藏北羌塘地区新生代火山作用与岩石圈构造演化^{*}

迟效国** 李 才 金 巍

(吉林大学地球科学学院, 长春 130061)

摘要 自印度大陆与欧亚大陆碰撞以来,藏北羌塘地块依次发育有碱性玄武岩系列、高钾钙碱 性系列、钾玄岩系列和过碱性钾质-超钾质系列火山活动.研究表明岩浆源区经历了由早期尖晶 石橄榄岩地幔向晚期石榴石橄榄岩富集地幔(EM₂)的转变.<u>高</u>钾钙碱性系列和钾玄岩系列安粗质 岩石具有高Mg[#]值和极高的Cr, Ni, Co丰度,指示岩浆可能来自于拉萨地块大陆岩石圈的俯冲作 用.藏北过碱性超钾质系列的La/Rb, Zr/Rb, K/La, K/Nb, Rb/Nb和Pb/La值小于岛弧火山岩,大于 和类似于洋岛玄武岩,指示岩浆源区具有软流圈流体交代古俯冲地幔楔的属性.而藏南超钾质火 山岩和藏东超钾质煌斑岩的上述元素比值类似于和大于岛弧火山岩,暗示源区地幔存在俯冲陆 壳释放的流(熔)体的交代作用.上述成因标志支持印度大陆岩石圈俯冲到高原中部,欧亚岩石圈 地幔向南俯冲到羌塘之下的结论.文中进一步提出陆内俯冲与藏北、藏东区域大型走滑构造的脉 动滑移效应导致高原腹地软流圈脉动上涌,岩石圈脉动减薄产生钾质-超钾质岩浆脉动旋回的成 因机制.

关键词 火山作用 岩浆源区 岩石圈构造演化 藏北

青藏高原北部伴随岩石圈的缩短、增厚和隆升, 发育着一系列新生代钾质火山岩带. 自南向北依次 形成: (1) 羌塘-囊谦火山岩带; (2) 中昆仑-可可西里 火山岩带; (3) 西昆仑-东昆仑火山岩带^[1]. 火山作用 的时空演化和岩浆起源构成青藏高原脉动隆升及其 深部过程的重要约束. 目前青藏高原北部新生代火 山岩的成因研究主要集中在岩浆源区性质和岩石圈 构造演化问题上. 认识分歧表现在岩浆源区中的富 集组分是来自新生代陆内俯冲作用^[2-6]还是古俯冲- 碰撞作用^[7-9],支持和否定的判据主要来自地质和地 球物理的综合分析,其核心是岩石圈的构造演化问 题. 羌塘地区不同岩石系列和岩浆源区性质演变,为 认识青藏高原北部岩石圈构造演化提供了重要的岩 石学信息和约束.

1 地质背景和岩石学特征

自印度大陆与欧亚大陆碰撞以来,在班公湖-怒 江古缝合带以北的羌塘地区先后发育了碱性玄武岩

²⁰⁰³⁻⁰⁷⁻²² 收稿, 2004-08-27 收修改稿

^{*} 国土资源部重点基础研究(批准号: 9501101-4)、地质大调查(批准号: 200110200021)和吉林大学创新基金资助项目

^{**} E-mail: Xiaoguo1956@sina.com

系列、高钾钙碱性系列、钾玄岩系列和过碱性钾质-超钾质系列火山活动.碱性玄武岩系列主要分布在 东经 85°以西地区,由通天桥(60 Ma)、红山湖、邦达 错(44.0 Ma)^[4]和拉嘎拉火山岩(59 Ma)^[5]组成. 高钾钙 碱性系列和钾玄岩系列分布在东经 85°以东地区, K-Ar和Ar-Ar同位素年龄为 44.66~31 Ma. 其中钾玄 岩系列为 35~32 Ma, 过碱性钾质-超钾质系列(30~24 Ma)分布在鱼鳞山、火车头山和波涛湖西等地区¹¹. 综合同位素年代学资料, 羌塘地区新生代火山活动 总体以碱性玄武岩(西部)和高钾钙碱性(东部)火山活 动开始,以过碱性钾质-超钾质火山活动结束,20~7 Ma火山活动中心向北迁移至中昆仑-可可西里岩带, 火山作用以钾玄岩系列开始, 以碱性-过碱性钾质火 山活动结束.约 5 Ma以来,钾质火山活动进一步北 移形成西昆仑-东昆仑岩带. 三条岩带构成了青藏高 原北部新生代火山作用的三次脉动旋回. 过碱性钾 质-超钾质火山活动构成火山作用旋回结束的标志. 在时间上分别与早中新世和上新世的夷平期[10]相对 应.

2 分析方法

样品的主要元素在中国科学院地质实验中心用 XRF分析,分析误差(RSD) < 5%. 微量、稀土元素分 析在中国科学院广州地球化学研究所用Perkin-Elmer Sciex ELAN 6000 等离子质谱(ICP-MS)完成,分析精 度优于 3%,分析方法见刘颖等^[11],分析结果列入表 1. Sm-Nd、Rb-Sr和Pb同位素在国土资源部天津地质矿 产研究所VG-354 质谱仪上测定,⁸⁷Sr/⁸⁶Sr,¹⁴³Nd/¹⁴⁴Nd 和 ²⁰⁶Pb/²⁰⁴Pb,²⁰⁷Pb/²⁰⁴Pb,²⁰⁸Pb/²⁰⁴Pb 比 值 分 别 用 NBS987 标准(⁸⁶Sr/⁸⁸Sr = 0.1194)、La Jolla标准(¹⁴⁶Nd/ ¹⁴⁴Nd = 0.7219)和NBS981 标准(²⁰⁶Pb/²⁰⁴Pb = 16.937, ²⁰⁷Pb/²⁰⁴Pb = 15.457,²⁰⁸Pb/²⁰⁴Pb = 36.722)标准化. 分 析结果及分析误差见表 2.

3 火山岩的地球化学特征

3.1 主要元素

根据表 1 和文献[2~5, 7, 8, 12~15], 羌塘碱性玄 武岩系列在TAS分类命名图解中(图 1)^[16], 以粗面玄 武岩、玄武岩和玄武粗安岩、玄武安山岩成分为主,

图 1 羌塘新生代火山岩 TAS 图

据 Le Bas 等^[16].B玄武岩; O₁玄武安山岩; O₂安山岩; O₃英安岩; S₁粗面 玄武岩; S₂玄武质粗面安山岩; S₃粗面安山岩; T粗面岩(Q < 20%; 粗面 英安岩Q > 20%); R流纹岩; U₁ 碧玄岩(O₁ > 10%,碱玄岩: O₁ < 10%); U₂ 响岩质碱玄岩; U₃碱玄质响岩; Ph响岩. 1,碱性玄武岩系列; 2,高钾钙 碱性系列; 3,钾玄岩系列; 4,过碱性钾质-超钾质系列; 阴影区: 可可 西里和西昆仑钾玄岩系列成分区;部分数据引自Arnaud等^[3],邓万明 ^[2.4],丁林等^[5],Turner等^[8],赖绍聪等^[12,13],王成善等^[14],谭富 文等^[15]

个别为粗面安山岩、英安岩. K₂O/Na₂O = 0.04~0.96, 平均 0.34, 主体为钠质火山岩; 高钾钙碱性系列主要 为粗安岩、粗面岩和英安岩,少数为玄武安山岩和流 纹岩. K₂O/Na₂O = 0.11~1.45, 平均 0.91, 除康托个别 样品外均属钾质火山岩; 钾玄岩系列在TAS图中, 从 碱玄岩、钾玄岩、到安粗岩、粗面岩都有分布. K₂O/ Na₂O = 0.58~4.21,平均 2.07, 属钾质-超钾质岩类. 里 特曼指数 σ = 2.11~7.27, 平均 5.04; 鱼鳞山和火车头 山钾质-超钾质火山岩以富含副长石类矿物为特征, 岩石化学成分从碧玄岩、碱玄岩到白榴石响岩和碱性 粗面岩, K₂O/Na₂O平均 1.91, 最高达 4.67, 少量岩石 $(K_2O + Na_2O) > Al_2O_3$ (分子数), 里特曼指数 $\sigma = 7.06$ ~ 51.82, 平均 15.59, 并随MgO含量的降低而减小(相关 系数r = 0.63). 岩石碱性强度和微量元素组成与钾玄 岩系列有显著区别,本文称之为过碱性钾质-超钾质 系列.

3.2 微量元素

羌塘新生代火山岩的微量元素组成均表现出既 具有板内碱性玄武岩强烈富集大离子元素的特征, 又具有活动陆缘和岛弧火山岩相对亏损 Nb, Ta, Ti 等

表 1 羌塘地区新生代火山岩主要元素(%)和微量元素($\mu g \cdot g^{-1}$)分析结果

样品号	ZG1	ZG2	ZG6	ZG7	ZG8	DG2	Qyb1	Qyb1-1	Qyb2-1	Qyb2	Qyb3	Qyb10	Qhcb6	Qhcb7	Qhcb8	Qhcb9	Qhcb13	Gse19	Gse26	Gse22	Gse23
SiO ₂	63.99	60.52	61.43	60.58	58.48	66.70	52.35	52.03	52.64	55.98	55.48	55.95	56.07	55.25	55.09	55.41	55.51	64.40	62.22	55.16	55.76
TiO_2	0.90	1.04	0.85	0.98	1.01	0.55	1.15	1.19	1.12	0.87	1.15	1.24	0.27	0.27	0.27	0.61	0.26	0.50	0.66	0.92	1.28
Al_2O_3	15.64	15.09	14.78	14.90	14.43	15.47	15.53	15.41	17.64	14.09	17.52	16.99	19.70	19.41	19.43	19.34	19.45	15.03	14.68	11.94	12.34
Fe_2O_3	1.00	1.47	1.57	1.58	1.66	0.48	4.25	4.34	4.60	6.77	4.96	6.10	2.53	2.60	2.51	2.76	2.65	1.27	3.69	5.88	4.39
FeO	3.39	3.50	2.84	3.18	4.01	2.78	2.78	2.86	1.22	2.07	0.81	0.09	1.24	1.24	1.38	1.10	1.13	3.17	1.94	0.96	1.97
MnO	0.06	0.07	0.06	0.07	0.07	0.05	0.19	0.19	0.22	0.23	0.16	0.16	0.16	0.16	0.16	0.13	0.15	0.06	0.04	0.07	0.05
MgO	1.92	2.69	2.45	2.92	2.65	1.94	2.49	2.46	0.81	0.30	0.91	0.71	0.14	0.11	0.10	0.68	0.15	3.47	2.85	4.81	5.85
CaO	3.93	5.15	5.35	5.12	5.02	3.43	6.54	6.72	5.01	4.33	3.47	2.38	1.78	1.94	1.91	2.72	2.36	4.52	5.29	7.79	7.42
Na ₂ O	4.37	3.64	4.03	3.67	5.22	4.04	3.80	3.79	2.95	6.57	2.49	2.32	7.32	8.11	8.15	4.66	7.76	3.40	3.52	2.45	2.26
K_2O	3.58	3.81	3.48	3.66	3.73	3.05	5.46	5.67	8.28	6.53	9.20	9.96	8.28	8.20	7.77	8.48	7.64	3.35	3.44	6.50	6.65
P_2O_5	0.36	0.50	0.35	0.44	0.51	0.18	0.50	0.50	0.14	0.07	0.20	0.20	0.03	0.03	0.02	0.13	0.03	0.30	0.29	1.24	0.46
$H2O^+$	0.08	1.06	0.94	1.30	1.24	0.10	3.04	2.66	3.78	0.92	3.16	2.18	0.60	0.88		2.04	1.34				
CO_2	0.56	0.93	0.93	0.93	0.56	0.56	1.30	1.67	1.11	1.20	0.92	1.11	0.74	0.74	0.83	1.39	1.57	烧失量:	烧失量:	烧失量	烧失量:
SO_3		1.99	1.44	0.83	1.27								0.64	0.83	0.84			0.06	0.80	1.79	1.02
合计	99.78	101.46	100.50	100.16	99.86	99.33	99.38	99.49	99.52	99.93	100.43	99.39	99.50	99.77	98.46	99.45	100.00	99.53	99.42	99.51	99.45
Li	29.97	42.64	29.23	24.53	47.04	18.43	17.57	15.10	22.46	15.23	12.40	31.95	54.85	47.52	49.44	48.73	49.36				
Be	2.73	2.47	2.57	2.30	2.63	2.19	11.13	10.39	10.51	14.59	8.91	13.54	21.05	21.63	21.24	13.18	19.71				
Р	1592.88	2176.04	1599.51	1865.17	2143.79	829.17	2183.78	2120.60	597.43	304.44	819.09	869.62	123.13	108.59	158.23	547.55	120.78				
Ti	5378.10	6163.13	5186.99	5477.44	6037.79	3296.86	6936.36	6522.31	6488.02	4834.48	6334.14	7318.46	1403.78	1342.18	1427.75	3588.13	1352.32				
Cs	3.29	2.26	2.56	1.59	2.23	2.09	1.55	2.27	0.98	2.39	1.32	1.13	20.66	20.83	22.10	77.32	19.23				
Ba	858.32	838.18	930.17	801.09	813.43	1261.61	6623.90	6940.66	2078.29	1739.53	2573.60	2774.16	113.88	93.64	120.91	946.83	76.29				
Rb	119.78	99.37	110.65	25.78	77.92	89.58	123.07	65.23	96.29	126.97	158.27	107.26	285.08	284.28	302.51	203.50	289.13				
Sr	648.99	774.75	818.13	809.34	738.81	885.37	7220.96	5844.97	5618.94	6678.19	4847.87	4767.01	961.41	932.04	1015.35	2454.91	931.87				
Y	15.46	16.60	14.81	9.50	16.05	10.31	60.52	49.51	57.05	88.03	44.13	49.59	37.27	33.06	40.35	41.37	38.47				
Zr	335.74	317.04	318.97	303.44	311.38	219.86	727.60	741.79	827.30	1020.47	760.18	947.25	1221.52	1211.69	1215.97	689.71	1180.76				
Hf	9.66	9.19	9.25	8.91	9.04	7.59	74.75	69.14	91.06	83.36	86.29	103.99	59.18	57.38	58.85	55.98	56.85				
Nb	20.11	21.87	18.54	19.35	21.46	7.06	95.11	57.66	90.30	136.96	88.14	50.44	159.20	146.19	170.43	122.92	152.71				

样品号	ZG1	ZG2	ZG6	ZG7	ZG8	DG2	Qyb1	Qyb1-1	Qyb2-1	Qyb2	Qyb3	Qyb10	Qhcb6	Qhcb7	Qhcb8	Qhcb9	Qhcb13	Gse19	Gse26	Gse22	Gse23	
Ta	1.23	1.27	1.11	1.17	1.27	0.49	24.96	23.32	7.45	3.27	7.26	6.10	3.39	3.19	3.98	6.91	3.61					
v	79.70	90.22	78.44	82.04	87.76	60.93	120.88	116.05	97.57	164.59	97.92	97.36	47.57	44.79	47.11	61.48	47.39					
Cr	21.75	62.31	60.90	65.09	52.40	49.89	38.26	38.50	6.88	4.07	8.86	8.35	5.22	4.47	5.96	11.14	4.78					
Ni	12.83	24.65	23.46	34.93	23.39	33.61	15.86	15.03	7.45	20.60	16.22	18.95	26.20	25.54	25.32	18.28	25.14					
Sc	8.68	10.01	9.03	4.95	9.39	8.98	8.46	8.24	4.87	5.96	5.58	4.03	4.88	4.90	4.07	5.55	3.52					
Co	10.94	14.32	12.28	14.93	13.42	10.19	3.57	3.36	4.63	3.11	4.45	5.16	1.40	1.33	1.37	2.61	1.31					
Cu	23.30	28.20	33.45	45.07	30.97	22.39	14.39	15.23	8.16	4.57	3.95	8.28	6.62	7.87	6.01	5.04	8.06					
Th	18.72	14.63	18.02	2.66	12.69	18.80	13.11	12.48	6.04	5.40	5.99	7.82	2.39	2.00	2.37	4.14	2.58					
U	3.03	2.47	4.32	3.29	2.05	3.55	4.37	3.77	6.99	17.01	4.50	13.00	36.09	34.16	40.59	12.91	25.12					
Pb	24.69	19.47	23.12	20.20	20.00	29.59	174.86	139.75	188.84	283.44	190.91	199.72	428.05	402.95	451.71	233.39	413.72					
La	71.73	70.94	71.32	41.30	66.09	54.13	361.88	269.02	395.83	657.80	341.57	262.78	276.46	236.73	338.48	326.91	346.00	58.67	79.98	212.30	206.80	
Ce	128.25	124.69	122.41	105.97	121.52	89.99	675.34	620.49	664.26	1153.53	631.00	682.70	473.43	455.91	474.92	643.87	500.00	76.40	122.80	379.40	365.10	
Pr	13.41	13.96	13.47	9.71	13.08	9.96	77.33	62.71	70.89	122.71	64.28	56.64	31.53	27.37	38.47	59.30		9.81	13.45	48.31	46.59	
Nd	45.07	47.80	45.13	35.40	45.13	34.97	230.95	192.48	200.04	337.84	182.15	166.06	78.67	68.75	92.42	165.54	126.00	34.62	46.16	182.40	177.60	
Sm	6.76	7.39	6.77	5.21	7.03	5.08	39.45	34.02	31.95	53.20	29.58	27.72	11.24	9.73	13.32	27.02	14.90	6.14	7.38	32.02	33.62	
Eu	1.53	1.77	1.65	1.34	1.73	1.22	9.23	8.13	7.99	12.95	7.11	7.11	2.84	2.38	3.12	6.03	2.94	1.28	1.63	6.86	6.76	
Gd	4.56	5.18	4.52	3.68	4.80	3.15	22.47	20.33	18.02	29.64	16.07	16.74	8.44	7.36	8.34	15.30	8.14	3.70	4.62	19.19	17.62	
Tb	0.58	0.64	0.57	0.45	0.61	0.37	2.89	2.56	2.44	3.96	2.13	2.21	1.14	0.98	1.23	2.01	1.09	0.48	0.61	2.30	2.21	
Dy	2.99	3.25	2.85	2.45	3.15	1.97	12.31	11.00	10.77	17.25	9.12	10.13	5.78	5.02	6.14	8.71		2.28	2.79	8.81	8.28	
Ho	0.51	0.56	0.48	0.42	0.54	0.33	2.11	1.93	1.95	3.01	1.58	1.80	1.11	0.96	1.18	1.48	1.28	0.42	0.52	1.49	1.47	
Er	1.39	1.51	1.33	1.13	1.48	0.93	5.95	5.28	5.51	8.52	4.42	5.12	3.39	2.94	3.55	4.19		1.15	1.38	3.38	3.27	
Tm	0.19	0.20	0.18	0.15	0.20	0.12	0.77	0.71	0.75	1.15	0.57	0.72	0.54	0.47	0.55	0.54	0.53	0.17	0.21	0.51	0.48	
Yb	1.15	1.21	1.10	0.95	1.19	0.81	4.67	4.19	4.41	6.79	3.36	4.30	3.50	3.10	3.50	3.25	3.30	0.93	1.14	2.23	2.17	
Lu	0.15	0.15	0.13	0.11	0.15	0.09	0.69	0.62	0.66	1.02	0.48	0.64	0.55	0.49	0.55	0.49	0.49	0.15	0.17	0.32	0.31	
样品产地		走构油茶错 多格错				多格错仁	鱼鳞山							火车头山		燕	子湖	玉带山				
岩石名称	粗面岩	安粗岩英安岩					安岩 白榴石碱玄质响岩 白榴石响岩				Ĭ		E	白榴石响岩	Line and the second sec		英安岩	安粗岩	安粗岩	安粗岩		
岩石系列		高钾钙碱性系列						过碱性钾质-超钾质系列						过碱性	钾质-超钾	「 质系列		高钾钙矾	减性系列	钾玄岩系列		

样品编号	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	误差 2σ	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	误差 2σ	²⁰⁶ Pb/ ²⁰⁴ Pb	误差 2σ	²⁰⁷ Pb/ ²⁰⁴ Pb	误差 2σ	²⁰⁸ Pb/ ²⁰⁴ Pb	误差 2σ
Qyb1-1	0.0293	0.709421	7	0.0994	0.512215	9	19.373	12	16.015	22	40.135	21
Qyb10	0.1254	0.709846	9	0.0866	0.512188	8	19.188	31	15.892	38	39.820	41
Qyb2	0.1386	0.709852	9	0.0862	0.512274	11	19.677	12	16.265	17	40.746	19
Qyb2-1	0.0872	0.709448	8	0.0880	0.512213	15	19.297	22	15.979	22	40.026	18
Qyb3	0.1390	0.709471	6	0.0842	0.512274	7	19.550	36	16.185	31	40.493	34
Qhcb13	1.7342	0.709060	5	0.0959	0.512517	6	19.304	17	16.162	16	40.230	18
Qhcb7	1.4998	0.708743	8	0.0760	0.512184	7	18.918	59	15.829	62	39.441	50
Qhcb8	1.3229	0.708867	8	0.0763	0.512573	5	19.028	18	15.936	19	39.753	19
Qhcb9	0.4035	0.708433	9	0.0989	0.512301	5	18.958	24	15.876	28	39.603	26
ZG1	0.9255	0.706804	7	0.0874	0.512416	6	19.056	30	15.925	40	39.628	30
ZG2	0.6515	0.706280	8	0.0906	0.512599	7	19.096	11	15.981	17	39.685	22
ZG7	0.5376	0.706295	6	0.0885	0.511663	16	19.123	23	16.021	32	39.818	24
ZG8	0.6440	0.706233	8	0.0899	0.512529	6	19.078	33	15.974	46	39.656	40
DG2	0.5343	0.707874	8	0.0891	0.512364	7	19.137	36	16.036	47	39.902	42

表 2 羌塘地区新生代火山岩Sr, Nd和Pb同位素分析结果^{a)}

a) 岩石类型同表 1

高场强元素的地球化学属性,不相容元素和稀土元 素丰度从早期碱性玄武岩系列到晚期过碱性钾质-超 钾质系列依次升高(图 2 和 3).在球粒陨石标准化稀 土分配曲线中,拉嘎拉橄榄玄武岩(59 Ma)以重稀土 元素的近水平分配区别于 44 Ma 的帮达错橄榄玄武 岩.前者低 Sm/Yb 比值表明岩浆来自尖晶石二辉橄 榄岩源区,后者较大的重稀土分馏指示源区为石榴 石橄榄岩地幔.走构油茶错和多格错仁高钾钙碱性 系列无论稀土元素丰度还是轻重稀土分馏程度都与 帮达错碱性玄武岩相重合.两个系列 Sr 和 Nd 同位素

1,多格错仁和燕子湖英安岩;2,走构油茶错安粗岩-粗面岩;3,邦达 错碱性玄武岩;4,玉带山安粗岩;5,拉嘎拉碱性玄武岩;6,鱼鳞山-火 车头山白榴石碱玄质响岩-白榴石响岩.数据来源同图 1

组成相近也反映源区具有相似性. 然而, 枕头崖中新 世钙碱性英安岩则具有与可可西里钾玄岩系列主体 岩石相类似的稀土元素和微量元素丰度^[13]. 羌塘钾 玄岩系列也与可可西里和西昆仑钾玄岩系列主体岩 石有相近的稀土元素丰度(平均 REE = 601 μg·g⁻¹), 高Sm/Yb比值表明源区存在石榴石的残留. 过碱性钾 质-超钾质系列以极端富集稀土元素为特征, 稀土总 量(REE)平均高达1301 μg·g⁻¹. 极高的Sm/Yb比值 (平均 8.33)同样要求岩浆来自于高度富集大离子元素 的含石榴石的地幔源区.

3.3 Sr, Nd 和 Pb 同位素

羌塘新生代火山岩表现出从碱性玄武岩系列到 过碱性钾质-超钾质系列¹⁴³Nd/¹⁴⁴Nd比值连续降低, ⁸⁷Sr/⁸⁶Sr比值连续升高,高钾钙碱性系列具有中间过 渡特征, 其中ZG7 安粗岩具有全区最低的¹⁴³Nd/¹⁴⁴Nd 比值,指示有古富集地幔或古老地壳物质的混入, Pb 同位素具有两端元混合特征, 拉嘎拉、邦达错碱性玄 武岩和鱼鳞山、火车头山白榴石响岩分别构成Pb同位 素的两个混合端元.²⁰⁷Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb具有良好的 线性关系, 其直线斜率大于地球等时线, 放射性成因 Pb的混合比例与岩石系列的生成时序相一致, 晚期过 碱性钾质-超钾质系列具有最大的放射性成因Pb的混 合比例. 其中碱性玄武岩的低⁸⁷Sr/⁸⁶Sr (0.704634~ 0.706296)和高¹⁴³Nd/¹⁴⁴Nd(0.512438~ 0.512675)比值 具有软流圈地幔来源的属性^[4,5],但Nb和Ta的轻度亏 损(图 2)反映其源区可能遭受到古富集岩石圈地幔的 低度混染.因此.羌塘火山岩的上述地球化学特征指 示岩浆源区经历了从早期碱性玄武岩系列(60~44 Ma) 的软流圈地幔为主向晚期过碱性钾质-超钾质系列 (30~24 Ma)的含石榴石古富集岩石圈地幔的转变.

4 成因讨论

4.1 岩浆作用判别

强相容元素与强不相容元素的变化关系是判别

岩浆分离结晶与部分熔融作用的重要标志. 羌塘新 生代各火山岩系列在Th~Cr图解中表现出典型的岩浆 分离结晶特征,即镁铁质岩石中Cr的丰度随Th的轻 微富集而快速亏损(图 4(a)). 但在⁸⁷Sr/⁸⁶Sr与La/Nb比 值图解中(图 4(b)), 高钾钙碱性系列显示出岩浆AFC 趋势. 岩浆作用过程中La和Nb具有强不相容元素性 质,其比值接近源区比值,只有富含La或Nb的富矿 物(如磷灰石、锆石、金红石等)发生分离结晶或有地 壳物质混入时, 熔体La/Nb比值才发生明显增大或减 小.因此,La/Nb比值与⁸⁷Sr/⁸⁶Sr的同步增长是地壳物 质混入的重要标志. 过碱性钾质-超钾质系列的 ⁸⁷Sr/⁸⁶Sr与La/Nb比值具有岩浆分离结晶作用的水平 直线特征. 但由于它们具有极高的Sr, Nd含量, 平均 丰度分别为 5619 和 216.22 $\mu g \cdot g^{-1}$ (样品数n = 45), 既使岩浆演化过程中存在地壳物质的混入也很难使 Sr和Nd同位素发生明显变化,这是导致该系列Sr和 Nd同位素与Pb同位素判别结果不一致的主要原因. 不同岩石系列的其它岩石(除少量粗面岩和流纹岩外) 87 Sr/ 86 Sr与La/Nb比值构成陡倾斜的带状分布,指示 La-Nb未发生明显分馏,各自的La/Nb比值接近其源 区比值、这种排列趋势反映了岩浆源区的混合 特征.

4.2 岩浆源区性质

区域钾质火山岩的地球化学对比分析为认识羌

 (a) 1,碱性玄武岩系列; 2,高钾钙碱性系列; 3,钾玄岩系列; 4,过碱性钾质-超钾质系列; 5,枕头崖中新世英安岩; 6,可可西里钾玄岩系列; 7,西昆仑钾玄岩系列; (b)深灰色区为甘肃礼县钾质火山岩(据喻学惠等^[17]); PM-部分熔融趋势, FC-分离结晶趋势, AFC-地 壳混染与分离结晶复合趋势; MIX-源区混合趋势.数据来源同图 1 塘新生代岩浆源区性质提供了重要启示. 甘肃礼县 中新世钾质火山岩具有与藏北钾玄岩系列相似的 REE和Ba, Sr, Th等不相容元素丰度, 但确具有亏损 地幔的Sr, Nd同位素组成和近似OIB的微量元素分布 形式^[17]. 这表明高度富集Ba, Sr和LREE等大离子元 素并非钾玄岩系列所独有. 藏东(滇西)超钾质煌斑岩 较藏北钾玄岩系列明显贫Nb, Ta, P, Ti等高场强元素, 并具有低⁸⁷Sr/⁸⁶Sr和高¹⁴³Nd/¹⁴⁴Nd比值^[18]. 藏南冈底 斯中新世超钾质火山岩则富含Rb, Th, U和有更高的 ⁸⁷Sr/⁸⁶Sr 和更低的¹⁴³Nd/¹⁴⁴Nd比值^[19]. 这些差异说明 Sr, Nd和Pb同位素组成不能作为判别钾质、超钾质火 山岩源区富集组分来源的独立标志.

强不相容元素和高场强元素的比值对判别岩浆 源区性质具有特殊的指示意义. 熔体中的强不相容 元素具有极小的固/液相分配系数, 其比值在岩浆分 异过程中近似恒定, 并接近其源区比值, 只有在岩浆 混合和岩浆 AFC 过程中, 其比值才发生显著变化. 在图 5 中, 不同岩带不同系列岩石的 Th/La, Rb/Nb, Zr/Nb, Rb/Th 比值具有较宽的变化范围, 指示岩浆 AFC 作用的存在.

藏北碱性玄武岩系列和过碱性超钾质系列以及 枕头崖中新世英安岩均以高La/Rb, Zr/Rb和低K/La, K/Nb, Pb/La, Rb/Nb, Th/Nb比值为特征(除流纹质岩 石外), 尽管比值存在变化, 但它们的La/Rb, Zr/Rb, K/La, Pb/La, La/Ba和Rb/Ba比值均可与洋岛玄武岩 (OIB)的平均比值相对比.这一不相容元素比值特征 明显不同于藏南钾质、超钾质火山岩(图 5). 后者被 低La/Rb, Zr/Rb, Nb/Ba和高K/La, Rb/Nb, Th/Nb, K/Nb, Pb/La比值所取代,其比值类似于阿留申岛弧火山岩 ^[20]和台北第四纪超钾质火山岩^[21]. 羌塘其他高钾钙 碱性和钾玄岩系列火山岩的上述元素比值则具有中 间过渡特征,并具有较大的变化范围(图 5).

根据深海沉积物和K₂O-CaO-MgO-Al₂O₃-SiO₂-H₂O合成体系高压熔融实验资料, 云母(黑云母、多硅 白云母)是唯一能把大离子亲石元素(K, Rb, Ba, Cs等) 携带到深部地幔的稳定的含水矿物相^[22]. 实验证明 深海沉积物在高压下由云母熔融或少量H₂O加入产 生的低温熔体成分为花岗质的, 随压力和温度增高 熔体K₂O含量增高. 这种含水的花岗质熔体可参与 地幔楔的交代作用, 是产生消减带火成岩微量元素 分布特征的重要原因. 由于少量富集轻稀土元素的 褐帘石出现在残留相中, 这种花岗质熔体并不明显 富集轻稀土元素^[22,23]. 由此得出, 产于洋壳消减带之 上的比岛弧钙碱性玄武岩(CAB)有更低La/Rb, La/Ba, Nb/Ba, Zr/Rb; 更高K/La, Rb/Nb, Pb/La和高⁸⁷Sr/⁸⁶Sr 比值的钾质、超钾质岩石的源区比岛弧钙碱性火山岩 源区有更富钾和亏损HSFE的来自俯冲板片深部释放 的流(熔)体的混入. 如台北第四纪富镁超钾质火山岩 ^[21]和墨西哥西部Mascota新生代超钾质橄榄云煌岩等 ^[24]. 根据这一成因机制, 藏南和藏东的超钾质系列可 能起源于受俯冲大陆岩石圈脱水释放的富钾流(熔)体 渗透-混合的地幔源区.

相反、某些起源于软流圈或岩石圈地幔的钾质 玄武岩和富镁铁钾质火山岩也具有高La/Rb, Zr/Rb, La/Ba和低K/La, Rb/Nb, Th/Nb, Pb/La比值, 但它们的 微量元素分布模式并不强烈亏损高场强元素(HFSE), 如藏东的中新世钾质玄武岩[25]和甘肃礼县富镁铁钾 质火山岩, 它们的岩浆源区均为受近期地幔柱或软 流圈起源流体交代混合的软流圈地幔^[17],这种流体 的微量元素模式明显不同于俯冲板片深部释放的流 (熔)体(图 5). 因此, 青藏高原北部钾质、超钾质火山 岩的高⁸⁷Sr/⁸⁶Sr, Zr/Rb, La/Rb, 低K/La, Pb/La比值和 同时相对亏损Nb, Ta, Ti的地球化学特征表明岩浆源 区具有由软流圈地幔起源的流体叠加交代古俯冲地 幔楔的地球化学属性. 上述地球化学成因标志支持 INDEPTH2-3 的研究结论,即欧亚岩石圈地幔向南俯 冲到了羌塘之下, 而印度大陆岩石圈仅俯冲到高原 中部, 俯冲角度在板片前缘变成近垂直^[26,27].

根据上述分析,本文提出藏南钾质-超钾质系列 的原始岩浆为起源于由俯冲大陆岩石圈释放的流(熔) 体交代混合的古俯冲地幔楔;而藏北钾质、超钾质系 列的原始岩浆为起源于由软流圈流体和俯冲岩石圈 地幔释放的流体交代混合的古俯冲地幔楔.

羌塘高钾钙碱性和钾玄岩系列成因十分复杂, 与藏北其他岩石系列相比,这些岩石具有较高的 Rb/Nb, Th/Nb, K/La, K/Nb, Pb/La 和较低的 La/Rb 比

1, 拉嘎拉碱性玄武岩系列; 2, 羌塘高钾钙碱性系列; 3, 羌塘钾玄岩系列; 4, 羌塘过碱性钾质-超钾质系列; 5, 枕头崖中新世英安岩; 6, 可可西里钾玄岩系列; 7, 西昆仑钾玄岩系列; 8, 冈底斯西段中新世钾质、超钾质火山岩; 9, 冈底斯中段中新世钾质、超钾质火山 岩; 10, 藏东超钾质煌斑岩; 其他图释同图 1; 灰色区: -台湾北部第四纪高镁超钾质火山岩(据Chung等^[21]); -甘肃礼县中新世钾 质火山岩; -阿留申岛弧火山岩(据Kay等^[20]); -藏东超钾质煌斑岩(李献华等^[18]); -西昆仑和可可西里中、基性火山岩; -冈底 斯中新世火山岩(据Turner等^[3], Miller等^[19], 赵志丹等^[31], 江元生等^[32]). 其他数据来源同图 4 值以及较大的Ta. Nb和Ti的负异常, 这些特征更类似 于藏南和藏东的超钾质火山岩.其中枕头崖安粗岩 具有类似于Adak和cook岛埃达克岩的高Mg[#]值(Mg[#] = 0.449~0.685)^[13]特征, 并具有极高的Cr, Ni, Co丰度 (图 4(a)). 埃达克岩的高Mg[#]值和高Cr, Ni丰度形成于 消减板片起源的熔体在通过上覆地幔楔时与地幔橄 榄岩发生的混染作用[28.29]. 实验表明石榴石角闪岩 和榴辉岩脱水熔融生成的安山质熔体并不具有埃达 克岩的高MgO含量和高Mg[#]值特征^[28].由于熔体与橄 榄岩的混染作用不可能发生在地壳内部,所以,羌塘 安粗质岩石的高Mg[#]值和极高的Cr, Ni, Co丰度指示 该区高钾钙碱性和钾玄岩系列原始岩浆可能起源于 南部拉萨大陆岩石圈的向北俯冲作用. 多格错仁英 安岩与走构油茶错安粗岩相比具有高的⁸⁷Sr/⁸⁶Sr和低 的¹⁴³Nd/¹⁴⁴Nd比值,反映钙碱性英安质岩浆受较高程 度的地壳混染,或起源于岩浆底侵作用导致的加厚 榴辉岩质地壳的部分熔融[13.30].

枕头崖中新世英安岩具有类似于西昆仑和可可 西里钾玄质系列的低 Rb/Nb, Rb/Zr, Th/Nb, K/Nb, K/La, Pb/La 和高 La/Rb 比值(图 5), 该特征表明它们 应与西昆仑钾玄质系列的中酸性岩石一样是由富集 地幔起源的钾玄质岩浆经 AFC 作用而形成.

4.3 岩浆起源深度的演化规律

Sm/Yb 比值和 Yb 含量的相关关系可有效判别地

幔岩浆起源的相对深度和熔融程度. Sm、Dv和Yb在 尖晶石橄榄岩部分熔融作用中为不相容元素,但在 石榴石中Yb比Sm和Dy具有更显著的相容性,因此, 高Sm/Yb和Dv/Yb比值与起源干含石榴石源区的熔体 有关. 在地幔部分熔融作用中, 熔体的Dy/Yb比值还 随压力增大而增大^[33]. 原始岩浆的Yb含量取决于源 区中Yb的丰度和石榴石在残留相中的比例. 当榴辉 岩的矿物组合被残留时, Yb在固相与熔体间的分配 系数大于 1, 在这种情况下, 熔体的Yb含量正比于熔 融程度,而与Sm/Yb和Dy/Yb比值呈负相关.石榴石 二辉橄榄岩的石榴石含量小于榴辉岩. 部分熔融作 用中Yb在固相和熔体间的总分配系数小干1. 熔体中 Yb的含量和Sm/Yb比值均与熔融程度呈负 相关.

在Yb_N-(Sm/Yb)_N图中(图 6(a)),所有镁铁质岩石 大致构成两种排列趋势: (1) 岩石Sm/Yb比值类似原 始地幔和阿留申岛弧火山岩的比值,并随Yb含量的 增加其比值几乎近于恒定,表明这些岩石形成于地 幔尖晶石橄榄岩的部分熔融. (2) 镁铁质岩石具有较 高的Sm/Yb比值,而且Sm/Yb比值与Yb含量构成正相 关分布,例如:从西昆仑康西瓦钾质碱玄岩到羌塘火 车头山的钾质碧玄岩,从邦达错碱性玄武岩到西昆 仑泉水沟钾质碱玄岩,再到冈底斯西部的超钾质岩 石, Sm/Yb比值依次增大, 这与石榴石橄榄岩的部分 熔融特征相一致. 地幔交代作用和地幔不均一性

(a) 灰色区: I-台北高镁超钾质火山岩; -礼县钾质火山岩; -藏北过碱性系列碧玄岩和碱玄岩; -藏东超钾质煌斑岩; V-西昆仑和 可可西里中、基性钾质火山岩; -藏南中新世基性超钾质火山岩; IAV-阿留申岛弧火山岩; 黑色区:源区地幔; (b) 灰色区: 1, 羌塘高 钾钙碱性系列; 2, 羌塘钾玄质系列和冈底斯中部钾质和超钾质火山岩; 3, 羌塘过碱性钾质-超钾质系列; 4, 冈底斯西部钾质和超钾质 火山岩. 其他图释和数据来源同图 5

407

以及源区熔融压力的不同可使趋势复杂化,但不会 使趋势发生倒转.

然而, 在同一岩石系列中 Sm/Yb 比值与 Yb 含量 表现为负相关, 这类似于榴辉岩部分熔融的排列趋 势, 但各岩石系列构成的 Sm/Yb 和 Yb 的倾斜排列几 乎彼此呈平行分布, 这既不能用单一的部分熔融来 解释, 也不能仅用分离结晶来解释. 在 Dy/Yb-Ba/Yb 图中(图 6(b)), 羌塘高钾钙碱性系列的 Dy/Yb 比值随 Ba/Yb 比值的增大而降低, 由于 Ba 在部分熔融作用 中具有强不相容性, Dy/Yb 比值随 Ba/Yb 比值增大而 降低不可能由部分熔融或分离结晶作用所形成. 因 此, Dy/Yb 与 Ba/Yb 比值的负相关提供了高钾钙碱性 系列 AFC 作用的重要证据.

与钙碱性系列岩石相比,其他岩石系列 Dy/Yb 与 Ba/Yb 均呈正相关,但它们的 Ba/Yb 与 MgO 含量 也呈正相关,这同样不能用单一源区的部分熔融来 解释.此外,Ba/Yb 比值的降低并未伴随 Eu 负异常的 明显增大,这表明岩浆 AFC 作用可能也是上述钾质、 超钾质岩浆演化的重要机制.

值得注意的是不同系列都有少量英安岩或粗面 岩和流纹质岩石呈现出极低的 Dy/Yb 比值和低的 Yb 含量,它们可能来自岩浆底侵作用导致的中地壳的 部分熔融.由于深部地壳的塑性变形使幔源岩浆难 以直接上升到地表,因此地壳部分熔融导致的岩浆 混合和岩浆 AFC 作用应是产生青藏高原钾质火山岩 成分变化的主要原因.

综上所述, 羌塘新生代不同岩石系列的原始岩 浆的起源深度随时间依次增大. 早期(60 Ma)喷发的 碱性玄武岩具有平坦分布的HREE模式(平均 Sm/Yb = 1.72 ± 0.48)和低⁸⁷Sr/⁸⁶Sr, 高¹⁴³Nd/¹⁴⁴Nd 比值, 以 及Nb, Ta的弱负异常, 指示岩浆起源于软流圈内尖晶 石橄榄岩的部分熔融, 并受到岩石圈的轻度污染. 44~31 Ma喷发的高钾钙碱性安粗岩-英安岩出现显著 的Ta, Nb和Ti 的负异常, Sm/Yb和Dy/Yb及⁸⁷Sr/⁸⁶Sr比 值增大(平均Sm/Yb = 5.4 ± 1.56), ¹⁴³Nd/¹⁴⁴Nd 比值降 低, 安山岩的高Mg[#]值和极高的Cr, Ni, Co丰度指示原 始岩浆可能起源于大陆岩石圈的俯冲作用. 35~32 Ma 喷发的钾玄岩系列除少量石英粗面岩外均显著富集 不相容元素和有类似于西昆仑钾玄岩系列的高 Sm/Yb, Dy/Yb比值(平均Sm/Yb = 7.51 ± 3.03), 以及 类似的微量元素分布模式,指示富集岩石圈内石榴 石橄榄岩的部分熔融特征. 30~24 Ma喷发的过碱性钾 质、超钾质系列极端富集不相容元素和LREE, 与其 它岩石系列相比具有最大的Sm/Yb比值(其中碧玄岩 和碱玄岩的平均 $Sm/Yb = 13.24 \pm 3.08$)和较高的 87 Sr/ 86 Sr及较低的 143 Nd/ 144 Nd比值,这些特征指示其 来自于富集岩石圈地幔的低程度熔融, 岩浆起源深 度在所有系列中是最大的. 羌塘枕头崖中新世英安 岩有类似于西昆仑和可可西里钾玄岩系列的Sm/Yb 比值(平均Sm/Yb = 8.98 ± 1.28)和微量元素分布模式, 以及相近的Sr, Nd和Pb同位素组成, 反映它们来自于 相同的岩浆源区. 根据它们的地球化学和时空分布 特征、枕头崖中新世英安岩应属可可西里岩浆旋回 的一部分,它们可能与欧亚大陆岩石圈地幔的俯冲作 用有关.

4.4 火山脉动旋回与岩石圈脉动增厚-减薄机制

青藏高原及邻区GPS监测网的重复监测结果表 明, 青藏高原现今岩石圈的三维应变仍以南北缩短 增厚为主^[34]. 高原应变极不均一, 其中喜马拉雅陆内 俯冲带的垂向应变速率最大, 羌塘地区东西伸展分 量增大, 但垂向增厚仍占主导地位. 青藏高原尚未演 化到造山带全面伸展跨塌阶段^[35]. 根据层析成像资 料, 印度岩石圈地幔正沿喜马拉雅带向高原地幔深 部俯冲, 而北羌塘在 350~150 km深度内出现低密度 地幔物质的上涌^[36].

藏北羌塘过碱性钾质-超钾质火山岩(30~24 Ma) 与藏南冈底斯陆内俯冲成因的S型花岗岩带(35~23 Ma)^[37]和冈底斯中新世钾质、过碱性钾质火山岩 (25~10 Ma)^[19,38]与喜马拉雅S型花岗岩带(23~10 Ma) 在时空上成对出现^[37,39],并与红河和阿尔金走滑断 裂带活动峰期时间相耦合^[1].这一特征表明雅鲁藏布 江和喜马拉雅带强烈陆内俯冲期与高原东部、北部大 型走滑事件以及青藏高原内部钾质-过碱性钾质火山 活动之间存在密切的成因联系,它们是印度大陆与 欧亚大陆碰撞-汇聚作用过程中不可分割的统一整体, 需要统一的动力学模型来解释.

根据物质守恒原理,岩石圈地幔向地幔深部的

俯冲和地壳的缩短增厚都必须伴有近同体积的地幔 物质的侧向挤出.因此,在地壳增厚过程中高原内部 的软流圈上涌和钾质火山活动可用下列机制来表述: (1) 藏南陆内俯冲作用和地壳缩短增厚使软流圈内压 不断增大,并驱使软流圈地幔物质向北东和东部流 动;(2)高原内部地幔物质向高原外部流动伴随的累 积效应使高原边界地块的岩石圈形成最大水平剪切 应力场,当剪切应力累积到大于岩石圈的破裂强度或 地块起始滑移阻力时,边界地块将发生快速滑移运 动, 高原边界性质由相对封闭转向开放; (3) 边界地 块的滑移运动使高原内部所受围压和构造超压与软 流圈内压的平衡发生转化,软流圈因围压降低而沿 构造薄弱带脉动上涌、使岩石圈地幔发生热侵蚀和 拆沉减薄,产生钾质火山活动,在这个应力转化过程 中,高原南部陆内俯冲带仍表现为地壳的持续增厚 隆升,高原内部则因地幔上涌、岩石圈地幔减薄和应 力松弛而发生均衡降升,强烈的火山活动和边界地 块的滑移使高原内能不断释放,内压不断降低,同时 边界地块随滑移距离和变形域的不断增大,变形阻 力和滑移阻力持续增大, 滑移速率不断降低. 当滑移 阻力大于剪切应力时, 滑移运动结束, 高原进入一个 新的应力积累和地壳增厚阶段. 根据走滑断层的粘 滑(stick-slip)理论^[40,41], 断层起始滑移阻力较滑移过 程中的阻力大得多,边界地块的再次大规模滑移需 要更大的应力积累. 红河和阿尔金走滑断裂带的脉 动峰期与火山脉动旋回的耦合为高原内部应力场性 质发生脉动转化提供了有利证据.

综上所述, 青藏高原岩石圈地幔的减薄作用不 仅与岩石圈加厚有关, 也与南北边界发生的陆内俯 冲和东部、北部边界地块的脉动滑移引起的高原内部 软流圈脉动上涌有关. 火山脉动旋回是软流圈脉动 上涌和岩石圈脉动减薄的产物. 火山活动使高原内 能获得充分释放, 致使过碱性钾质-超钾质火山活动 后出现高原夷平作用. 藏南陆内俯冲作用和高原边 界走滑构造带的脉动滑移效应是形成钾质火山活动 和高原脉动隆升与红河、阿尔金走滑断裂带脉动耦合 的主要原因.

致谢 作者对刘嘉麒院士、邓万明研究员、莫宣学、 吴福元和赖绍聪教授、丁林和许继峰研究员给予的有 益讨论,中国科学院广州地球化学研究所、天津地质 矿产研究所、中国地质科学院开放实验室为本项研究 提供的样品分析,以及评审专家对原稿提出的宝贵 意见,在此一并表示衷心感谢.

参考 文献

- 迟效国,李 才,金 巍,等.藏北新生代火山作用的时空演化 与高原脉动隆升.地质论评,1999,45, 增刊:978~986
- 2 邓万明.西藏阿里地区北部新生代火山岩——兼论陆内俯冲作用.岩石学报,1989,(3):1~11
- 3 Arnaud N O, Vidal Ph, Tapponnier P, et al. The high-K₂O volcanism of northwestern Tibet: Geochemistry and tectonic implications. Earth Plane Sci Lett, 1992, 111(3): 351~367 [DOI]
- 4 邓万明.青藏高原北部新生代板内火山岩.北京:地质出版社, 1998.86~150
- 5 丁林,长进江,周勇,等.青藏高原岩石圈演化的记录:藏北 超钾质及钠质火山岩的岩石学与地球化学特征.岩石学学报, 1999,15(3):408~421
- 6 Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671~1677[DOI]
- 7 Turner S, Hawkesworth C J, Liu J Q, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 1993. 346: 50~53[DOI]
- 8 Turner S, Arnaud N, Liu J Q, et al. Post-collisional, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 1996, 37: 45~71
- 9 Chung S L, Lo C H, Lee T Y, et al. Diachronous uplift of the Tibetan plateau starting 40Myr age. Nature, 1998, 394: 769~773[DOI]
- 10 崔之久,高全洲,刘耕年,等.夷平面、古岩溶与青藏高原隆升. 中国科学,D辑,1996,26(4):378~385
- 11 刘 颖, 刘海臣, 李献华. 用 ICP-MS 准确测定岩石样品中的 40 余种微量元素. 地球化学, 1996, 25(6): 552~558
- 約绍聪,刘池阳.青藏高原北羌塘榴辉岩质下地壳及富集型地 幔源区.岩石学报,2001,17(3):459~468
- 13 Lai S C, Liu C Y, Yi H S. Geochemistry and petrogenesis of Cenozoic andesite-dacite associations from the Hoh Xil region, Tibetan plateau. International Geology Review, 2003, 45: 998~1019.
- 14 王成善, 伊海生, 李 勇, 等. 西藏羌塘盆地地质演化与油气远 景评价. 北京: 地质出版社, 2001. 129~158.
- 15 谭富文, 潘桂棠, 徐强. 羌塘腹地新生代火山岩的地球化学特 征与青藏高原隆升. 岩石矿物学杂志, 2000, 19(2): 121~130.
- 16 Le Bas M J, LeMaitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-SiO₂ diagram. Journal of Petrology, 1986, 27: 745~750
- 17 喻学惠,张春福.甘肃西秦岭新生代碱性火山岩的 Sr, Nd 同位 素及微量元素地球化学特征.地学前缘,1998,5(4):319~328
- 18 李献华,周汉文,韦刚健,等. 滇西新生代超钾质煌斑岩的元 素和 Sr-Nd 同位素特征及其对岩石圈地幔组成的制约. 地球化 学,2002,31(1):26~34

- 19 Miller C, Schuster R, Klezli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 1999, 40: 1399~1424[DOI]
- 20 Kay S M, Kay R W. Aleutian magmas in space and time. In: Plafker G, Berg H C, eds. The Geology of Alaska, The Geology of North America, G-1. Geological Society of America, 1994, 687~722
- 21 Chung S L, Wang K L, Crawford A J, et al. High-Mg potassic rocks from Taiwan: Implications for the genesis of orogenic potassic lavas. Lithos, 2001, 59: 153~170[DOI]
- 22 Hermann J, Green D H. Experimental constraints on high pressure melting in subducted crust. Earth and Planetary Science Letters, 2001, 188: 149~168[DOI]
- 23 Nichols G T, Wyllie P J, Stern C R. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature, 1994, 371: 785~788[DOI]
- 24 Carmichael I S E, Lange R A, Luhr J F. Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: A consequence of plate extension above a subduction modified mantle wedge. Contrib Mineral Petrol, 1996, 124: 302~333[DOI]
- 25 Wang J H, Yin A, Harrison T M, et al. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 2001, 188: 123~133[DOI]
- 26 Kosarev G, Kind R, Sobolev S V, et al. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 1999, 283, 1306~1309[DOI]
- 27 Kind R, Yuan X, Saul J, et al. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction. Science, 2002, 298: 1219~1221[DOI]
- 28 Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the An-

dean Austral Volcanic Zone. Contrib Mineral Petrol, 1996, 123: 263~281[DOI]

- 29 Tatsumi Y. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: Generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan. Geology, 2001, 29: 323~326
- 30 Hacker B R, Gnos E, Ratschbacher L, et al. Hot and dry deep crustal xenoliths from Tibet. Science, 2000, 287: 2463~2466[DOI]
- 31 赵志丹,莫宣学,张双全,等.西藏中部乌郁盆地碰撞后岩浆 作用-特提斯洋壳俯冲再循环的证据.中国科学,D辑,2001, 31(增刊):20~26[摘要][PDF]
- 32 江元生,周幼云,王明光,等.西藏冈底斯山中段第四纪火山 岩特征及地质意义.地质通报,2003(1):16~20
- 33 Tegner C, Lesher C E, Larsen L M, et al. Evidence from the rare-earthelement record of mantle melting for cooling of the Tertiary Iceland plume. Nature, 1998, 395: 591~594[DOI]
- 34 王 琪,张培震,牛之俊,等.中国大陆现今地壳运动和构造变
 形.中国科学,D辑,2001,31(7):529~536[摘要][PDF]
- 35 迟效国. 青藏高原现今岩石圈的三维应变. 吉林大学学报(地球 科学版), 2004, 34,(2): 182~186
- 36 许志琴,杨经绥,姜枚.青藏高原北部的碰撞造山及深部动力
 学.地球学报,2001,22(1):5~10
- 37 邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳幔成矿系统.地学前缘,1999,6(2):259~270
- 38 廖思平,陈振华,罗小川,等.西藏当惹雍错地区白榴石响岩的发现及地质意义.地质通报,2002,21(11):735~738
- 39 赖绍聪. 青藏高原新生代三阶段造山隆升模式:火成岩岩石学 约束. 矿物学报, 2000, 20(2): 183~190
- 40 Brace W F, Byerlee J D. Stick-slip as a mechanism for earthquakes. Science, 1966, 153: 990~992
- 41 Carlson J M, Langar J S. Mechanical model of an earthquake fault. Phys Rev, 1989, 40: 6470~6484[DOI]