Eu²⁺掺杂浓度对 BAM 光谱特性的影响

鸿,严有为* 哲,谢 陈

华中科技大学模具技术国家重点实验室,湖北 武汉 430074

摘 要 采用燃烧法在低温成功合成了纳米 $Ba_{1-r}MgAl_{10}O_{17}: xEu^{2+}(0.05 \leqslant x \leqslant 0.4) 蓝色荧光粉, 着重研$ 究了 Eu²⁺ 掺入量对荧光粉光谱特性的影响。利用 XRD 和 SEM 对材料的物相和形貌进行了分析,采用荧光 光谱仪测定了样品的发光特性。结果表明,合成的产物为纯相,且颗粒细小、分布均匀,平均粒径约 30 nm。 Eu²⁺的掺杂浓度对样品的发光性能有显著的影响,随 Eu²⁺浓度增大,发光中心增多, Eu²⁺离子间相互作用 增强,能量传递加快,发光强度逐渐增大。当Eu²⁺浓度为x=0.2时,能量传递速率与发射速率相等,Eu²⁺ 的发光达到最大值;此后,随 Eu^{2+} 的浓度进一步增加, Eu^{2+} 之间的能量传递速率将超过发射速率, Eu^{2+} 还 未将光发射出去就发生能量的传递,使激发能通过晶格的迁移而消耗,呈现浓度猝灭特性。

关键词 BaMgAl₁₀O₁₇: Eu²⁺; 燃烧法; 光谱特性 中图分类号: O433.4 文献标识码: A **文章编号:** 1000-0593(2007)04-0657-03

引 言

BaMgAl₁₀O₁₇: Eu²⁺(BAM)因在紫外及真空紫外辐照下 具有高的量子效率和好的色纯度被广泛用作彩色投影电视、 飞点扫描器、场发射显示器及高清晰彩色等离子平板显示 (PDP)等的蓝色组分^[1-3]。

目前, 商用 BAM 荧光粉多采用传统的高温固相法制备, 由于合成温度高且灼烧时间长,导致生成的粉体粗大甚至聚 结成块。为了满足后续涂屏工艺的要求,粉体必须球磨粉 碎,而球磨会破坏晶形并引入杂质,从而导致发光性能下 降[4]。为此,人们一直在探求低温合成纯度高、颗粒细的 BAM 的有效方法。

溶液燃烧合成法是近年来一种新兴的湿化学合成方 法^[5]。由于原料在溶液中反应,因而组分能达到分子、离子 级别上的均匀混合,且合成温度低(<800 ℃),时间短(<5 min),合成粉体尺寸细小(10~100 nm)^[6],而且燃烧过程中 放出的大量还原性气体可保护激活离子被氧化,可省去额外 的还原阶段,避免过多的中间环节而引入的杂质,特别有利 于高纯发光材料的合成[7]。

本文采用溶液燃烧合成法在较低的温度和极短的时间内 成功制备了 Eu²⁺ 激活的纳米 BaMgAl₁₀ O₁₇: Eu 蓝色荧光 粉,着重研究了 Eu²⁺掺杂浓度对合成材料光谱特性的影响。

1 试验过程

初始原料 Eu2O3 为光谱纯 ,Ba(NO3)2,Mg(NO3)2・ 6H₂O, Al(NO₃)₃ · 9H₂O及尿素为分析纯。按 Ba_{1-x} MgAl₁₀ O_{17} : xEu^{2+} ($x=0.05\sim0.4$)化学计量配比,用分析天平精确 称取上述试剂。在烧杯中,首先用浓硝酸(AR)将 Eu₂O₂ 充 分溶解,然后将称取的其余样品放入其中。最后加入适量的 去离子水并不断搅拌,直至原料充分溶解,获得均匀混合的 澄清透明溶液。

溶液的燃烧合成过程在自制的 LCS-1000 型低温燃烧合 成装置中进行。经试验,设定溶液的点燃温度为600℃,并 由自动温控器将其误差控制在±5℃之内。在此温度下,溶 液很快沸腾、起泡、变干并燃烧,同时放出大量的气体,生 成白色疏松泡沫状的产物。整个反应过程约在 3 min 内完 成。

合成产物研磨后,采用荷兰帕纳科公司 X'Pert PRO X 射线衍射仪测定样品的晶体结构;采用 FEI 公司 Sirion 200 场发射扫描电镜(FESEM)观察粉体颗粒大小和形貌;采用 JASCO公司 FP-6500 荧光光谱仪测定样品的激发光谱和发 射光谱。

结果与讨论 2

2.1 结构特征与形貌

样品的 XRD 测量结果如图 1 所示。指标化结果表明,合

作者简介: 陈 哲, 1967 年生, 华中科技大学模具技术国家重点实验室博士生

收稿日期: 2006-01-09, 修订日期: 2006-04-16

基金项目:国家自然科学基金项目(50276023,50574042)资助

成的产物为六方晶系,属 P63/mmc 空间群,与 JCPDS 标准 卡片(26-0163)基本一致。图谱中未发现 Eu₂O₃ 和其他杂质 的衍射峰,表明合成的产物为纯相,且 Eu²⁺已成功掺杂进入 基质晶格中。

由 Scherrer 公式 $D_{hkl} = \frac{\lambda}{\beta \cos \theta}$ 可以估算产物晶粒尺寸的 大小,其中 D_{hkl} 为垂直(hkl) 面方向的晶粒尺寸大小, λ 为所 用 X 射线波长, θ 为布拉格角, β 为由于晶粒细化引起的衍射 峰的宽化,k 为常数。经计算可知 BaMgAl₁₀ O₁₇: Eu²⁺ 晶粒 尺寸在 25~35 nm 之间。

样品的场发射扫描电镜像如图 2 所示。可见,产物颗粒 细小,分布较均匀,粉体形貌规则,且粒径大约在 30 nm 左 右,与 Scherrer 公式计算的粒径大小基本一致。从图 2 中还 可看出,合成的颗粒呈近球形。一般而言,与固相法^[8]制备 的不规则颗粒相比,球形颗粒的荧光粉具有增加亮度、改善 分辨率及涂层密实等一系列优点^[9]。由此可见,燃烧法是制 备优良荧光材料的一种有效方法。

Fig. 2 FESEM image of BaMgAl₁₀O₁₇ : Eu²⁺ powder

2.2 不同 Eu²⁺ 浓度的 BAM 光谱特性

不同 Eu^{2+} 浓度的 $BaMgAl_{10}O_{17}$: Eu^{2+} 荧光粉的发射光 谱如图 3 所示。可见随 Eu^{2+} 浓度的变化,发射光谱的强度明 显改变,但峰形基本不变。均为峰值波长位于 450 nm 的宽 带谱,归属于 Eu^{2+} 的 $4f^65d \rightarrow 4f^7$ 跃迁所引起的本征发光。 另外,在 600 nm 附近未观察到 Eu^{3+} 的 4f - 4f 特征跃迁发 光,表明燃烧过程中产生的还原气氛已将 Eu^{3+} 全部还原为 Eu^{2+} 。

Eu²⁺的4f⁷电子受激发后跃迁到不同宇称的4f⁶5d激 发态,根据Laporte selection rule,此激发态的4f⁶5d电子返 回到基态4f⁷(⁸S_{7/2})时为电偶极允许跃迁,又由于5d电子处 于没有屏蔽的外层裸露状态,受周围晶场的影响极为显著, 导致4f⁶5d轨道的相应能级重叠并形成连续的能级(能级结 构如图4所示,阴影部分表示能级重叠的4f⁶5d轨道),而且 跃迁过程还涉及许多振动能级,因此其发射光谱表现为一段 连续的宽带且主峰位于可见光区的蓝区,正如图3所示。

 Eu^{2+} 浓度对 BAM 发光强度的影响如图 5 所示。可见, 随着 Eu^{2+} 浓度的增大,发光强度逐渐增大,但在 x < 0.08 以 前变化较平缓,此后迅速增加,且在 x = 0.2 时发光强度达 到最大值,表明 x = 0.2 是 Eu^{2+} 的最佳掺入量,此后,随 Eu^{2+} 浓度的继续增大,发光强度反而减小,表现出浓度猝灭 特性,因此,为制备高发光强度的荧光粉必须控制好 Eu^{2+} 的 掺杂量。

当 Eu²⁺浓度较小时,荧光体中的发光中心数量少,因而 发光较弱;随 Eu²⁺浓度增加,发光中心增多,Eu²⁺吸收的能 量增加,发光增强,而且随 Eu²⁺浓度增加,Eu²⁺位置将相互 靠近,Eu²⁺离子间相互作用增强,能量传递加快。当 Eu²⁺之 间的能量传递速率与 Eu²⁺发射速率相同时,Eu²⁺的发光达 到最大值。此后,随 Eu²⁺的浓度进一步增加,Eu²⁺之间的能

量传递速率也将迅速增加,并超过 Eu²⁺的光发射速率, Eu²⁺还未将光发射出去就发生能量的传递,使激发能通过晶 格的迁移而消耗掉了,从而导致发光亮度的下降而发生浓度 猝灭效应。本文合成了掺杂了 Eu²⁺的发光材料,很有实用意 义,有关掺杂 Eu²⁺的其他纳米材料可参阅文献[10]。

3 结 论

利用溶液燃烧合成方法在较低的温度下成功制备了纳米 BaMgAl₁₀O₁₇: Eu²⁺蓝色荧光粉。合成的产物纯净、颗粒细 小且分布均匀,平均粒径约 30 nm。Eu²⁺的掺入量对发光性 能有显著影响,掺入量少则构成发光中心数目少,发光亮度 低;掺入量多则又会引起浓度猝灭。纳米 Ba_{1-x}MgAl₁₀O₁₇: xEu²⁺蓝色荧光粉的 Eu²⁺离子的最佳掺入量为 x=0.2。

参考文献

- [1] Rao R P. Journal of Luminescence, 2005, 113: 271.
- [2] Ronda C R. Journal of luminescence, 1997, 72-74: 49.
- [3] Bizarri G, Moine B. Journal of Luminescence, 2005, 113: 199.
- [4] Liu Ying-Liang, Shi Chun-Shan. Materials Research Bulletin, 2001, 36: 109.
- [5] Patil Kashinath C. Aruna S T, Mimani Tanu. Current Opinion in Solid State and Materials Science, 2002, 6: 507.
- [6] Wang Shu Fen, Gu Feng, LÁ Meng Kai, et al. Journal of Alloys and Compounds, 2005, 394: 255.
- [7] Chander Harish, Haranath D, Shanker Virendra, et al. Journal of Crystal Growth, 2004, 271: 307.
- [8] Zhang Junying, Zhang Zhongtai, Tang Zilong, et al. Powder Technology, 2002, 126(2): 161.
- [9] Jeon Byung Soo, Hong Gun Young, Yoo Young Kil, et al. J. Electrochem. Soc., 2001, 148: H128.
- [10] ZHANG Xi-yan, JIANG Wei-wei, LIU Xue, et al(张希艳, 姜薇薇, 刘 学, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(10): 1560.

Influence of Eu^{2+} Content on the Spectral Characteristics of $BaMgAl_{10}O_{17}$: Eu^{2+} Phosphors

CHEN Zhe, XIE Hong, YAN You-wei*

State Key Lab of Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract Nanocrsytalline $Ba_{1-x}MgAl_{10}O_{17}$: $xEu^{2+}(0.05 \le x \le 0.4)$ blue-emitting phosphor was successfully prepared by low-temperature combustion synthesis. The influence of different Eu content on the spectral characteristics of $Ba_{1-x}MgAl_{10}O_{17}$: xEu^{2+} was mainly investigated. The results of XRD and SEM analysis show that the sample is single phase and its average grain size is about 30 nm. The luminescence property of $Ba_{1-x}MgAl_{10}O_{17}$: xEu^{2+} phosphor is considerably influenced by Eu^{2+} concentration. In an appropriate Eu^{2+} doping concentration range, the intensity of the fluorescence of $Ba_{1-x}MgAl_{10}O_{17}$: xEu^{2+} was increased obviously with increasing the Eu^{2+} doping concentration, owing to adding the number of luminescent centers and enhancing the energy transfer between Eu^{2+} ions. The optimum emission intensity was reached at x=0.2. However, as the Eu^{2+} doping occurrence.

Keywords BaMgAl₁₀O₁₇ : Eu²⁺; Combustion synthesis; Spectrum characteristics

* Corresponding author