究表 明,它实际是早期中压变质岩系在晚期具有低压-高 温特征的区域退变质作用中形成[34],这也为"中等加 厚地壳"的存在及其后的伸展作用过程提供了 佐证.

致谢 本文在董申保院士的指导下完成, 许荣华研 究员在测试方面提供了帮助, 在此一并表示衷心的 感谢.

参考文献

1 Mattauer Ph, Malavielle J. Tectonics of Qinling belt: build-up and

第3期

evolution of Eastern Asia. Nature, 1985, 317: 496~500[DOI]

- 2 许志琴, 卢一伦, 汤耀庆, 等. 东秦岭复合山链的形成——变 形, 演化及板块动力学. 北京: 中国环境出版社, 1988
- 3 贾承造, 施央申, 郭令智. 东秦岭板块构造. 南京: 南京大学出版社, 1988
- 4 张本仁, 骆庭川, 高 山, 等. 秦巴岩石圈构造及成矿规律地 球化学研究. 武汉: 中国地质大学出版社, 1994
- 5 任纪舜,姜春发,张正坤,等.中国大地构造及其演化.北京: 科学出版社,1980
- 6 Zhang G, Meng Q, Yu Z, et al. Orogenesis and dynamics of the Qinling Orogen. Science in China, Ser D, 1996, 39(3): 225~234
- 7 刘文荣,王润三,车自成.东秦岭二郎坪群.西北大学学报(自 然科学版),1989,(增刊):1~95
- 8 胡受奚, 卢欣祥, 黎世美, 等. 华北与华南古板块拼合带地质 与成矿. 南京: 南京大学出版社, 1988
- 9 卢欣祥.东秦岭花岗岩.秦岭造山带学术讨论会论文选集.西 安:西北大学出版社,1991
- 10 杨志华.秦岭造山带的构造格架及有关问题的讨论.秦岭造山 带学术讨论会论文选集.西安:西北大学出版社,1991
- 11 董申保. 中国变质作用及其与地质演化的关系. 北京: 地质出版社, 1986
- 12 Drummond M S, Defant M J. A model for trondhjemite-onalite-dacite genesis and crustal growth via slab melting: archen to modern comparisions. Jour Geophysis Res, 1990, 95(B): 21503~ 21521
- 13 卢书炜.南召县板山坪花岗岩带地质特征与成因讨论.河南地质,1994,12,3:189~197
- 14 Zhang Z, Zhang G, Fu G, et al. Geochronology of metamorphic strata in the Qinling Mountains and its tectonic implications. Science in China, Ser D, 1996, 39(4): 283~292
- 15 卢欣祥.秦岭花岗岩大地构造图(1:1000000).西安:西安地 图出版社,2000
- 16 Middlemost E. Naming materials in the magma/igneous rock system. Earth-Science Review, 1994, 37: 215~224[DOI]
- 17 尚瑞均,严 阵,等.秦巴花岗岩.武汉:中国地质大学出版社, 1988
- 18 Barker F. Trondhjemite: definition, environment and hypotheses of origin. In: Barker F, eds. Trondhjemites, Dacites and Related rocks. New York: Elsevier, 1979
- 19 Sun S S, Mcdonough W E. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc Spec Publ, 1989, 42: 313~345
- 20 Coleman R G, Peterman Z E. Oceanic plagiogranite. Jour Geophys Res, 1975, 80: 1099~1108

- 21 Masuda A, Nakamura N, Tanaka T. Fine structures of mutually normalized rare-earth patterns of chondrites. Geochim Cosmochim Acta, 1973, 37: 239~248
- 22 Martin H. Petrogenesis of Archean trondhjemites, tonalities, and granodiorites from eastern Finland: major and trace element geochemistry. Jour Petrol, 1987, 28: 921~953
- 23 许荣华. 微量及颗粒锆石 U-Pb 定年方法. 岩石学报 1989, 4: 88~93
- 24 Ludwig R K. ISOPLOT: A plotting and regression program for radiogenic-isotope data (Version. 2. 90). US Geological Survey. Open File Rept, 1996, 91(445): 1~47
- 25 Xue F, Kroner A, Reischmann T, et al. Palaeozoic pre- and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks. Journal of the Geological Society, London, 1996, 153: 409~ 417
- 26 Rapp P R. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition and source permeability. J Geophys Res, 1995, 100(B): 15766~15777
- 27 Rapp R P. Dehydration melting of metabasalt at 8~32 kbar: Implications for continental growth and crust-mantle recycling. Jour Petrol, 1995, 36: 891~931
- 28 Spulber S D, Rutherford M J. The origin of rhyolite and plagiogranite in oceanic crust: An experimental study. Jour Petrol, 1983, 24: 1~25
- 29 Wyllie P J, Wolf M B. Amphibolite-dehydration melting: sorting out the solidus. In: Pritchard H M, Alabaster T, Harris N B W, et al, eds. Magmatic Processes and Plate Tectonics. Geological Society Special Publication 76, 1993. 76: 405~416
- 30 Wickham S M. The segregation and emplacement of granitic magmas-some examples from the Pyrenees. J Geol Soc London, 1987, 144: 281~297
- 31 England P C, Thompson A B. Some thermal and tectonic models for crustal melting in continental collision zones. In: Cowards M P, Reis A C, eds. Collision Tectonics. Geol Soc Spec Pub, 1986, 19: 83~94
- 32 Thompson P H. Moderate overthickening if thinned sialic crust and the origin of granitic magmatism and regional metamorphism in low P- high T terranes. Geology, 1989, 17: 520~523[DOI]
- 33 Rushmer T. An experimental deformation and partially-melten amphibolite: application to low-melt fraction segregation. Jour Geophys Res, 1995, 100(B): 15681~15695[DOI]
- 34 张阿利,魏春景,田 伟,等.北秦岭二郎坪低压变质作用研究.岩石矿物学杂志,2004,23:26~36