曼氏血吸虫表膜两型转糖蛋白 在日本血吸虫表膜的免疫细胞化学定位^{*}

江家婉 钟慈声 齐 玲等 俞永富 上海医科大学基础医学院生物物理教研室 上海 200032

提要 目的:观察曼氏血吸虫表膜两型转糖蛋白(SGTP1和SGTP4)分子在日本血吸虫成虫表膜上的分布, 确定日本血吸虫和曼氏血吸虫的 SGTP 是否有同源性。方法:采用超薄切片技术制备日本血吸虫超薄冷冻切片。 在电镜下观察曼氏血吸虫的 SGTP1和 SGTP4抗体对日本血吸虫的相应抗原的免疫标记定位。结果:免疫定位显 示 SGTP1定位于日本血吸虫成虫表膜基底部质膜及其反褶的质膜上,SGTP4定位于成虫表膜顶部质膜及其内陷 质膜上。结论:两型转糖蛋白分子在曼氏血吸虫和日本血吸虫表膜上的定位相同。表明此两种血吸虫两型表膜 的转糖蛋白分子有很大同源性。

关键词 日本血吸虫 转糖蛋白 免疫细胞化学

血吸虫成虫寄生于宿主肠系膜静脉内,从宿主 血中获取葡萄糖^[1]作为营养而能长期生存。哈佛 大学研究人员^[2~4]从曼氏血吸虫中克隆、分离及 纯化葡萄糖转糖蛋白(SGTP)分子,证明其中 SGTP1和 SGTP4在爪蟾卵中有表达。这两型转糖 蛋白在曼氏血吸虫表膜上的分布已有报道,通过用 亲和纯化的抗 SGTP1和 SGTP4 抗体对曼氏血吸虫 童虫和成虫免疫荧光标记和电镜免疫细胞化学定位 研究,发现 SGTP1定位虫体表膜基底部质膜及其 反褶的质膜上^[5]; SGTP4定位于虫体表膜顶部质 膜及其内陷质膜上^[6]。本文用这两型抗 SGTP 抗 体,在日本血吸虫成虫的冷冻超薄切片上进行电镜 免疫标记,观察曼氏血吸虫 SGTP 分子在日本血吸 虫成虫表膜的分布,以确定两者是否有同源性。

材料和方法

制备抗体

1 特异性抗体的制备 分别用 SGTP4 的羧基端多 肽 (487 氨基酸 ~ 505 氨基酸) 和 SGTP1 的羧基端 多肽 (496 氨基酸 ~ 516 氨基酸) 连接于牛血清白 蛋白 (BSA)。用上述 BSA-多肽加入弗氏完全佐剂 免疫家兔,制备 SGTP4 和 SGTP1 抗血清,经亲和 纯化^[4,5],获得抗 SGTP4 和抗 SGTP1 多肽抗体。

2 以 Western 免疫印迹法证实抗 SGTP4 和 SGTP1 两型抗体与相应蛋白均具有高度特异性^[5,7]。

3 对照抗血清制备 选用曼氏血吸虫中与消化道 有关的外分泌蛋白血红蛋白酶, SM32^[8]的密码序 列被扩增、表达和纯化,纯化蛋白加入完全弗氏佐 剂免疫兔^[4],获得抗 SM32 抗血清。

血吸虫成虫

感染日本血吸虫阳性钉螺,由上海医科大学流 行病学教研室提供。新鲜逸出尾蚴后,用 15 条尾 蚴感染昆明种小鼠,用含 5 mg/ mL BSA 和 10 IU/ mL 肝素的 RPMI1640 门脉灌注获得成虫。

电镜免疫细胞化学标记

成虫切成 2 mm 长, 用含 4 %多聚甲醛和 0.2 % 戊二醛的 0.01 mol/L PBS (pH 7.4) 固定 2 h, 4 , 用 2.3 mol/L 蔗糖浸泡过夜后,在 Reichert KF80 冷 冻仪中用液氮预冷的 Freon 22 对样品进行速冻固定, 用冷冻超薄切片机切成厚约 80 nm 切片,将切片置 于镍网上,用 20 mmol/L 甘氨酸预孵育后,分别用 含 5 µg/ml 抗 SGTP1 抗体、抗 SGTP4 抗体和抗 SM32 抗体作为一抗,孵育 1 h,再用滴度为 1 40、 直径为 10 nm 的蛋白 A-金进行标记 45 min (荷兰 Utrecht 大学 Jan Slot 教授提供)。切片经漂洗和甲基 纤维素包埋后^[9,10],用电镜观察。用一抗为 SM32 抗体或不用一抗进行孵育作为对照。各种免疫标记 实验均重复 3 次。

透射电镜常规生物样品制备

成虫切成 1 mm³, 用含 2.5 %戊二醛的 0.1 mol/L PB (pH 7.4) 和含 1 %锇酸的 0.1 mol/L PB (pH 7.4) 分别作前后固定 2 h, 4 。样品经脱水、 浸透和 618 环氧树脂包埋 (购自上海新华树脂公 司) 后切片, 其厚约 50 nm, 经铀和铅染色后, 用 电镜观察。

结 果

1 日本血吸虫成虫表膜超微结构

在常规制备的超薄切片上可见雌虫和雄虫表膜 超微结构基本相同。表膜是一个合胞体。表膜顶部 质膜由两层单位膜组成,每层单位膜各含有外叶层 和内叶层。顶部质膜可向表膜深部内陷形成反褶 (图 1)。反褶可形成管状或泡状结构。表膜胞质内 含有线粒体、溶酶体和 3 种包涵体:盘状小体 (discoid body)、膜样小体 (membranous body) 与环状小 体 (ring-like body)。基底部质膜由一层单位膜组成, 并向内反褶 (图 1)。雄虫背部表膜顶部质膜形成的 反褶比雌虫更密集,其背部表膜内有棘。

*本课题获卫生部青年回国启动基金资助

2 SGTP4 的定位

在冷冻超薄切片上,经抗 SGTP4 抗体免疫标 记后,金颗粒定位于成虫表膜顶部质膜,更多位于 质膜向胞质内陷的反褶膜上(图 2)。金颗粒也存 在于胞质内形状似均质状的球形体中(图 3)。而 在表膜基底部质膜和其反褶膜上,表膜胞质内的盘 状小体和膜样小体中以及表膜下肌肉层中,均无金 颗粒分布。

3 SGTP1 定位

经抗 SGTP1 抗体免疫标记后,金颗粒定位于 表膜基底部质膜及其内褶的质膜上(图4)。金颗 粒也位于胞质内均质状球形体上。而在表膜顶部质 膜及其反褶膜上,胞质内和表膜下肌肉中皆无金颗粒分布。

4 SGTP4 和 SGTP1 定位的特异性分析

对照实验用抗 SM32 抗体标记或不用一抗标 记,表膜顶部或基底部质膜上均无金颗粒分布。在 表膜胞质内,除均质状的球形体中有金颗粒外,其 它包涵体中均无金颗粒分布 (图 5~图 7)。

I:表膜顶部质膜向表膜内陷形成反褶 :基底部质膜向内反褶 :膜胞质内有盘状小体 M:膜样小体 R:环状小体 MI:线粒体 MS:表膜下为纵形和环形肌肉 图 1~图 7 的 Bar 均为 200 nm Figs. 1~7 I: The apical membrane extends in ward the tegument to form invaginations

: The basal membrane invaginates (arrows) toward the apex. : Discoid bodies in the tegumental plasm, (arrowheads),

M: Membranous bodies, R: Ring bodies, MI: Mitochondria, MS: Longitudinal and circular muscles located under the tegument. Bar = 200 nm 图 1 日本血吸虫成虫表膜 图 2 抗 SGTP4 抗体和蛋白 A:金标记的雄虫 图 3 抗 SGTP4 抗体和蛋白 A:金标记的雄虫 图 4 抗 SGTP1 抗体和蛋白 A: 金标记的成虫 图 5 抗 SM 抗体和蛋白 A:金标记的成虫 图 6 抗 SM 抗体和蛋白 A:金标记的成虫 图 7 不用一抗,只用蛋白 A:金标记 Fig. 1 Tegument of adult S. japonicum. Fig. 2 Male worm labelled with anti-SGTP4 and protein A:gold. Fig. 3 Male worm labelled with anti-SGTP4

and protein A-gold. Fig. 4 Male adult worm labelled with anti-SGTP1 and protein A-gold. Fig. 5 Control section labelled with anti-SM32 antibody and protein A-gold. Fig. 6 Control section labelled with anti-SM32 antibody and protein A-gold. Fig. 7 Control section incubated in the absence of the primary antibody

讨 论

从常规超薄切片的超微结构上可见日本血吸虫 与曼氏血吸虫表膜相似,其顶部质膜由两层单位膜 组成,并向胞质内陷形成各种形状的反褶;基底部 质膜仅为一层单位膜,也形成反褶伸向胞质内。但 在日本血吸虫表膜胞质内有3种包涵体,称为盘状 小体、膜样小体和环状小体^[11],也有将环状小体 称为均质状的球形体^[12]。在曼氏血吸虫中,前两 种小体普遍存在,后者未见报道^[13]。本实验结果 提示,环状小体仅出现在常规超薄切片的电镜图 上,而在冷冻超薄切片上,盘状小体和膜样小体仍 可见之,但未见环状小体,仅见均质状的球形体, 可能为环状小体在冷冻切片下的表现。这种类似现 象在我们其他实验中也有发现。钟慈声等曾先后报 道了血小板致密颗粒^[14]和肾上腺髓质嗜铬颗粒 (待发表)也有类似表现。血小板致密颗粒在常规 切片中表现为一个偏心核及空晕,肾上腺髓质嗜铬 颗粒表现为膜包裹的致密核心,周边有空晕。而在 冷冻切片中两种颗粒的空晕均不存在,呈现均质 状。由此推测虫体中的均质状球形体就是常规切片 中见到的环状小体、它们可能在不同的制样中显示 不同的形态。在对 SGTP 定位的特异性分析中显 示, SGTP1 和 SGTP4 在表膜上的定位是一种特异 性免疫定位,而金颗粒在均质状球形体中的分布是 非特异性免疫定位。SGTP1 和 SGTP4 是 cDNA 克 隆的曼氏血吸虫转糖蛋白,在曼氏血吸虫童虫和成 虫表膜内有明显定位分布^[5,6],然而本实验结果表 明,SGTP4分子定位于日本血吸虫成虫表膜的顶 部质膜,SGTP1 分子定位于虫体表膜基底部质膜, 两者在日本血吸虫中的定位部位与在曼氏血吸虫相 似,由此推断曼氏与日本血吸虫的 GTP 分子存有 同源性。Skelly^[4]也曾在对 GTP 氨基酸序列分析中 指出 SGTP1 和 SGTP4 之间有 61 %相似性; SGTP 与哺乳类动物的 GTP 之间也有 30 % ~ 35 % 相似 性,然而在疏水区,特别是氨基和羧基终末区的同 源性最弱。我们所用抗体皆选自 SGTP1 和 SGTP4 的羧基终末区抗原、即位于同源性最弱的区域、尽 管如此,曼氏血吸虫和日本血吸虫的 SGTP 的也极 相似。从这一事实可推断曼氏血吸虫和日本血吸虫 SGTP1 和 SGTP4 分子序列存在很大相似性。

本研究证实了 SGTP 分子分布于虫体邻近宿主 血液的界面上,可以推测日本血吸虫转运和利用葡 萄糖的方式,即由 SGTP4 从宿主摄取糖入表膜, 再由 SGTP1 将糖从表膜转入表膜下间隙及整个虫 体。这一发现填补了血吸虫寄生生物学关于糖摄取 和运转理论的空白,为今后从药物学或免疫学上发 展新的血吸虫病防治措施打下基础。

参考文献

1 Cornford EM, Fitzpatrick AM. Comparative glucose utilization rates in separated and mated schistosomes. Exp Parasitol 1987; 64 448

- 2 Shoemaker CB, Ramachandran H, Landa A, et al. Alternative splicing of the *Schistosoma mansoni* gene encoding a homologue of epidermal growth factor receptor. Mol Biochem Parasitol 1992; 53 17
- 3 Skelly PJ, Stein LD, Shoemaker CB. Expression of Schistosoma marsoni genes involved in anaeroboc and oxidative glucose metabolism during the cercaria to adult transformation. Mol Biochem Parasitol 1993; 60 93
- 4 Skelly PJ, Kim JW, Cunningham J, et al. Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite *Schistosoma mansoni*. J Biol Chem 1994; 269 4247
- 5 Zhong CS, Skelly PJ, Leaffer D, et al. Immunolocalization of a Schistosoma mansoni facilitated diffusion glucose transportert to the basal, but not the apical membranes of the surface syncytium. Parasitology 1995; 110–383
- 6 Jiang JW, Skelly PJ, Shoemaker CB, et al. Schistosoma mansoni: the glucose transport protein SGTP4 is present in tegumental multilamellar bodies, discoid bodies, and the surface lipid bilayers. Exp Parasitol 1996; 82 201
- 7 Skelly PJ, Shoemaker CB. Rapid appearance and asymmetric distribution of glucose transporter SGTP4 at the apical surface of intramammaliar stage *Schistosoma mansoni*. Proc Natl Acad Sci USA 1996; 93 3642
- 8 El Meanawy MA, Aji T, Phillips NFB, et al. Definition of the complete Schistosoma mansoni hemoglobinase mRNA sequence and gene expression in developing parasites. Am J Trop Med Hyg 1990; 43 67
- 9 Tokuyasu KT. A study of positive staining of ultrathin frozen sections. J Ultrastruct Res 1973; 63 287
- 10 Griffiths G, Simons K, Warren G, et al. Immunoelectron microscopy using frozen thin section: application to studies of the intracellular transport of semiliki forest virus spike glycoproteins. Methods Enzymol 1983; 96 466
- 11 Sobhon P, Suchart Upatham E. Snail ghosts, life-cycle, and tegumental structure of oriental schistosomes. Published by Lincoln Promotion, Bangkok, Thailand 1990
- 12 Irie Y, Yasuraoka K. Schistosoma japonicum: Ultrastructural change in the tegument during cercaria-schistosomulum transformation. J pn J Exp Med 1981; 51 53
- 13 Wilson RA, Barnes PE. The tegument of *Schistosoma mansoni*: observations on the formation, structure and composition of cytoplasmic inclusions in relation to tegument function. Parasitol 1974; 68 239
- 14 Zhong CS, Ling YP, Ding J, et al. The intracellular calcium store function of platelet granules. Acta Histochem Cytochem 1997; 30 439

1998 年 9 月 30 日收稿 1999 年 5 月 11 日修回 (编辑:李雅卿)

IMMUNOCY TOCHEMICAL LOCALIZATION OF TWO FACILITATED GLUCOSE TRANSPORTERS OF SCHISTOSOMA MANSONI IN THE TEGUMENT OF SCHISTOSOMA JAPONICUM

JIANG Jiawan, ZHONG Cisheng, QI Ling, YU Yongfu

Department of Biophsics, Shanghai Medical University, Shanghai 200032

ABSTRACT

AIM : To observe the distribution of *Schistosoma mansoni* glucose transport proteins, SGTP1 and SGTP4, in the tegument of *Schistosoma japonicum*. **METHODS :** The rapidly frozen fixation technique and ultracry-omicrotomy were adopted for preparing ultrathin cryosections of *S. japonicum*. Anti-SGTP1 and anti-SGTP4 antibodies were used to localize the corresponding antigens in the tegument of adult *S. japonicum* by immunocy-tochemical technique. **RESULTS :** SGTP1 was localized on the basal membrane of the tegument and its infoldings, SGTP4 was localized on the apical membrane of the tegument and its invaginations of *S. japonicum*. **CONCL USION :** The same localization for SGTP 1 and SGTP4 in the tegument of *S. japonicum* and *S. mansoni* exhibited apparent homology between SGTPs of the two schistosomes.

Key words: Schistosoma japonicum, glucose transporter, immunocytochemistry