动载荷作用下含偏置裂纹 三点弯曲梁破坏过程的数值模拟

黄明利¹,朱万成²,逄铭彰²

(1. 北京交通大学 土木工程学院,北京 100044; 2. 东北大学 资源与土木工程学院,辽宁 沈阳 110004)

摘要: 偏置裂纹三点弯曲梁被广泛应用于研究 I - II 复合型裂纹的扩展过程。利用岩石破裂过程分析(RFPA)程序, 对含偏置裂纹三点弯曲梁在动载荷作用下的破坏过程进行数值模拟,研究偏置裂纹的位置(用γ来表达)对三点弯曲 梁破坏模式的影响。数值模拟结果表明: 当γ≤0.745 时,偏置裂纹尖端首先起裂,并沿着一定的角度向上扩展, 最终贯通整个试样的高度; 当γ>0.745 时,在偏置裂纹发生扩展的同时,在梁底部中心位置也萌生出一条中心裂 纹,但最终只有中心裂纹贯通整个试样的高度。数值模拟在现了实验中观测到的 2 种典型破坏模式及其对应的临 界γ值。

关键词:数值模拟;动载荷;三点弯曲梁;偏置裂纹 **中图分类号:**O 242 **文献标识码:**A **文章编号:**1000 - 6915(2007)增1 - 3384 - 06

NUMERICAL SIMULATION OF DYNAMIC FAILURE PROCESSES OF THREE-POINT BENDING BEAM WITH OFFSET NOTCH

HUANG Mingli¹, ZHU Wancheng², PANG Mingzhang²

(1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;

2. School of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning 110004, China)

Abstract: Three-point bending beam with offset notch is usually used to study the mixed I – II crack propagation in rock. Rock failure process analysis(RFPA) code is used to study the failure process of three-point beam with offset notch when subjected to dynamic loading, the effect of position of offset notch(denoting with γ) on the failure patterns is investigated. The numerical results are shown as follows: (1) when $\gamma \leq 0.745$, it is the propagation of offset crack in upward direction that leads to final fracture of the specimen; (2) and when $\gamma >$ 0.745, the fracture of the beam is due to the newly formed crack at the middle span although the pre-existing offset crack also propagates upwards. The two typical failure patterns as well as the critical value of γ , which are obtained from the numerical simulations, agree well with the experimental observations.

Key words: numerical simulation; dynamic loading; three-point bending beam; offset notch

1 引 言

冲击载荷作用下的含缺陷(如裂纹)体的动态断

裂力学行为与静态情况下的差别很大,故一直是一 个值得探讨的重要课题^[1~5]。研究含裂纹的梁在冲 击载荷作用下的断裂行为,不仅具有重要的科学意 义,而且在工程结构的安全评估等方面有着广泛的

收稿日期: 2007 - 04 - 19; 修回日期: 2007 - 05 - 24

基金项目: 国家自然科学基金资助项目(50504005); 地质灾害防治与地质环境保护国家专业实验室开放基金项目(GZ2005 - 01); 新世纪优秀人才支持 计划资助项目(NCET - 06 - 0291)

作者简介:黄明利(1969-),男,博士,1991 年毕业于辽宁工程技术大学采矿工程专业,现任副教授,主要从事岩土及地下工程方面的教学与研究工作。E-mail: huang1969@vip.sina.com

工程应用背景。由于动态断裂受惯性效应、应变率 效应等因素的影响,故实验结果表现出较大的离散 性。由于动态断裂问题的复杂性,解析解往往难以 给出。因此,对材料的动态断裂模型进行数值模拟 分析,有利于认识动态断裂发生的机制,具有重要 的理论价值。在含偏置裂纹的三点弯曲梁中,由于 偏置裂纹尖端处于 I-II 复合型应力状态,所以常被 用于研究 I-II 混合型裂纹的扩展问题^[1, 5, 6]。目前, 国内外许多学者[1, 2, 7, 8]开展了含偏置裂纹的三点弯 曲试样动态断裂过程的实验和数值模拟研究。本文 的特点和优势在于借助一个数值模拟系统来再现实 验中观测的裂纹扩展规律,并基于此揭示在动态载 荷作用下含偏置裂纹三点弯曲梁的断裂机制。在模 拟岩石类材料的破坏过程和特征方面,岩石破裂过 程分析 RFPA(rock failure process analysis)程序具有 较强的适应性。该程序已被广泛地应用到岩石破裂 机制以及岩石力学与工程问题的研究,能够很好地 模拟岩石破坏模式以及破坏过程中复杂应力场的分 布,已经取得了一系列的研究成果^[9~13]。所以,在 模拟岩石破裂过程方面,该软件目前已被岩石力学 界广泛认可。本文用 RFPA 对含偏置裂纹三点弯曲 梁在动载荷作用下的变形与破坏过程进行数值模 拟,并对结果进行分析,以揭示动载荷作用下含偏 置裂纹三点弯曲梁的断裂机制。

2 RFPA 程序简介

岩石破裂过程分析(RFPA)程序是一个能够模 拟岩石渐进破坏过程的数值模拟程序。为了反映岩 石材料性质的细观非均匀性,在该程序中首先把岩 石试样看作是由大小相同的四边形单元组成,假定 其材料性质满足 Weibull 分布。同时,这些组成材 料的单元也作为有限元分析的单元,当其应力状态 满足最大拉应力准则和莫尔 - 库仑准则时单元开始 损伤,损伤演化过程满足一个弹性损伤的本构关 系^[10]。在考虑材料力学性质非均匀性的前提下,用 细观上简单的本构模型足以探讨材料宏观层次上的 复杂破坏过程。

在动态分析时, RFPA 可以接受一个应力波或 者初始速度作为输入,按照给定的时间步长进行逐 步计算分析。在每个时间步,用弹性动力有限元程 序进行应力分析,可用考虑应变率效应的最大拉应 力准则和莫尔 - 库仑准则判断单元是否损伤。对于 发生损伤的单元,按照弹性损伤的本构关系进行单 元的破坏处理,直到整个设定的时间步计算完毕。 有关 RFPA 动态分析程序更为详细的描述,在相关 研究^[9~13]中已经给出,故这里不再赘述。

3 数值模型

本文对三点弯曲岩石试样进行计算分析,数值 模型如图 1 所示。为了便于与已发表的实验结果进 行对比,这里按照 R. John^[8]的实验数据建立三点弯 曲梁试样的数值模型。岩石试样尺寸为 210 mm×70 mm。2 个支撑点之间的距离为 190 mm,预制裂纹 长度为 18 mm。预制裂纹的位置用 γ 来表达。 γ 为 偏置裂纹到梁中心距离与支承点到梁中心距离的比 值。

图 1 含偏置裂纹三点弯曲梁的数值模型 Fig.1 Three-point bending beam specimen with offset

在数值模拟中,岩石试样被假定为非均匀各向 同性材料,是由等尺寸的四边形单元组成,这些单 元的力学性质(包括弹性模量、强度等)被按照 Weibull 分布来赋值。数值模型由 210×70 个细观单元组成, 被简化成平面应力问题来研究。三点弯曲梁的材料 参数见表 1。

表 1 三点弯曲梁的材料参数 Table 1 Material parameters of three-point bending beam

弹性模量	单轴抗压强度	均质度	抗压强度与抗拉
平均值/GPa	平均值/MPa		强度比值
34.48	180	5	10

这里对试样施加如图 2 所示的动态应力,研究 偏置裂纹与梁中心距离对试样破坏模式的影响。

4 数值模拟结果

本文通过多次模拟,研究了γ的不同取值对梁

图 2 施加在试样上的动态应力 Fig.2 Dynamic stress applied to the specimen

破坏模式的影响。数值模拟得到了 2 种典型的破坏 模式,下面以 $\gamma = 0.875$ 和 $\gamma = 0.712$ 时的 2 种破坏模 式为例分别加以介绍。

图 3 给出了γ=0.712 时梁的破坏模式。由于篇

幅所限,这里只给出最大剪应力分布图。当载荷作 用于梁后,应力波以半圆形辐射状向周围传播,很 长一段时间内,集中冲击载荷产生的应力波在梁的 上下边界多次反射后形成了复杂的应力分布特征。 应力传播到预制裂纹尖端附近时,在裂纹尖端引起 应力集中。当时间为*t*=90 µs 时,新裂纹在预制裂 纹处起裂,在复合应力的作用下,裂纹沿着一定的 角度向着试样上端靠近集中载荷作用点的方向扩 展,最终贯通整个试样的高度。

如图 4 所示,当 γ =0.875 时,在裂纹开始扩展 (t=100 µs)之前,应力波在梁中的传播与图 3 中的 情形相似。但是预制裂纹起裂时间比 γ =0.712 时要 晚些,首先在偏置裂纹的尖端开始起裂,在应力波

(c) 加载步为 400(t = 40 µs)

(e) 加载步为 1 000(t = 100 µs)

1 July

(h) 加载步为 1 400(t = 140 µs)

(i) 加载步为 1 600(t = 160 µs)

(j) 加载步为 1 800(t = 180 µs)

(m) 加载步为 2 600(t = 260 µs)

(n) 加载步为 3 200(t = 320 µs)

图 4 当 γ = 0.875 时梁的破坏过程 Fig.4 Failure processes of beam with parameter γ = 0.875

的作用下,在梁下端面的中心位置也开始萌生新的 裂纹,而且与预裂纹同时扩展。但是,中心裂纹扩 展的速度比在偏置裂纹处扩展的要快,并且偏置裂 纹在 *t* = 180 μs 后就停止扩展。最终是梁中心处的 垂直裂纹贯穿了试样的整个高度,致使三点弯曲试 样失去承载能力。

经过反复的数值模拟发现,随着 γ 的增大,处 于梁底面的中心裂纹起始时间有向后推迟。裂纹开 始起裂比较缓慢,当裂纹起裂后,扩展速度比较快。 表 2 给出了不同 γ 取值时试样破裂模式的汇总情 况。与实验结果存在离散性类似,由于本研究中使 用的数值试样的材料性质是按照随机赋值给定的, 所以即便每次赋予相同的 Weibull 分布参数,所生 成试样内部各点的材料性质也是不同的。鉴于此, 对于每一 γ 取值,这里也给出 2 到 3 个试样的模拟 结果。不同 γ 取值情况下试样的最终破坏数值模拟 结果如图 5(a)所示,在破裂模式上,数值模拟结果与 实验结果^[8](见图 5(b))具有较好的一致性。

表 2 不同γ取值时试样的破裂模式汇总 Table 2 Failure patterns of specimens with different values of parameters γ

parameters /					
实验结果 ^[8]			数值模拟结果		
γ值	实验次数	破坏位置	γ值	实验次数	破坏位置
0.500	2	N, N	0.500	2	N, N
0.670	2	N, N	0.595	2	N, N
0.720	2	N, N	0.720	2	N, N
0.770	2	N, C	0.745	3	C, C, C
0.875	2	C, C	0.875	2	C, C

注:N表示在偏置裂纹尖端起裂,C表示裂纹在梁中心处起裂。

(b) 实验结果^[8]
图 5 试样的破坏模式及其用实验结果的对比

Fig.5 Fracture patterns of specimens and their comparison to experimental observations

数值模拟结果表明, $\gamma = 0.745$ 是试验破坏模式 不同的转折点,这可以从图 6 中得到证明。图 6 给 出了试样从偏置裂纹开始起裂逐渐过渡到从中心位 置开始起裂。当 $\gamma < 0.745$ 时,裂纹从偏置裂纹的尖 端起裂,并沿着偏向加载点的方向最终贯通试样高 度;当 $\gamma > 0.745$ 时,在偏置裂纹起裂的同时伴随着 梁底部中心裂纹的萌生,但最终只是中心裂纹贯通 整个试样高度,诱致梁失去承载能力,试样的破坏 模式与 $\gamma = 0.875$ 时相似。

图 6 不同偏置裂纹位置时破坏模式的数值模拟结果 Fig.6 Simulation results of failure patterns for different notch locations

5 结 论

本文用 RFPA 程序数值模拟了在动载荷作用下 含偏置裂纹三点弯曲梁的破坏模式,研究了偏置裂 纹位置对弯曲梁破坏过程的影响。数值模拟得到的 不同γ 取值下梁的破坏模式与所得到的实验结果^[8]表 现出较好的一致性。数值模拟得到结论如下:

(1) 三点弯曲梁的破坏主要是由于梁中复合应 力场在其中传播而引起的,随着γ的增大,偏置裂 纹的扩展时间推迟。裂纹开始扩展比较缓慢,在一 个临界时间后,裂纹扩展速度加快。

(2) 偏置裂纹的位置对梁的破坏特征有明显的 影响,当γ ≤0.745 时,裂纹从偏置裂纹的尖端起裂, 最终沿着一定的角度向着试样上端的加载板扩展, 导致偏置裂纹贯通整个试样高度;当γ>0.745 时, 在偏置裂纹发生扩展的同时,也从梁底部萌生出中 心裂纹,但最终只有中心裂纹贯通整个试样高度。 致谢 本文定稿于第二作者在德国波鸿大学作洪堡 学者期间,作者对于德国洪堡基金(Alexander von Humboldt foundation)的资助表示感谢!

参考文献(References):

 姚学锋,熊春阳,方 竞. 偏置裂纹三点弯曲梁的动态断裂行为研 究[J]. 力学学报, 1996, 28(6): 661 - 669.(YAO Xuefeng, XIONG Chunyang, FANG Jing. Study on dynamic fracture behaviour on three-point bending beam with off-center edge crack[J]. Acta Mechanica Sinica, 1996, 28(6): 661 - 669.(in Chinese))

- [2] 姚学锋, 倪受庸, 赵亚溥, 等. 含裂纹三点弯曲梁起始扩展的动态 分析[J]. 应用力学学报, 1996, 13(4): 122 - 125.(YAO Xuefeng, NI Shouyong, ZHAO Yapu, et al. Dynamic analysis of initiation and propagation of three-point-bending beam with crack[J]. Chinese Journal of Applied Mechanics, 1996, 13(4): 122 - 125.(in Chinese))
- [3] 李玉龙,刘元镛. 三点弯曲试样动态冲击特性的有限元分析[J]. 计算结构力学及其应用,1995,12(1):110-115.(LI Yulong, LIU Yuanyong. Dynamic behaviour of three-point bending specimen under impact loading by using finite element method[J]. Computational Structural Mechanics and Applications, 1995, 12(1):110-115.(in Chinese))
- [4] 管大椿. 三点弯曲梁中折裂纹应力强度因子的有限元分析[J]. 北京工业大学学报, 1994, 20(4): 19 24.(GUAN Dachun. The finite element analysis of the SIFs of off-center kinked cracks in three-point bending beams[J]. Journal of Beijing University of Technology, 1994, 20(4): 19 24.(in Chinese))
- [5] 钟卫洲,罗景润. 冲击载荷下三点弯曲试样的有限元分析[J]. 环境 技术, 2004, (1): 7-10.(ZHONG Weizhou, LUO Jingrun. Finite element analysis of three-point bending sample loaded by impact loading[J]. Environmental Technology, 2004, (1): 7-10.(in Chinese))
- [6] 朱万成,唐春安,杨天鸿,等. 偏三点弯曲岩石试件中裂纹扩展过程的数值模拟[J]. 东北大学学报,2002,23(6):591-594.(ZHU Wancheng, TANG Chun'an, YANG Tianhong, et al. Numerical simulation on the propagation of crack in the eccentric three-point bending specimen[J]. Journal of Northeastern University, 2002, 23(6):591-594.(in Chinese))
- [7] BELYTSCHKO T, ORGAN D, GERLACH C. Element-free Galerkin methods for dynamic fracture in concrete[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(2): 385 - 399.
- [8] JOHN R. Mixed mode fracture of concrete subjected to impact loading[Ph. D. Thesis][D]. Shenyang: Northwestern University, 1988.
- [9] TANG C A, LIU H, LEE PKK, et al. Numerical tests on micro-macro relationship of rock failure under uniaxial compression, part I: effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 555 – 569.
- [10] 朱万成,唐春安,杨天鸿,等. 岩石破裂过程分析(RFPA^{2D})系统的 细观单元本构关系及验证[J]. 岩石力学与工程学报,2003,22(1): 24 - 29.(ZHU Wancheng, TANG Chun'an, YANG Tianhong, et al. Constitutive relationship of mesoscopic elements using in RFPA^{2D} and its validations[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 24 - 29.(in Chinese))
- [11] ZHU W C, TANG C A. Micromechanical model for simulating the fracture process of rock[J]. Rock Mechanics and Rock Engineering, 2004, 37(1): 25 - 56.
- [12] 朱万成,左字军,尚世明,等. 动态扰动触发深部巷道发生失稳破裂的数值模拟[J]. 岩石力学与工程学报,2007,26(5):916-921.(ZHU Wancheng, ZUO Yujun, SHANG Shiming, et al. Numerical simulation on instable failure of deep rock tunnel triggered by dynamic disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 916-921.(in Chinese))
- [13] ZHU W C, TANG C A. Numerical simulation of Brazilian disk rock failure under static and dynamic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(2): 236 - 252.