银电极表面上 C₆₀薄膜的表面增强拉曼光谱研究

孙玉华,鲍 芳,顾 伟,姚建林,顾仁敖*

苏州大学化学系, 江苏 苏州 215123

摘 要 在银电极表面形成一层 C₆₀ 薄膜, 分别在乙腈溶液和水溶液中进行表面增强拉曼光谱(SERS)研究 并将两者进行比较, 从而消除了溶液中的 C₆₀干扰表面吸附 C₆₀的 SERS 谱图的可能性。研究结果表明, C₆₀ 分子对称性的降低导致 SERS 谱峰发生了分裂; 表面电磁场的作用使得光谱选律在 SERS 效应中被拓宽, 产 生了新的拉曼谱峰。该结果与团簇吸附在粗糙银电极表面的 C₆₀分子的研究结果相似。与之不同的是在乙腈 溶液和水溶液中的 SERS 谱图的低波数区内分别在 348 和 311 cm⁻¹左右出现一个新峰, 经过分析可认为该 峰与 C₆₀-金属基底的相互作用有关。

关键词 表面增强拉曼光谱; C₆₀薄膜; 银电极 中图分类号: O657.3 文献标识码: A 文章编号: 1000-0593(2007)04-0707-04

引 言

C60在半导体、超导体和医学等许多领域有着广泛的应 用,这使得近年来人们对它各种性质的研究兴趣不断增 加^[1,2],其中C₆₀与贵金属之间的相互作用是最热门的研究 课题之一。利用电化学方法来讨论 C60 在金属表面发生电子 转移时的热力学和动力学性质以及相应的化学反应信息是一 种常用分析手段。Chlistunoff等^[3]详细介绍了通过循环伏安 法(CV)、扫描电化学显微镜方法(SECM)等多种电化学手段 得到的电极表面 C60 膜的一系列电化学性质。但是如果期望 能够更加清晰直观地了解 C60 膜层的结构和 C60-金属基底的 相互作用,单一的电化学方法显然是不够的。作为一种具有 单分子层灵敏度的分析测试方法,表面增强拉曼光谱 (SERS)能够较为详细的描述金属电极表面吸附层的结构、 吸附物电子结构的改变以及吸附分子与金属电极之间的相互 作用。因此将具有高表面灵敏度的 SERS 技术与传统电化学 技术结合,对金属表面 C60 的形态及结构的研究将是一件有 意义的工作。有关此类的研究已有过一些报道^[4,5]。

对于吸附在银电极表面 C₆₀的表面增强拉曼光谱我们作 了一些研究,得到了乙腈溶液中团簇吸附在粗糙银电极表面 的 C₆₀分子的表面增强拉曼光谱,分析了各谱峰归属,并讨 论了其受电极表面的电场作用和电迁移等情况的影响^[6]。但 是溶液中存在的 C₆₀可能会对吸附在银电极表面的 C₆₀的 SERS 谱图产生干扰,因此在本文中我们首先在银电极表面 制备 C₆₀的薄膜,再对其进行表面拉曼增强光谱实验。分别 研究了乙腈溶液和水溶液中银电极表面 C₆₀薄膜随电极电位 变化的 SERS 光谱,并将两者进行了对照。

1 实验部分

1.1 银电极表面粗糙

银电极经 6[#]金相砂纸、1, 0.3, 0.05 μ m Al₂O₃ 粉抛光 至镜面, 然后用 3 次蒸馏水超声清洗其表面。抛光处理后的 银电极置入 0.1 mol·L⁻¹ KCl 水溶液中,采用非原位循环伏 安法(Ex situ ORC)进行粗糙。粗糙过程完成后再次用三次 蒸馏水冲洗并经氮气吹干待用。

1.2 C₆₀薄膜的制备

为了减少溶液中 C₆₀ 对谱图的干扰,以便更好地考察 C₆₀ 在银电极表面的光谱电化学特征,我们设法在电极表面形成 一层 C₆₀薄膜。首先取两滴含有 10 mmol·L⁻¹ C₆₀ 的甲苯溶 液,滴在粗糙好的银电极表面,在氮气氛下待甲苯完全蒸发 后,将电极分别移入无水乙腈和水溶液中待用。同时,由于 四丁基铵阳离子有助于 C₆₀ⁿ⁻的稳定,因此这里的乙腈溶液 使用了 0.1 mol·L⁻¹的 N(C₄ H₉)₄Br 作为支持电解质。

1.3 实验仪器

拉曼光谱实验采用法国 Dilor 公司的 LabRam I型共焦 显微拉曼系统,激发线为 632.8 nm 的 He-Ne 激光,电位控 制使用 EG&G 公司的 PAR-173 型恒电位仪。采用三电极体 系,以铂环电极作为辅助电极,饱和甘汞电极(SCE)为参比

收稿日期: 2006-02-08, 修订日期: 2006-05-16

基金项目:国家自然科学基金项目(29873033)和厦门大学固体表面物理化学国家重点实验室项目 作者简介:孙玉华,1976年生,苏州大学化学系硕士研究生 *通讯联系人 e-mail:ragu@suda.edu.cn

电极,并以盐桥与电解池相连。 所用试剂均为分析纯,所有电位皆相对于 SCE。

2 结果与讨论

2.1 含有 0.1 mol・L⁻¹ N(C₄H₉)₄Br 的乙腈溶液中银电极 上 C₆₀薄膜的 SERS

如图1所示,在开路电位下,仅得到了少量C₆₀的特征 谱峰且强度较弱。此时,在氮气氛下甲苯蒸发后形成的 C60 膜层较薄且只能简单地覆盖在电极表面,C60与电极表面作 用较弱且更趋向于简单的物理吸附,所以得到的谱峰较少且 强度小。随电位负移到一0.6 V, C60 谱峰突然消失, 而在~ 348 cm⁻¹出现一宽而强的峰,这与乙腈溶液中 C60 的悬液在 银电极表面的 SERS 谱图存在很大的差异。Garrell 等^[4]在金 电极上得到~340 cm⁻¹的新峰, Moscovits 等^[5]在 341 cm⁻¹ 也观察得到一新峰,并且都把它们归因于 C₆₀ 与金属基底的 直接作用。因此可以认为本实验中出现在 348 cm⁻¹左右的峰 同样也可能与C60与金属基底的作用有关。当电位逐渐回到 -0.1 V时(如图1所示,其中'R'指电位第一次返回),C₆₀ 的谱峰又重新出现,并且其强度也略有提高。在该体系中, 按照上面的实验进程把电位重新负扫,在一0.2 V时(如图 2 所示), 意想不到的得到了高质量的 C₆₀表面拉曼光谱图。这 可能是因为在第一圈的循环伏安扫描过程中,C60 膜先溶解 后又获得电子沉积在电极表面,同时该电位区间的循环过程 中也会伴有表面银原子的氧化还原发生。这就相当于一次原 位的电化学 ORC 粗糙过程, 部分 C60 会作为配体与电极表面 的银原子共同组成具有高 SERS 活性的团簇。将此时 C₆₀的

SERS 谱峰位置与常规拉曼光谱相比较(如表 1 所示),可以 发现,与银电极表面 C_{60} 悬液的 SERS 研究结果相似,由于表 面 C_{60} 分子对称性的降低导致了 H_g 振动模式 5 重简并态的 失去,从而使谱峰发生了分裂^[7](如 1 575 cm⁻¹分裂为 1 541 和 1 577 cm⁻¹; 739~877 cm⁻¹的多个峰是 774 cm⁻¹分裂的 结果; 1 026, 1 056 和 1 103 cm⁻¹的出现也许与 1 099 cm⁻¹ 的分裂有关)。同时,由于表面电磁场的作用,光谱选律在 SERS 效应中被拓宽,使得在拉曼活性中被禁阻的振动模式 获得拉曼活性,产生了新的拉曼谱峰(如 999, 1 126, 1 273, 1 367, 1 389 cm⁻¹等)。

Fig. 1 The SER spectra of the C_{60} film on Ag electrodes in the 0.1 mol $\cdot L^{-1} N(C_4 H_9)_4$ Br acetonitrile

Fig. 2 The SER spectra of the C₆₀ film on Ag electrodes in the 0.1 mol \cdot L⁻¹ N(C₄H₉)₄ Br acetonitrile solution after *in-situ* ORC

与第一次电位负移过程中在一0.7 V时其表面信号基本 消失相比(如图 1),经现场粗糙后的电极的电位继续直至负 移到一1.7 V时,拉曼谱峰才基本消失,这个实验现象也进 一步证明了 C₆₀会作为配体与电极表面的银原子共同组成具 有 SERS 活性团簇的可能性。另外,为了更清晰地分辨银电 极表面吸附的 C₆₀各峰, 在较正的电位下取出电极, 并用氮 气吹干其表面, 测得的表面拉曼光谱如图 3, 所得各谱峰的 强度更大, 由此也说明了在电极经历氧化还原过程中 C₆₀与 基底作用而再生成了稳定的表面膜。

$Raman/cm^{-1[A]}$	SER Spectra(Acetonitrile solution) ^[B]	SER spectra(Water Solution) ^[C]	Assignment
273	265		$H_{\rm g}$ squashing
		311	
437		381, 392	$H_{ m g}$
496		504 599	$A_{\rm g}$ breathing
527	~585	504, 522 600, 611	$F_{ m lu}$
577		000,011	$F_{ m hu}$
710	711vw	712	H _g
774	739~877	763vw, 802, 821vw, 854	e
	999	999	
1 099	1 026,1 056,1 103	1 088	H_{g}
	1 126	1 128	C.
1 183		1 157vw	F_{lu} (An infrared active mode)
1 250	1 229vw	1 234	$H_{ m g}$
	1 273, 1 367, 1 389	1 273, 1 315, 1 392	_
$\begin{array}{c}1 \\ 428\\1 \\ 470\end{array}$	1 447, 1 465	1 449, 1 468	$H_{ m g}$, $F_{ m lu}$ $A_{ m g}$ pentagonal pinch
1 575	1 541, 1 577	1 557, 1 586	

 Table 1
 Raman frequencies of C₆₀

[A]: data from ref 8; [B]: in our work 2.1, at-0.2 V(after in-situ ORC); [C]: in our work 2.2, at-0.1V(vw-very weak)

2.2 含有 0.1 mol・L⁻¹ KCl 的水溶液中银电极上 C₆₀ 薄膜 的 SERS

为了与 2.1 中所述的结果相比较,我们研究了 0.1 mol • L⁻¹ KCl 水溶液中银电极表面的 C₆₀ 薄膜随电位变化的吸 附行为,结果如图 4 所示。其中在一0.1 V 所得的谱峰列在 表 1 中的[C]。以往 Garrell 等^[4]在 0.1 mol • L⁻¹ KCl 水溶液 中的金电极上考察了 C₆₀ 拉曼谱峰的变化,由于没有得到 Cl⁻ 与电极作用的表面拉曼谱峰,因此认为其对 C₆₀ 的吸附没 有影响。然而图 4 中可以清楚地观察到位于 220 cm⁻¹极强的 Ag-Cl⁻ 谱峰,这是因为在 Garrell 研究体系中电极表面吸附 C₆₀ 的量较多,所以当吸附的 C₆₀ 较少时,特性吸附离子依然 会对 C₆₀ 的吸附产生较大的影响。

电位由-0.1 V 而负移的过程中, 拉曼谱峰强度先稍有 增加, 后逐渐减小, 至-1.1 V 时各峰仍清晰可见。电位重

Fig. 4 The SER spectra of the C_{60} film on Ag electrodes in a 0.1 mol \cdot L⁻¹ KCl solution

新正扫, 谱峰虽然重现, 但是强度大大减小, 这可能与电位 循环过程中电极表面的 SERS 活性的部分或全部不可逆消失 有关, 特别是电位扫至 0.1 V 时电流突然增大并且未检测到 C₆₀的谱峰, 此时银电极已被氧化而导致 SERS 活性位的彻底 消失。

另外,同样由于 C_{60} 分子对称性的降低使五重简并态的 H_g 振动模式发生分裂,产生几个清晰可辨的谱峰,在本实验中所得到分裂的双峰更为明显(504 和 522 cm⁻¹; 381 和

392 cm⁻¹; 600 和 611 cm⁻¹; 1 557 和 1 586 cm⁻¹)。同时,与 在乙腈溶液中相同,表面电磁场的作用导致光谱选律在 SERS效应中被拓宽,从而使拉曼活性中部分被禁阻的振动 模式具有了拉曼活性,得到了新的拉曼谱峰。

与 2.1 节中相似, 在低波数区得到的位于 311 cm⁻¹的弱峰同样可能归属于 C_{60} -金属基底的作用。

致谢: 该实验在厦门大学固体表面物理化学国家重点实 验室完成,特此致谢。

参考文献

- [1] Alieva E V, Kuzik L A- Yakovlev V A, et al. Chem. Phys. Lett., 1999, 302: 528.
- [2] Akers K L, Douketis C, Haslett T L, et al. J. Phys. Chem., 1994, 98: 10824.
- [3] Chlistunoff J, Cliffel D, Bard A J. Thin Solid Films, 1995, 257: 166.
- [4] Garrell R L, Herne T M, et al. J. Am. Chem. Soc., 1991, 113: 6302.
- [5] Akers K L, Cousins L M, Moscovits M. Chem. Phys. Lett., 1992, 190: 614.
- [6] GU Wei, SUN Yu-hua, GU Ren-ao(顾 伟, 孙玉华, 顾仁敖). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(12): 1991.
- [7] Zhong Y, Du Y H, Shapley J R, et al. Chem. Phys. Lett., 1993, 205: 508.

Study on Surface-Enhanced Raman Spectroscopy of C₆₀ Films on Ag Electrodes

SUN Yu-hua, BAO Fang, GU Wei, YAO Jian-lin, GU Ren-ao* Department of Chemistry, Suzhou University, Suzhou 215123, China

Abstract The thin films of C_{60} on Ag electrodes were studied by in situ surface-enhanced Raman spectroscopy (SERS) in acetonitrile solution and water solution respectively. The influence of C_{60} from bulk solution on the SERS of the adsorbed C_{60} was removed by pre-forming C_{60} films on the electrode. The results indicate that the split of some relevant Raman bands was attributed to the loss of vibrational degeneracy due to the lowering of the C_{60} molecular symmetry. Moreover, the surface selection rule was extended because of the influence of the surface electromagnetic field in which some forbidden modes became Raman-active. The results were similar to that of C_{60} molecules adsorbed on Ag electrode in the solution of C_{60} . A weak band at about 348 and 311 cm⁻¹ was observed for the C_{60} films in acetonitrile solution and in aqueous solution respectively, which could be assigned to the interaction of C_{60} and Ag electrode surface.

Keywords Surface-enhanced Raman spectroscopy (SERS); C₆₀ films; Ag electrode

(Received Feb. 8, 2006; accepted May 16, 2006)

* Corresponding author