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Abstract

This paper concerns the Markov process duality between the one-dimensional heat equation
driven by Fisher-Wright white noise and slowly coalescing Brownian particles. A representation
is found for the law of the solution x→ Ut(x) to the stochastic PDE, at a fixed time, in terms
of a labelled system of such particles.

1 Statement of the main result

We consider solutions Ut(x) ≥ 0 to the stochastic PDE

∂U

∂t
= ∆U +

√

λU(1− U) dW (1)

on the circle T = [0, 1) mod(1). Here W is a space-time white noise on [0,∞)× T and λ > 0.
In [7], Shiga introduced equation (1) as a model for population genetics and established a
formula for product moments of U using a Markov duality function and a system of slowly
coalescing Brownian particles. Let ((X i

t)i≤Nt
: t ≥ 0) be the positions of a finite random

number Nt of particles evolving as follows. Each particle follows an independent Brownian
motion on the circle T up to its time of extinction. For each pair of particles we let Li,jt denote
the intersection local time, that is the local time of X i

t −Xj
t at zero. Independently for each

pair, at the rate λ dLi,jt , the two particles i and j coalesce, that is one of the two particles
disappears. Shiga [7] states the formula

Ef

[

Ut(x
1) . . . Ut(x

m)
]

= Ex

[

Nt
∏

i=1

f(Xi
t)

]

(2)

136



Duality between coalescing Brownian particles and the stochastic heat equation 137

where the left hand expectation is for a solution to (1) started at continuous f : T → [0, 1], and
the right hand expectation is for the coalescing particle system started from m single particles
with initial positions coded by x = (x1, . . . , xm).
We attach labels W i

t (dx), taking values in M(T ) the space of finite measures on T , to each
particle. These labels remain unchanged during the evolution except at coalescent events,
when the measure attached to the coalesced particle is the sum of the measures attached to
the two coalescing particles. The evolution of the measures W i

t is therefore determined by the
initial values and the particle system. Suppose the initial measure W i

0 is a point mass δXi
0

at

the position of particle. Then the measure for particle X j
t at a time t > 0 is a sum of point

masses, from which one can read off all the initial positions of particles that have coalesced to
form Xj

t .
In Section 2 we establish the following duality for the system ((X i

t ,W
i
t )i≤Nt

: t ≥ 0). Write
W i
t (φ) for the integral of φ against the measure W

i
t (dx). Then for measurable φ : T → [0,∞)

and f : T → [0, 1]

Ef

[

m
∏

i=1

(

1− (1− e−w
i(φ))Ut(x

i)
)

]

= E(x,w)

[

∏

i

(

1− (1− e−W
i
t (φ))f(Xi

t)
)

]

(3)

where the right hand expectation is for the coalescing particle system started from m single
particles with initial positions and labels coded by x = (x1, . . . , xm) and w = (w1, . . . , wm).
Note that (2) follows from (3) by letting φ ↑ ∞, changing f to 1− f , and noting that 1− Ut
remains a solution to (1).
In Section 3 we construct a continuum limit of our coalescing system. Take, as an initial
condition, particles X i

0 with labels W
i
0 = (1/n)δXi

0

, where (Xi
0) form a Poisson point process

on T with intensity ndx. Then the duality (3) becomes, via Campbell’s formula for Poisson
processes,

Ef

[

exp

(

−n

∫

T

(

1− e−
1

n
φ(x)

)

Ut(x)dx

)]

= EPoisson(n)

[

∏

i

(

1− (1− e−W
i
t (φ))f(Xi

t)
)

]

(4)
where the expectation on the right hand side is for this Poissonized initial condition (and an

empty product takes the value 1). Let ρ
(n)
t be the law of ((X i

t ,W
i
t ) : i ≤ Nt) under this

Poissonized initial condition. We will show that ρ
(n)
t → ρt for each t > 0 as n → ∞. The

convergence here is in distribution and the exact state space is detailed in Section 3. Moreover
the family ρ = (ρt : t > 0) forms an entrance law for the finite coalescing particle system. In
particular under each law ρt the total number of particles is finite.
We write Ut(φ) for

∫

T
Ut(x)φ(x) dx. Passing to the limit in (4) as n → ∞ we obtain (see

Section 3.2) for continuous f, φ

Ef [exp (−Ut(φ))] = Eρ

[

∏

i

(

1− (1− e−W
i
t (φ))f(Xi

t)
)

]

where the right hand side denotes an expectation under the entrance law ρ. We may rewrite
this as

Ef [exp (−Ut(φ))] = Eρ

[

exp

(

−
∑

i

W i
t (φ)I(U

i ≤ f(Xi
t))

)]
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where we have introduced an independent I.I.D. family (U i) of uniform variables on [0, 1]. This
equality between Laplace transforms of random measures on T shows our main result.

Theorem 1 Fix t > 0. Then Ut(x)dx under Pf has the same distribution as

∑

i

W i
t (dx)I(U

i ≤ f(Xi
t)) (5)

under the entrance law Pρ.

Remarks

1. The result should be thought of as the analogue of the duality for the Voter model and
coalescing random walks. The long range voter model, under suitable rescaling (see
[5]), converges to the stochastic PDE (1). As in the discrete setting, there should be a
coupling of the continuum coalescing Brownian particle system together with a solution
to the stochastic PDE so that a duality relation holds simultaneously at all times. For
details on this, and the extensions below, see the Warwick thesis [4].

2. The same calculations apply in dimension d = 0 (that is where we suppress spatial mo-
tion) and lead to a representation for the solution Xt to the SDE dX =

√

λX(1−X)dB.

3. The representation can be used to shed light on the compact support property of solutions
to (1). The idea is that the indicator variables in the representation (5) allow the solution
to be identically zero. For example the fact that there are only finitely many particles
at any time t > 0 implies, when f 6≡ 1, that Pf [Ut ≡ 0] > 0 for all t > 0. The analogous
representation holds for solutions on the real line (but one must allow an infinite system
of particles). When f is compactly supported, the solution Ut(x) remains compactly
supported on R. This can also be deduced from the representation, the key being that
only finitely many Brownian particles are used to represent the values of (Ut(x) : x ∈ A)
when A is a bounded interval.

2 The extended duality function

We consider a family of duality functions, one for each measurable φ : T → [0,∞). For
u ∈ C(T , [0, 1]) and (x,w) = ((x1, w1), . . . , (xn, wn)) ∈ (T ×M(T ))n define

Hφ(u, (x,w)) :=
∏

i

Hφ(u, x
i, wi) :=

∏

i

(

1− (1− e−w
i(φ))u(xi)

)

.

Write LU and L(X,W ) for the generators of the stochastic PDE and the dual weighted particle
system. Then formally applying LU to the function u→ Hφ(u, (x,w)) we have

LUHφ(u, (x,w))

=
∑

i





∏

k 6=i

Hφ(u, x
k, wk)



∆u(xi)
(

e−w
i(φ) − 1

)

(6)

+
∑

i<j





∏

k 6=i,j

Hφ(u, x
k, wk)





(

1− e−w
i(φ)
)(

1− e−w
j(φ)
)

(

u(xi)− u2(xi)
)

λ δxi=xj
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where δx=y is used to represent the spatial covariance of the space-time noise W .
When applying L(X,W ) to the function (x,w)→ Hφ(u, (x,w)) we obtain the first term on the
right hand side of (6) from the action of the Brownian motions. The coalescence of a pair of
particles i and j leads to a jump term of the form





∏

k 6=i,j

Hφ(u, x
k, wk)





[

Hφ(u, x
i, wi + wj)−Hφ(u, x

i, wi)Hφ(u, x
j , wj)

]

λ δxi=xj

where here we have used δxi=xjdt as a formal expression for the rate of the local time interaction
dLi,jt . A small miracle occurs and this simplifies to





∏

k 6=i,j

Hφ(u, x
k, wk)





(

1− e−w
i(φ)
)(

1− e−w
j(φ)
)

(

u(xi)− u2(xj)
)

λ δxi=xj .

Summing over all pairs we can match L(X,W )Hφ(u, (x,w)) with the expression in (6). This
suggests, via standard duality ideas summarized in Ethier and Kurtz [3] Section 4.4, that the
duality relation (3) should hold. We omit the details of a formal proof of this relation since it
follows closely the lines of Theorem 1 in Athreya and Tribe [1] (although our case is easier since
0 ≤ Hφ(f, (x,w)) ≤ 1 and there are no integrability problems). The main step of the proof is
to smooth the duality functions to allow them to be in the true domain of the generator.
Remarks

1. For the proof of the duality formula it is convenient to work with continuous φ and
twice differentiable f . The formula holds however for any measurable φ and f . Note
the usual vector space monotone class theorems do not apply here. However the set
of φ for which the duality holds is closed under bounded pointwise limits and contains
the continuous functions. Set valued monotone class arguments allow one to show the
duality holds for finite sums φ(x) =

∑

i ciI(x ∈ Λi), where Λi ⊆ T are measurable.
Standard approximations then extend this to measurable φ. To allow measurable f we
need solutions to (1) started from measurable initial conditions (which are not considered
in [1], [6], [7]). Take continuous (or smooth) f (n) converging almost everywhere to a
measurable f . Using the Green’s function representation for solutions, the corresponding

solutions (t, x) → U
(n)
t (x) can be checked to satisfy Kolmogorov’s tightness criterion as

elements of C([δ, T ]× T ) for any 0 < δ < T <∞. Also t→ U
(n)
t (φ) is tight in C([0, T ])

for any continuous φ. Any limit point satisfies (2) and hence has unique one dimensional
marginals. These facts can be used to show that the U (n) converge in distribution
to a continuous limit (Ut(x) : t > 0, x ∈ T ) which uniquely solves (1), and where
Ut(φ) → f(φ) as t → 0 for any continuous φ. Another monotone class argument shows
that the duality formula (3) holds also for measurable f .

2. The duality function will work in a slightly more general setting. The labels can be ele-
ments of a vector space V , which add upon coalescence. The duality function Hφ(u, x, w)
can then be replaced by Hv∗(u, x, w) = 1−(1−exp(〈v

∗, w〉))u(x), where v∗ is an element
in the (algebraic) dual vector space V ∗, and 〈v∗, w〉 is the dual pairing.

As a special case of the duality we obtain the law of the sum of the measures labelling particles
located in any measurable Λ ⊆ T , which we denote by

WΛ
t (dx) :=

∑

i

W i
t (dx) I(X

i
t ∈ Λ).



140 Electronic Communications in Probability

Taking f = I(Λ) in (3) we obtain the Laplace functional of WΛ
t

EIΛ

[

∏

i

(

1− (1− e−w
i(φ))Ut(x

i)
)

]

= E(x,w)
[

exp
(

−WΛ
t (φ)

)]

.

We can deduce formulae for the first and second moments.

E(x,w)
[

WΛ
t (φ)

]

=
∑

i

wi(φ)EIΛ

[

Ut(x
i)
]

,

and

E(x,w)

[

(

WΛ
t (φ)

)2
]

=
∑

i,j

wi(φ)wj(φ)EIΛ

[

Ut(x
i)Ut(x

j)
]

+
∑

i

(

wi(φ)
)2

EIΛ

[

Ut(x
i)(1− Ut(x

i))
]

. (7)

3 The entrance law

3.1 Tightness

A suitable state space for the finite particle system is

E =
∞
⋃

n=0

(T ×M(T ))
n
/ ∼ .

This is the disjoint union of n-fold product spaces, each taken under the quotient of allowing
permutation of the coordinates. If we giveM(T ) the topology of weak convergence of measures
then E is a locally compact metrizable space. Indeed, write |(x,w)| = n when (x,w) ∈
(T ×M(T ))n, and call this the length of (x,w). Then the sets of elements of length at most
n are compact subsets.

Recall from Section 1 that ρ
(n)
t is the law on E of ((X i

t ,W
i
t ) : i ≤ Nt) when started according

to PPoisson(n). To check tightness we need only consider the number Nt = |(Xt,Wt)| of

particles at time t. The Poissonized version of the duality (2) is

Ef

[

exp

(

−n

∫

T

(1− Ut(x)) dx

)]

= EPoisson(n)

[

∏

i

f(Xi
t)

]

. (8)

Taking f ≡ θ ∈ (0, 1) gives

EPoisson(n)
[

θNt
]

= E1−θ

[

exp

(

−n

∫

Ut(x) dx

)]

≥ P1−θ [Ut ≡ 0] .

The right hand side is independent of n. Moreover we claim that it converges to 1 as θ ↑ 1. This
implies, by a Tchebychev argument (P[N ≥ K] = P[1− θN ≥ 1− θK ] ≤ E[1− θN ]/(1− θK)),
that

sup
n

PPoisson(n) [Nt ≥ K]→ 0 as K →∞

which establishes tightness.
To show the claim we establish death estimates for (1). These show that for small initial
conditions the death probabilities are close to those of a super Brownian motion.
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Lemma 2 For a solution Ut to (1) and δ ∈ [0, 1] let τδ := inf{t : supx Ut(x) ≥ δ}. Recall that
f(1) =

∫

T
f(x)dx. Then

exp

(

−
2 f(1)

λ(1− δ)t

)

−Pf [τδ ≤ t] ≤ Pf [Ut ≡ 0] ≤ exp

(

−
2 f(1)

λt

)

.

Proof. Define ηs = 2/λs, a solution to η̇ = −(λ/2)η2 on (0,∞). Fix t > 0 and define
Ms := exp (−ηt−sUs(1)) for s < t and Mt := I(Ut ≡ 0). Then Itô’s formula shows that Ms

is a bounded supermartingale and taking expectations at times s = t and s = 0 yields the
required upper bound. For the lower bound we use ηs = 2/λ(1− δ)s. Then Ms is a bounded
submartingale up to time τδ. Taking expectations at times s = τδ ∧ t and s = 0 we obtain

Pf [Ut ≡ 0 ; τδ ≥ t] +Ef [exp (−ηt−τδUτδ (1)) ; τδ < t] ≥ exp

(

−
2 f(1)

λ(1− δ)t

)

which after rearrangement implies the required lower bound.

Now we can finish the tightness claim. Note that P1−θ [Ut ≡ 0] ≥ P1−θ

[

Ut(θ) ≡ 0
]

provided

that t(θ) ≤ t. Choose t(θ) = (1−θ)1/2 and apply the lower bound from Lemma 2 with t = t(θ).
The term exp(−2 (1 − θ)/λ(1 − δ)t(θ)) converges to 1 as θ → 1. We can bound the second
term

P1−θ [τδ ≤ t(θ)] ≤ Pδ/2 [τδ ≤ t(θ)] (9)

once 1− θ ≤ δ/2. But by the continuity of sample paths this converges to 0 as t(θ)→ 0. The
final inequality (9) follows since one can couple two solutions of (1), with initial conditions
U0 ≡ 1− θ and V0 ≡ δ/2, so that Ut(x) ≤ Vt(x) for all t, x. Such coupling results are standard
for equations with Lipschitz coefficients, and follow in our case by an approximation argument
(see Pardoux [6] Theorem I.3.1 for such a construction).

3.2 Construction of an entrance law

Write Ttf((x,w)) for the expectation of f((X
i
t ,W

i
t )) when the particle system is started at

(x,w). It is straightforward to show, for example by a simple coupling argument, that Tt :
Cb → Cb, where Cb is the space of bounded continuous functions on E. (Note Tt does not send
C0, the space of continuous functions vanishing at infinity, into itself.)

For a (Borel) probability ρ on E we write T ∗t ρ for the push forward under Tt, that is the law
satisfying (T ∗t ρ)(f) =

∫

E
Ttf(x)ρ(dx). Then an entrance measure is a family of probabilities

ρ = (ρt : t > 0) on E satisfying ρs+t = T ∗t ρs for s, t > 0. For any fixed t > 0 the tightness

estimate in Section 3.1 above shows that the laws (ρ
(n)
t : n ≥ 1) are tight. We want to construct

limits for each t that mesh together to form an entrance law. Choose times sk > 0 decreasing

to 0. By a diagonal argument we can find a subsequence n′ so that ρ
(n′)
sk converge, with a limit

that we call ρsk , for all k ≥ 1. Note that T
∗
t ρ

(n′)
sk = ρ

(n′)
sl when t = sk − sl > 0. Passing to

the limit, using Tt : Cb → Cb, we find that T
∗
t ρsk = ρsl . Now finally fill in the other values

ρt by setting ρt = T ∗t−skρsk for any t ≥ sk. This produces an entrance law ρ = (ρt : t > 0).

Moreover, the same argument shows that ρ
(n′)
t → ρt for any t > 0. One can construct a law Pρ

on the canonical space D((0,∞), E) so that the canonical variables ((Xt,Wt) : t > 0) are the
particle system started according to the entrance law. We do this without further comment
(as we did in the statement of the main Theorem 1).
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Passing to the limit in (8) gives

Pf [Ut ≡ 1] = Eρ

[

∏

i

f(Xi
t)

]

. (10)

This formula determines the law of the particle positions (X i
t : i ≤ Nt) under Pρ. For

continuous f, φ the map (x,w) → Hφ(f, (x,w)) is continuous and passing to the limit in (4)
produces

Ef [exp (−Ut(φ))] = Eρ

[

∏

i

(

1− (1− e−W
i
t (φ))f(Xi

t)
)

]

. (11)

Unfortunately we do not believe that the duality formulae (10) and (11) determine the law of
((Xi

t ,W
i
t ) : i ≤ Nt) under Pρ. However we will show in Section 3.4 that there is actually a

unique entrance law ρ = (ρt : t > 0) that satisfies (10) and (11) at all times t > 0 simultaneously

and, moreover, that ρ
(n)
t → ρt for all t > 0.

We can deduce the law of WΛ
t under Pρ for any fixed Λ and t. As before, a monotone class

argument shows that (11) holds for all measurable f and φ. By taking f = I(Λ) we obtain the
Laplace transform of WΛ

t under Pρ:

EI(Λ) [exp (−Ut(φ))] = Eρ

[

exp
(

−WΛ
t (φ)

)]

. (12)

Thus WΛ
t (dx) under Pρ has the same distribution as Ut(x)dx under PI(Λ). In particular we

have that W T
t (dx) = dx for all t ≥ 0, almost surely.

3.3 Small time behaviour

When the particle density is high the behaviour should be of mean field type, that is almost
deterministic. We state two indications of this as a lemma.

Lemma 3 (a) Under the entrance measure ρ the random measure on T defined by

µ
(1)
t =

λt

2

∑

i

δXi
t

converges in probability to Lebesgue measure as t ↓ 0.

(b) For φ, ψ : T → R write φ⊗ψ for the function φ(x)ψ(y) on T 2. Define a random measure
on T 2 by

µ
(2)
t (φ⊗ ψ) =

∑

i

W i
t (φ)ψ(X

i
t).

Then, under the entrance measure, µ
(2)
t converges in probability as t→ 0 to normalised

uniform measure on the diagonal {(x, y) ∈ T 2 : x = y}.

Remark. In particular the number of particles Nt at time t satisfies (λt/2)Nt → 1 in proba-
bility as t→ 0. Compare this with the non-mean field behaviour of instantaneously coalescing
particles established by Donnelly et al. [2].
Proof. Replacing f in (10) by exp(−θλtf/2) for θ > 0, we obtain

P1−exp(−θλtf/2) [Ut ≡ 0] = Eρ

[

exp
(

−θµ
(1)
t (f)

)]

.
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Now use the upper and lower bounds on this extinction probability found in Lemma 2. They
show that this Laplace functional converges to exp(−θf(1)) as t→ 0 which implies the desired
convergence.

For part (b) recall that µ
(2)
t (φ⊗I(Λ)) =WΛ

t (φ) has the same law as Ut(φ) under PIΛ and so, as

t→ 0, converges to
∫

Λ
φdx for any continuous φ. Thus µ

(2)
t (h)→

∫

T
h(x, x) dx in probability

for h(x, y) =
∑n

i=1 φi(x) I(y ∈ Λi). An approximation argument, recalling that µ
(2)
t (1) = 1,

shows the same holds for all continuous h : T 2 → R, which implies the desired result.

3.4 Uniqueness of the entrance law

Let ρ̂s be the law on E formed by taking the law of the particle positions (X
i
s : i ≤ Ns) under

Pρ and attaching the labels (λs/2)δXi
s
. Then we claim that

T ∗t−sρ̂s → ρt as s→ 0. (13)

Since the law of the particle positions under Pρ is determined, so is the law T ∗t−sρ̂s and this

claim characterizes the entrance law ρ. Moreover it implies that ρ
(n)
t → ρt for each t > 0.

Indeed, arguing as in Section 3.2, for any subsequence n′ there exists a sub-subsequence n′′

along which ρ
(n′′)
s → ρs for all s > 0. Now apply the subsequence principle.

To establish the claim (13) we form a coupling of one system of labelled particles ((X i
t ,W

i
t ) :

i ≤ Nt) with law ρt and another ((X
i
s,t,W

i
s,t) : i ≤ Ns,t) with law T ∗t−sρ̂s, constructed as

follows. Let the particle positions (X i
s,r : r ≥ s) follow those of (X i

r : r ≥ s) under the

entrance measure ρ, but define the labels W i
s,s at time s to be (λs/2)δXi

s
. Then the evolution

of the labels (W i
s,r : r ≥ s) is determined by the motion of the particle positions, in that they

evolve by addition at the same set of collision events as (X i
r : r ≥ s). For this coupling we

have the following lemma.

Lemma 4 For measurable Λ and φ let WΛ
s,t(φ) =

∑

iW
i
s,t(φ)I(X

i
s,t ∈ Λ). Then WΛ

s,t(φ) →

WΛ
t (φ) in probability as s→ 0.

Proof. Define Ωs = {sNs ≤ 4/λ}. Lemma 3 implies that Pρ[Ωs]→ 1 as s→ 0. We will show
that

E
[

∣

∣WΛ
s,t(φ)−W

Λ
t (φ)

∣

∣

2
; Ωs

]

→ 0 as s→ 0

which then implies the result
Both sets of labels r → W i

r and r → W i
s,r follow the same set of coalescences over r ≥ s and

we may think of each of the differences W i
r −W i

s,r as a single label that is a signed measure.
Note that the duality, and hence the moment formulae, still hold when the labels are signed
measures. Thus, conditioning on the information at time s and applying the second moment
formula (7), we have

E
[

∣

∣WΛ
t (φ)−W

Λ
s,t(φ)

∣

∣

2
; Ωs

]

= E





∑

i,j

(

W i
s(φ)− (λs/2)φ(X

i
s)
) (

W j
s (φ)− (λs/2)φ(X

j
s )
)

Ut−s(X
i
s)Ut−s(X

j
s ) ; Ωs





+E

[

∑

i

(

W i
s(φ)− (λs/2)φ(X

i
s)
)2
Ut−s(X

i
s)(1− Ut−s(X

i
s)) ; Ωs

]

= I + II.
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The expectation here is over the weighted particles (X i
s,W

i
s) under the entrance measure and

an independent solution Ut to the stochastic PDE started at IΛ. We rewrite the first term,
using the notation from Lemma 3, as

I = E

[

(

µ(2)s (φ⊗ Ut−s)− µ
(1)
s (φUt−s)

)2

; Ωs

]

.

Lemma 3 and the uniform continuity of Ut(x) imply that both µ
(1)
s (φUt−s) and µ

(2)
s (φ⊗Ut−s)

converge to Ut(φ) as s → 0. The term µ
(2)
s (φ ⊗ Ut−s) is bounded by ‖φ‖∞ and the term

µ
(1)
s (φUt−s) is bounded by 2 on Ωs, so dominated convergence shows that the first term
vanishes as s→ 0. We can bound the second term by

II ≤ 2E

[

∑

i

(W i
s(φ))

2

]

+ (λ2s2/2)E

[

∑

i

φ2(Xi
s) ; Ωs

]

≤ C(λ, φ)

(

E

[

∑

i

(W i
s(1))

2

]

+E
[

s2Ns ; Ωs
]

)

= IIa+ IIb.

Note that s2Ns ≤ 4s/λ on Ωs which shows that IIb→ 0 as s→ 0. Set IMj = [(j−1)/M, j/M).
Then, for any M ∈ N,

E

[

∑

i

(W i
s(1))

2

]

≤

M
∑

j=1

E

[

(W
IMj
s (1))2

]

. (14)

Recall that W IMj (1) has the same distribution as Us(1) under PI(IM
j
). The first moment

Pf [Ut(1)] = f(1), and an Itô’s formula calculation yields

EI(IM
j
)

[

U2s (1)
]

=M−2 +

∫ s

0

∫

T

EI(IM
j
) [Ur(x)(1− Ur(x))] dxdr ≤M−2 + sM−1.

Using this in (14) shows that IIa→ 0 as s→ 0 and completes the proof.

The lemma implies that the law of µ
(2)
t (h) under Pρ is uniquely determined when h(x, y) =

∑n
i=1 φ(x)I(y ∈ Λi). This in turn ensures that the law of µ

(2)
t under Pρ is uniquely determined.

The map (x,w)→ µ
(2)
t is continuous from E toM(T 2) and injective on the open subset E ′ :=

{(x,w) : xi 6= xj for all i 6= j}. A theorem of Kuratowski (see [3] Appendix 10) guarantees
the inverse is measurable. Moreover the law ρt is concentrated on E

′ (since finitely many
Brownian particles will have disjoint positions at a fixed time), hence is uniquely determined
on E. Finally the family (T ∗t−sρ̂s : s ≥ 0) is tight, by exactly the calculations from Section
3.1. Then Lemma 4 guarantees that any limit point must be ρt and the convergence claim
(13) follows.
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