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Abstract

In this paper a method for proving homogenization of divergence form elliptic equations is
extended to the non-divergence case. A new proof of homogenization is given when the co-
efficients in the equation are assumed to be stationary and ergodic. A rate of convergence
theorem in homogenization is also obtained, under the assumption that the coefficients are
i.i.d. and the elliptic equation can be solved by a convergent perturbation series,

1 Introduction.

In [3] we introduced a new method for proving the homogenization of elliptic equations in
divergence form. The purpose of this paper is to extend the method to non-divergence form
equations. As in [3] we shall be able to obtain a rate of convergence in situations where the
problem is perturbative.

Let (Ω,F , µ) be a probability space and for i = 1, ..., d, let ai : Ω→ R be bounded measurable
functions on Ω satisfying the inequality

λi < ai(ω) ≤ Λi, ω ∈ Ω, i = 1, ..., d, (1.1)

where the λi, Λi are positive constants. We assume that Z
d acts on Ω by translation operators

τx : Ω→ Ω, x ∈ Zd, which are measure preserving and satisfy the properties τxτy = τx+y, τ0 =
identity, x, y ∈ Zd. Let f : Rd → R be a smooth function with compact support. We shall be
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interested in solutions uε(x, ω) of the elliptic equation on the scaled lattice Zd
ε = εZd given by

d
∑

i=1

ai(τx/ε ω) [2uε(x, ω)− uε(x+ εei, ω)− uε(x− εei, ω)]
/

ε2

+ uε(x, ω) = f(x), x ∈ Zd
ε , ω ∈ Ω, (1.2)

where the ei ∈ Rd are unit vectors with 1 in the ith entry. It is evident that (1.2) has a
unique bounded solution which is bounded by the L∞ norm of f . Letting b c denote integer
part, it is clear that for x ∈ Rd, limε→0 εbx/εc = x. We shall show that as ε→ 0 the solution
uε(εbx/εc, ω) of (1.2) converges with probability 1 in Ω to the solution u(x) of a homogenized
equation,

d
∑

i=1

qi
∂2u

∂x2
i

+ u(x) = f(x), x ∈ Rd, (1.3)

where the coefficients qi satisfy the inequality

λi ≤ qi ≤ Λi, i = 1, ..., d. (1.4)

We prove the following:

Theorem 1.1 Assume the translation operators τx, x ∈ Zd, are ergodic. Then with probability
1,

lim
ε→0

sup
x∈Rd

|uε(εbx/εc, ·)− u(x)| = 0 . (1.5)

Theorem 1.1 proves that with probability 1 the solution uε(εbx/εc, ω) of the random equation
(1.2) converges uniformly on Rd to the solution u(x) of the homogenized equation (1.3). One
should note that a theorem of Lawler [7] implies that limε→0 uε(0, ·) = u(0) with probability 1.
Lawler’s theorem [7] (see also [2]) shows that symmetric random walk in random environment
converges at large time to Brownian motion. Lawler’s proof follows the same lines as the
continuum version of the result obtained by Papanicolaou and Varadhan [8]. An independent
proof for the continuum version was also carried out by Zhikov and Sirazhudinov [11]. The
papers [7, 8, 11] make use of some central theorems of probability theory, in particular the
Birkhoff ergodic theorem and the martingale central limit theorem. In the proof given here
of Theorem 1.1 we avoid the use of the martingale theorem. We also only apply the Birkhoff
theorem to the translation operators τx, x ∈ Zd.
Another key fact required in the proof of Theorem 1.1 is the Alexsandrov-Bakelman-Pucci
(ABP) inequality [2, 5, 6]. If 1− λi/Λi is sufficiently small, i = 1, ..., d, one can also avoid the
use of this inequality. To see how the ABP inequality occurs we consider the representation
for the homogenized coefficients qi of (1.3). Let < · > denote expectation w.r. to (Ω,F , µ).
Then

qi =
〈

ai(·)Φ(·)
〉

, i = 1, .., d, (1.6)

where Φ(ω) is the invariant measure for a Markov chain on Ω. The generator of the chain is
−L where the operator L on functions v : Ω→ R is given by

Lv(ω) =
d
∑

i=1

ai(ω) [2v(ω)− v(τei ω)− v(τ−ei ω)] . (1.7)
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The adjoint L∗ of L is the operator satisfying
〈

u(·)Lv(·)
〉

=
〈

L∗u(·)v(·)
〉

, u, v ∈ L2(Ω).

The function Φ of (1.6) is the unique solution in L1(Ω) to the equation

L∗Φ(ω) = 0, ω ∈ Ω, < Φ(·) >= 1. (1.8)

The ABP inequality enables us to prove existence and uniqueness of the solution to (1.8) by
constructing the solution Φ in Ld/(d−1)(Ω).
We turn now to the situation where (1.2) can be solved by a converging perturbation expansion.
Homogenization using this method was proved in [1]. Here we obtain a rate of convergence
result.

Theorem 1.2 Suppose the ai(τx ·), x ∈ Zd, i = 1, ..., d are independent and γ = sup1≤i≤d[1−
λi/Λi] is sufficiently small. Then if g : R

d → R is C∞ of compact support, there exists β > 0
and a constant C such that

〈{

∫

Zdε

g(x) [uε(x, ·)− 〈uε(x, ·)〉] dx
}2〉

≤ Cεβ ,

where β > 0 is a constant depending only on γ, and C only on γ, g, f . The number β can be
taken arbitrarily close to d if γ > 0 is taken sufficiently small.

Theorem 1.2 is the analogue of Theorem 1.3 of [3]. The proof follows the same lines as the
proof in [3]. In Section 3 we outline the argument and refer the reader to [3] for further details.

2 Proof of Theorem 1.1

We first state a discrete version of the ABP inequality. The proof can be found in [2, 6, 7].
Let ai : Z

d → R, i = 1, ..., d, be functions satisfying the inequality,

λi ≤ ai(x) ≤ Λi, x ∈ Zd, i = 1, ..., d. (2.1)

Suppose D ⊂ Zd is a finite set of lattice points. An interior point of D is a point, all of whose
nearest neighbors are also in D. Let Int(D) be the set of interior points of D and the boundary
of D be ∂D = D\Int(D). Consider now the Dirichlet problem on D,

d
∑

i=1

ai(x)
[

2u(x)− u(x+ ei)− u(x− ei)
]

= f(x), x ∈ Int(D), u(x) = 0, x ∈ ∂D. (2.2)

It is easy to see by the maximum principle that (2.2) has a unique solution u(x) and it satisfies
the inequality,

‖u‖∞ ≤ C[diam(D)]2 ‖f‖∞
/

d
∑

i=1

λi, (2.3)

where diam(D) is the diameter of D and C is a universal constant. The ABP inequality for
(2.2) is given by

‖u‖∞ ≤ Cd[diam(D)] ‖f‖d
/

(λ1 · · ·λd)1/d, (2.4)
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where Cd is a constant depending only on the dimension d, and ‖f‖d is the norm of f on Ld(Zd).
Evidently (2.4) implies (2.3) modulo the ratio of the arithmetic mean of the λi, i = 1, ...d,
to the geometric. The fact that the geometric mean occurs in (2.4) illustrates some of the
subtlety of the inequality.
Let L be the operator (1.7) on functions on Ω. For any η > 0 we define an operator Tη on
functions f : Ω→ R by

Tηf(ω) = η [L+ η]−1
f(ω), ω ∈ Ω. (2.5)

It is easy to see that Tη is a bounded operator on L
∞(Ω) with norm at most 1. We also define

for n ∈ Zd the operator τn on L
∞(Ω) induced by the translation τn on Ω by

τnf(ω) = f(τnω), ω ∈ Ω. (2.6)

Lemma 2.1 Suppose f ∈ L∞(Ω) and R ≥ 1. Then there is a constant C depending only on
d, λi,Λi, i = 1, ...d, such there is the inequality,

lim sup
η→0

[

sup{‖τnTηf‖∞ : n ∈ Zd, |n| ≤ R/
√
η }

]

≤ CR ‖f‖d . (2.7)

Proof. Define a continuous time random walk on Ω as follows:

(a) The waiting time at ω ∈ Ω is exponential with parameter 2
∑d

j=1 aj(ω).

(b) The particle jumps from ω to τei ω or τ−ei ω with equal probability

ai(ω)
/

2
∑d

j=1 aj(ω), i = 1, ..., d.

If ω(t), t > 0, is the position of the walk at time t > 0 then one has

[L+ η]−1 f(ω) = E

[
∫ ∞

0

e−ηt f
(

ω(t)
)

dt
∣

∣

∣
ω(0) = ω

]

.

Consider now the random walk on Zd with transition probabilities depending on ω ∈ Ω:

(a) The waiting time at x ∈ Zd is exponential with parameter 2
∑d

j=1 aj(τx ω).

(b) The particle jumps from x to x+ ei or x− ei with equal probability

ai(τx ω)
/

2
∑d

j=1 aj(τx ω), i = 1, ..., d.

LetXω(t), t > 0, denote the random walk on Zd starting at 0 with these transition probabilities.
Then it is easy to see that

E [f(ω(t))|ω(0) = ω] = E
[

f
(

τXω(t) ω
)]

.

For r = 1, 2, ... let τr,η be the first exit time for the walk Xω(t) from the ball |x| < r/
√
η. Then

by (2.4) there is the inequality,

E

[
∫ ∞

0

e−ηtf
(

τXω(t) ω
)

dt

]

≤

C

∞
∑

r=0

E
[

e−ητr,η
] (r + 1)√

η





∑

|x|<(r+1)/
√
η

|f(τxω)|d




1/d

,
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for a constant C depending only on d, λ1, ..., λd.
Now one can see that

E
[

e−ητr,η
]

≤ exp[−Kr], r = 0, 1, 2, .., (2.8)

where the constantK depends only on d,Λ1, ..,Λd. In fact the left hand side of (2.8) is bounded
above by the same expectation, but with the stopping time τr,η replaced by the time τ

′
r,η for

the walk to exit the the cube {x : |xj | < r/
√
dη, 1 ≤ j ≤ d}. If τ ′r,η,j denotes the time for the

walk to exit the region {x : |xj | < r/
√
dη}, then there is the inequality,

E
[

e−ητ ′r,η

]

≤
d
∑

j=1

E
[

e−ητ ′r,η,j

]

. (2.9)

Each term on the RHS of (2.9) is bounded above by the same expectation, but with the
parameter in (a) for the waiting time replaced by 2(Λ1+ ..+Λd). This new expectation is the
solution to a one dimensional explicitly solvable finite difference problem, which is bounded
above by the right hand side of (2.8).
It follows from (2.8) that

sup{|τnTηf(ω)| : n ∈ Zd, |n| ≤ R/
√
η } ≤

C

∞
∑

r=0

exp[−Kr] (r + 1)√η





∑

|x|<(r+R+1)/
√
η

|f(τxω)|d




1/d

, ω ∈ Ω.

The result follows now from the last inequality by the Birkhoff ergodic theorem [4] on letting
η → 0. ¤

Lemma 2.2 There is a unique (up to scalar multiplication) non-trivial solution to the equation
L∗Φ = 0 in L1(Ω). The function Φ ∈ Ld/(d−1)(Ω) and can be chosen such that Φ(ω) > 0 with
probability 1 in ω.

Proof. We can assume wlog that the sigma field F is the smallest sigma field such that the
functions ai, 1 ≤ i ≤ d, are measurable on (Ω,F) and the translation operators τx, x ∈ Zd,
on Ω are also measurable. Then there is a countable set S of subsets E ⊂ Ω such that the
span of the characteristic functions χE , E ∈ S, is dense in Ld(Ω). Since the norm of Tη on
L∞(Ω) is at most 1, we can choose a sequence ηk, k ≥ 1, with limk→∞ ηk = 0 such that the
limit,

T (f) = lim
k→∞

〈Tηkf(·)〉 (2.10)

exists provided f = χE with E ∈ S. Now by (2.7) the linear functional T can be uniquely
extended to a bounded linear functional on Ld(Ω). Hence by the Riesz representation theorem
[9] there is a unique Φ ∈ Ld/(d−1)(Ω) such that

T (f) = 〈fΦ〉 , f ∈ Ld(Ω). (2.11)

Now it follows from (2.7) that the limit (2.10) holds for all f ∈ L∞(Ω). Hence by (2.11) we
have for any h ∈ L∞(Ω),

〈(Lh)Φ〉 = lim
k→∞

[

ηk < h > −η2
k

〈

[L+ ηk]−1h
〉]

= 0.
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We conclude that L∗Φ = 0. Since T (1) = 1 we also have < Φ >= 1 whence Φ is non-trivial.
It is evident that T is a positive functional whence Φ(ω) ≥ 0 with probability 1 in ω. To see
that Φ(ω) > 0 with probability 1 in ω we just observe that the set E = {ω ∈ Ω : Φ(ω) = 0} is
invariant under translation whence µ(E) = 0. The invariance follows from L∗Φ(ω) = 0, ω ∈ E,
which implies τeiE ⊂ E, i = 1, ..., d.
To get uniqueness, suppose Φ ∈ L1(Ω) such that L∗Φ = 0. Let Φ = Φ+ − Φ− where Φ+ =
sup{Φ, 0} and assume Φ+,Φ− are not identically zero. Arguing as before, there is a sequence
ηk → 0 such that

lim
k→∞

〈

Tηkf(·)Φ+(·)
〉

=
〈

f(·)Ψ+(·)
〉

, f ∈ L∞(Ω),

for some unique Ψ+ ∈ Ld/(d−1)(Ω) satisfying Ψ+ ≥ 0, 〈Ψ+〉 = 〈Φ+〉 and L∗Ψ+ = 0. We can
assume that for the same subsequence ηk, k ≥ 1,

lim
k→∞

〈

Tηkf(·)Φ−(·)
〉

=
〈

f(·)Ψ−(·)
〉

, f ∈ L∞(Ω),

for unique Ψ− ∈ Ld/(d−1)(Ω) satisfying Ψ− ≥ 0, 〈Ψ−〉 = 〈Φ−〉, L∗Ψ− = 0. Since one also has
that

〈Tηf(·)Φ(·)〉 = 〈f(·)Φ(·)〉 , f ∈ L∞(Ω),
it follows that Φ = Ψ+ −Ψ−. Now we have already observed that Ψ− > 0 with probability 1
since L∗Ψ− = 0 and Ψ− ≥ 0. Hence Ψ+ > Φ+ with positive probability whence 〈Ψ+〉 > 〈Φ+〉
contradicting the identity 〈Ψ+〉 = 〈Φ+〉. ¤

For ζ ∈ [−π, π]d we define an operator Lζ on functions Ψ : Ω→ C by

Lζ Ψ(ω) =

d
∑

i=1

ai(ω)

[

2Ψ(ω)− e−iei·ζΨ(τei ω)− eiei·ζΨ(τ−ei ω)

]

.

Evidently for ζ = 0, Lζ coincides with the operator L of (1.7). We generalize the operator
Tη, η > 0 on L

∞(Ω) of (2.5) to an operator Tη,ζ , η > 0, ζ ∈ [−π, π]d on L∞(Ω) defined by

Tη,ζf(ω) = η [Lζ + η]
−1
f(ω), ω ∈ Ω. (2.12)

Evidently Tη,0 = Tη and Tη,ζ is a bounded operator on L
∞(Ω) with norm at most 1.

Lemma 2.3 Let Φ ∈ Ld/(d−1)(Ω) be the unique solution of L∗Φ = 0 satisfying Φ ≥ 0, <
Φ >= 1. Suppose f ∈ L∞(Ω) and < fΦ >= 0. Then there is the limit,

lim
(η,ζ)→(0,0)

[

sup{‖τnTη,ζ f‖∞ : n ∈ Zd, |n| ≤ R/
√
η }

]

= 0 . (2.13)

Proof. Observe that f ∈ Ld(Ω) is orthogonal to the null space of L∗ as an operator on
Ld/(d−1)(Ω). Hence [9] for any δ > 0 there exists gδ ∈ Ld(Ω) such that ‖f −Lgδ‖d < δ. Since
L∞(Ω) is dense in Ld(Ω) we may assume wlog that gδ ∈ L∞(Ω). Writing

Tη,ζ Lgδ = ηgδ + Tη,ζ [ (L − Lζ)gδ − ηgδ ] ,

we see that
lim

(η,ζ)→(0,0)
‖Tη,ζ Lgδ‖∞ = 0 .
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The result follows from the previous inequality and Lemma 2.1 by observing that for any
h ∈ L∞(Ω),

|Tη,ζ h(ω)| ≤ Tη |h|(ω), ω ∈ Ω.
¤

Lemma 2.4 Suppose f : Zd
ε → R has finite support in the set {x = (x1, ..., xd) ∈ Zd

ε : |x| <
R}. Let uε(x, ω) be the solution to (1.2) and α(k) be defined by

α(k) = 2{cosh kε− 1}/ε2 .

Then if 1 ≤ j ≤ d and k > 0 satisfies Λjα(k) < 1, there is the inequality,

|uε(x, ω)| ≤ exp[ kR− k|xj | ] ‖f‖∞/[1− Λjα(k)] x ∈ Zd
ε , ω ∈ Ω. (2.14)

Proof. We may assume wlog that the function f is nonnegative whence uε(x, ω) is also
nonnegative. We write uε(x, ω) = e−kxjuε,k(x, ω) where 1 ≤ j ≤ d. Then from (1.2) uε,k(x, ω)
satisfies the equation,

d
∑

i=1

ai(τx/ε ω) [2uε,k(x, ω)− uε,k(x+ εei, ω)− uε,k(x− εei, ω)]
/

ε2

+ aj(τx/ε ω) (e
kε − 1){uε,k(x, ω)− uε,k(x− εej , ω)}/ε2

− aj(τx/ε ω) (1− e−kε){uε,k(x, ω)− uε,k(x+ εej , ω)}/ε2

+ [ 1− aj(τx/ε ω)α(k) ]uε,k(x, ω) = ekxjf(x), x ∈ Zd
ε , ω ∈ Ω.

Now if Λjα(k) < 1 and x ∈ Zd
ε is the point at which uε,k(x, ω) takes its maximum then all

terms on the LHS of the previous expression are nonnegative except for the third term. This
is however less in absolute value than the first term. Hence the last term is less than the RHS.
The inequality (2.14) follows. ¤

Lemma 2.4 enables us to take the Fourier transform of the equation (1.2). Proceeding as in
[3] we write uε(x, ω) = vε(x, τx/ε ω) whence (1.2) becomes

d
∑

i=1

ai(τx/ε ω)

[

2vε(x, τx/ε ω)− vε(x+ εei, τeiτx/ε ω)

− vε(x− εei, τ−eiτx/ε ω)

]

/

ε2 + vε(x, τx/ε ω) = f(x), x ∈ Zd
ε , ω ∈ Ω.

We conclude from the previous equation that vε satisfies the equation,

d
∑

i=1

ai(ω)

[

2vε(x, ω)− vε(x+ εei, τei ω)− vε(x− εei, τ−ei ω)

]

/

ε2

+ vε(x, ω) = f(x), x ∈ Zd
ε , ω ∈ Ω. (2.15)

We put now

v̂ε(ξ, ω) =

∫

Zdε

vε(x, ω)e
ix·ξdx, ξ ∈

[−π
ε
,
π

ε

]d

,
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where the integral of a summable function g : Zd
ε → C is defined by

∫

Zdε

g(x) dx =
∑

x∈Zdε

εdg(x).

Then (2.15) yields the equation,

1

ε2

d
∑

i=1

ai(ω)

[

2v̂ε(ξ, ω)− e−iεei·ξ v̂ε(ξ, τei ω)

− eiεei·ξ v̂ε(ξ, τ−ei ω)

]

+ v̂ε(ξ, ω) = f̂ε(ξ), (2.16)

where f̂ε denotes the Fourier transform of f as a function on Zd
ε . It follows from (2.12) and

(2.16) that

v̂ε(ξ, ω) = f̂ε(ξ) Tε2,εξ 1(ω), ω ∈ Ω, (2.17)

where 1 : Ω→ R is the constant function with value 1.

Lemma 2.5 Let f ∈ L∞(Ω), Φ be the unique function of Lemma 2.2 and h : Rd → R be
given by the formula,

h(ξ) = 1
/



1 +
d
∑

j=1

|ξj |2 < ajΦ >



 , ξ ∈ Rd. (2.18)

Then for any R,R′ ≥ 1 there is the limit,

lim
ε→0

[

sup{‖τnTε2,εξ f − h(ξ) < fΦ > ‖∞ : |n| ≤ R/ε, |ξ| ≤ R′}
]

= 0 . (2.19)

Proof. This follows from Lemma 2.3 once we observe that

[Lεξ + ε
2]1 =

d
∑

j=1

[

2− e−iεej ·ξ − eiεej ·ξ
]

aj + ε
2.

Hence we have

1 =
d
∑

j=1

1

ε2

[

2− e−iεej ·ξ − eiεej ·ξ
]

Tε2,εξ aj + Tε2,εξ1.

On writing aj = [aj− < ajΦ > 1]+ < ajΦ > 1 the result for f ≡ 1 follows from the previous
identity and Lemma 2.3. For general f ∈ L∞(Ω) we write f = [f− < fΦ > 1]+ < fΦ > 1
and use Lemma 2.3 and the fact that we have already established (2.19) for f ≡ 1. ¤

Proof. [Proof of Theorem 1.1] By the Fourier inversion theorem we have that

uε(εbx/εc, ω) =
1

(2π)d

∫

[−π/ε,π/ε]d
v̂ε
(

ξ, τbx/εc ω
)

exp [−iεbx/εc · ξ] dξ. (2.20)

For x ∈ Rd let u(x) be given by,

u(x) =
1

(2π)d

∫

Rd

f̂(ξ)e−ix·ξ
∑d

j=1 |ξj |2 < ajΦ > +1
dξ.
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By Lemma 2.4 it is sufficient to prove that for any R ≥ 1 one has with probability 1 the limit,

lim
ε→0

sup
|x|≤R

|uε(εbx/εc, ·)− u(x)| = 0 . (2.21)

Since f : Rd → R is C∞ of compact support there is for any δ > 0 an R′ ≥ 1 such that

lim sup
ε→0

∫

ξ∈[−π/ε,π/ε]d, |ξ|≥R′
|f̂ε(ξ)|dξ ≤ δ.

From (2.17) and the fact that the operator Tη,ζ has norm at most 1 on L∞(Ω) it follows

that |v̂ε(ξ, ω)| ≤ |f̂(ξ)|, ξ ∈ [−π/ε, π/ε]d, ω ∈ Ω. Hence we may replace the representation
(2.20) for uε(εbx/εc, ω) by an integral over |ξ| ≤ R′ at a cost of at most δ/(2π)d. With this
replacement the limit (2.21) follows from Lemma 2.5. Now (2.21) without the cutoff follows
by letting δ → 0. ¤

3 Proof of Theorem 1.2

Proof. As in [3] we decompose the function v̂ε(ξ, ω) into the sum of its mean and a part
orthogonal to the constant,

v̂ε(ξ, ω) = ûε(ξ) + ψ̂ε(ξ, ω),
〈

ψ̂ε(ξ, ·)
〉

= 0.

On taking the expectation in (2.16) we have that

d
∑

i=1

< ai(·) >
1

ε2

[

2− e−iεei·ξ − eiεei·ξ
]

ûε(ξ) + ûε(ξ)

+
d
∑

i=1

〈

ai(·)
1

ε2

[

2ψ̂ε(ξ, ·)− e−iεei·ξψ̂ε(ξ, τei ·)− eiεei·ξψ̂ε(ξ, τei ·)
]〉

= f̂ε(ξ). (3.1)

If we subtract (3.1) from (2.16) we obtain the equation,

P
d
∑

i=1

ai(ω)
1

ε2

[

2ψ̂ε(ξ, ω)− e−iεei·ξψ̂ε(ξ, τei ω)− eiεei·ξψ̂ε(ξ, τ−ei ω)

]

+ ψ̂ε(ξ, ω)

+

d
∑

i=1

1

ε2

[

2− e−iεei·ξ − eiεei·ξ
]

ûε(ξ)P ai(ω) = 0, (3.2)

where P is the projection operator orthogonal to the constant. For 1 ≤ j ≤ d, ζ ∈ [−π, π]d,
η > 0 consider the equation,

PLζΨj(ζ, η, ω) + ηΨj(ζ, η, ω) + P aj(ω) = 0. (3.3)

for the function Ψj(ζ, η, ω). If γ = sup1≤i≤d[1 − λi/Λi] is sufficiently small then (3.3) can be
solved uniquely in L2(Ω) by a convergent perturbation expansion. Evidently < Ψj(ζ, η, ·) >=
0. It is also clear that the function

ψ̂ε(ξ, ω) = ûε(ξ)

d
∑

j=1

[

2− e−iεej ·ξ − eiεej ·ξ
]

Ψj(εξ, ε
2, ω) (3.4)
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is the solution to (3.2). It follows now from (2.17),that

|ûε(ξ)| ≤ |f̂ε(ξ)|, ξ ∈ [−π/ε, π/ε]d. (3.5)

We can assume wlog that Λi = 1, i = 1, ..., d. Consider now the equation

d
∑

i=1

[

2ψ(ω)− e−iei·ζψ(τei ω)− eiei·ζψ(τ−ei ω)
]

+ η ψ(ω) = ϕ(ω), ω ∈ Ω. (3.6)

Then the solution to (3.6) is given by the formula

ψ(ω) =
∑

x∈Zd

Gη(x)e
−ix·ζϕ(τx ω),

where Gη is the Green’s function for the standard random walk on Zd,

−∆ Gη(x) + η Gη(x) = δ(x), x ∈ Zd.

For 1 ≤ k ≤ d, ζ ∈ [−π, π]d, η > 0, we define an operator Tk,ζ,η on L2(Ω) by

Tk,ζ,ηϕ(ω) = 2ψ(ω)− e−iek·ζψ(τek ω)− eiek·ζψ(τ−ek ω), ω ∈ Ω,

where ψ is the solution to (3.6). It is easy to see that Tk,ζ,η is a bounded operator on L
2(Ω) and

‖Tk,ζ,η‖ ≤ 1. Putting bk(ω) = 1 − ak(ω), 1 ≤ k ≤ d, we see that equation (3.3) is equivalent
to the equations,

ϕ(ω)− P
d
∑

k=1

bk(ω)Tk,ζ,ηϕ(ω) = P bj(ω), ω ∈ Ω, Ψj(ζ, η, ω) = ψ(ω), (3.7)

where ψ is the solution of (3.6) with ϕ as the solution to the first equation of (3.7). This has
a unique solution in L2(Ω) given by the perturbation expansion,

ϕ(ω) =

∞
∑

m=0

[

P

d
∑

k=1

bk(·)Tk,ζ,η
]m

P bj(ω), ω ∈ Ω,

provided
d
∑

k=1

|bk(ω)|2 < 1, ω ∈ Ω.

Thus if γ < 1/
√
d then (3.3) is uniquely solvable in L2(Ω) for Ψj(ζ, η, ω).

Now from (3.4) the quantity we need to estimate as ε→ 0 is given by

〈[

∫

Zdε

dxg(x)ψε(x, τx/ε ·)
]2〉

≤ d

d
∑

k=1

〈∣

∣

∣

∣

∫

Zdε

dxg(x)
1

(2π)d

∫

[−πε ,−π
ε ]

d
dξe−ix·ξ

ûε(ξ)
[

2− e−iεek·ξ − eiεek·ξ
]

Ψk(εξ, ε
2, τx/ε ·)

∣

∣

∣

∣

2〉

. (3.8)
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For n ∈ Zd, ξ, ξ′ ∈ [−π
ε ,

π
ε ]

d let hε(n, ξ, ξ
′) be the function,

hε(n, ξ, ξ
′) =

∫

Zdε

dxg(x)g(x− εn) exp [ix · (ξ′ − ξ)− iεn · ξ′] .

Similarly let χε,k(n, ξ, ξ
′) be the function

χε,k(n, ξ, ξ
′) = ε4

〈

Ψk(εξ, ε
2, τn ·)Ψk(εξ′, ε2, ·)

〉

.

Then the RHS of (3.8) is the same as

4dεd
d
∑

k=1

∫

[−πε ,π
ε ]
d
dξ

∫

[−πε ,π
ε ]
d
dξ′ ûε(ξ)[1− cos εek · ξ]/ε2

ûε(ξ′)[1− cos εek · ξ′]/ε2
∑

n∈Zd

hε(n, ξ, ξ
′)χε,k(n, ξ, ξ

′). (3.9)

From (3.5) the integral in (3.9) is bounded uniformly as ε → 0, provided we can obtain a
bound on the sum over n ∈ Zd. Since g has compact support it is easy to see that for any r′,
1 ≤ r′ ≤ ∞, hε is in Lr′(Zd) with norm ‖hε‖r′ ≤ Cε−d/r′ for some constant C. We may argue
now exactly as in [3] that χε,k is in L

r(Zd) for some r, 1 < r < ∞, if γ is sufficiently small.
In fact r can be taken arbitrarily close to 1 for small γ. Choosing r′ so that 1/r′ + 1/r = 1,
we have then from (3.9) that the variance on the RHS is bounded by Cεd(1−1/r′) for some
constant C. ¤
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