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ABSTRACT

A wind-driven model of coastal upwelling induced into a stratified, rotating ocean is solved numerically.
The circulation is on an f plane and longshore variations are neglected. A multilevel model is derived, but
only solutions for a two-layer model are discussed. A longshore baroclinic surface jet is discovered. The
time-dependent geostrophic jet is dynamically explained by conservation of potential vorticity. The exist-
tence of the jet depends critically on stratification and non-zero wind stress at the coast. Coastal upwelling
is confined to within 30 km of the shore. The model exhibits no deep countercurrent during active coastal
upwelling. A time scale of the order of 10 days or longer is required for a pycnocline at 50 m depth to pene-
trate the surface. Solutions for a wide (>300 km) coastal shelf, an irregular shallow shelf, and a continental
slope region are illustrated. A secondatry upwelling region is found offshore at sharp breaks in the shelf
topography. In all cases, the offshore flow is a simple Ekman drift and downwelling offshore is created by

Ekman pumping caused by negative wind-stress curl.

1. Introduction

The phenomenon of oceanic upwelling off the west
coasts of continents is important from physical and
ecological viewpoints. The occurrence of strong upwell-
ing of cold water in a narrow coastal strip contributes
to increased productivity of the sea as well as to
climate modification of the adjacent land. Smith (1968)
has reviewed the physical process of upwelling. We
will not review upwelling here, but we will cite various
observational and theoretical papers as they are perti-
nent for support or comparison.

It is our intent to describe a simple theoretical model
of the onset of upwelling by the use of numerical inte-
gration and scale analysis. We are interested in the
physical description of the near-shore circulation in-
duced into a stratified rotating ocean by the surface
winds. A general multi-layer model is developed, but
specific attention is confined to a two-layer ocean. The
flow is on an f plane and longshore variations are
neglected. The winds are steady but may vary offshore.
The effects of wind-stress curl, bottom topography, and
stratification are explored. Both barotropic and baro-
clinic modes are present in the model.

Following the derivation of the multi-layer model,
we concentrate on describing a two-layer model of
depth 200 m on a wide flat shelf. The numerical solution
for an equatorward wind stress of 1 dyn cm™ is pre-
sented to demonstrate the response of the system for

I Contribution No. S5 of the Geophysical Fluid Dynamics
Tastitute, Florida State University, Tallahassee,

? Permanent affiliation: Departments of Meteorology and
Oceanography, Florida State University.

3 The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

this simplest case. Using the numerical solution as a
guide for the scale analysis, we scale the model equa-
tions and the physics of the model are deduced. A time-
dependent longshore jet is discovered. Finally, the two-
layer model is solved for shelf configurations containing
bottom topography.

2. Formulation of a general multi-layer model

Consider a stably stratified, rotating, incompressible
fluid on a continental shelf-slope cross section near a
north-south coast line. Suppose the fluid consists of m
incompressible layers which have initial thickness 4;(x)
and densities p;, j=1()m, counting down from the
surface layer. We will assume in this model that north-
south variations are neglected (9/0y=0); the tradi-
tional Coriolis approximations apply; molecular trans-
port of momentum is assumed to be unimportant com-
pared to turbulent transport by eddy stresses; the
fluid is hydrostatically balanced in the vertical; and
the atmospheric pressure is uniform at the sea surface.

The appropriate coordinate system is a right-handed
Cartesian coordinate system with x increasing eastward
and z upward. The origin will be in the coastal cross
section such that distances offshore are negative. In
these initial studies, we shall neglect thermodynamic
effects, i.e., the exchange of latent heat or sensible heat
with the atmosphere is excluded as well as radiation.
The latter may play an important role in the shallowest
near-shore region. Also, no mixing of heat and salt
between the ocean layers is considered. This is easily
added if desired [see O'Brien (1967) for the details].
For upwelling induced by wind over several days, we
are explicitly assuming that the time scale for vertical
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mixing is much slower than that for vertical transport
of fluid.

We are particularly interested in the vertically aver-
aged velocity within each layer and the vertical ve-
locity at the interface of each layer. If the pertinent
hydrodynamic equations of motion are integrated
vertically over the depth of each layer and the verti-
cally averaged horizontal velocity components #;, v; are
assumed independent of depth within each layer, we
obtain

au;- auj Tz Bz 62%]‘
—tu—+P;=for+[(r. —7 )/phiJ+A—, (1)
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where P; is the pressure integral for the layer and 77,
and 75 are the stresses at the top and bottom of each
layer. When j=1, ={=77"+ir7?, where these compo-
nents are the wind stresses at the sea surface. They will
be specified as functions of x and . The vertical velocity
is implicit in (3) and may be obtained a posteriori from
the %; and u; fields. Both barotropic and baroclinic
modes have been retained. The barotropic mode will
be shown to be fundamentally important for the wind-
driven upwelling problem. It has been neglected by
previous investigators.

a. The pressure integrals

From the hydrostatic assumption, it follows that the
pressure p;; at any point inside a layer % is given by

~
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where m is the number of discrete layers, P4 the uni-

form atmospheric pressure, and D(x) the elevation of

the bottom above the reference level z=0. The in-

fluence of the torque of the atmospheric pressure

gradient may be included if desired (e.g., Galt, 1971).
The «x derivatives of these pressures are
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Integrating these over the appropriate layer, we find
that
1 T 3py
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These values of Py are used in (1). Thus, for an appro-
priate specification of the wind stress, a functional
form of the interior stresses, and valid initial and
boundary conditions, the formal statement of the
problem will be complete.

The form of Pj can be simplified if either 1) the
bottom layer (or layers) is at rest or 2) there is no
bottom topography.

b. Initial conditions and boundary conditions

There are several allowable initial conditions. First,
if the interface surfaces are horizontal, then the ap-
propriate initial condition is #,=v;=0. If P, does not
vanish initially in any layer, the initial conditions may
be u;=0, fv,;=P; ie. the layer is in geostrophic
equilibrium.

The velocity components vanish at the coast, i.e., at
x=0. At x= — oo, the fluid velocity takes on its initial
value. We anticipate specifying a wind-stress distribu-
tion that approaches zero far offshore. In such a case,
a radiational condition (Shapiro and O’Brien, 1970) or
a viscous far field (Galt, 1971) may be used to close
the solution at a computational outer boundary. We
will demonstrate that the solution in the upwelling
zone is independent of the forcing outside the upwelling
zone and thus apply far-field boundary conditions
which cannot alter the solution near the coast in any
significant way.

¢. The interior stresses

The equations of motion (1)-(3) are coupled for
adjacent layers through the pressure gradients P; and
the interior stresses. To complete the statement of the
problem, we must specify a functional form of these
stresses.

The stresses must be continuous across the inter-
faces, ie., 77°=7]7; and 7§*=77y,. They act in opposi-
tion to one another on the interface and thus are
balanced. We wish to choose a functional form of
=;=73+1i75 dependent upon the velocity q;=u+iv;,
but not dependent upon dq/dz. The logical physical
choice is a quadratic form from a dimensional argument.
To arrive at an appropriate form, let us consider the
energy equation.

In general, for a continuously stratified system
(4 =0), one obtains an integral energy equation of the
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form

oE T 9z
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where £ is the sum of the kinetic and potential energy
densities and J is an energy flux density. If we con-
centrate our attention on the integral on the right (7),
we can arrive at an integrated expression for / and
eventually at a form for =. The approach outlined
below was suggested by Robert O. Reid (personal
communication) for a somewhat different problem.
Integrating I by parts, we obtain

T 9
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If the velocity q or the stress ~ vanishes at the bottom,
the second term vanishes. The first term is the rate of
supply of kinetic energy from the winds. The integral
on the right represents collectively the rate of decrease
of energy of the organized motion, i.e., the rate of
conversion to turbulence and ultimately to thermal
energy. Moreover, from the second law of thermo-
dynamics, we expect that the integrand

dq
z-—>0. 9)
0z

For a layered fluid system, this integral representing
internal dissipation may be approximated by

T aq
IE/ w—dz=~3Y_ x-Aq, (10)
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where the sum is taken over all internal surfaces.
Since I should be positive definite, a possible quad-
ratic form for = is
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where K;>0. An estimate of K; can be obtained from
observations of momentum exchange coefficients in the
real ocean. O’Brien (1965) discussed the rationale neces-
sary to estimate K;. Note in (11) that ¢; represents the
magnitude of q;. It should be recognized that for a
single layer the term (z5—=%) represents both 1) the
gain (loss) of kinetic energy from (to) the fluid layer
above (below), and 2) the internal dissipation of kinetic
energy through velocity shear of the mean velocity
between the adjacent layers. In effect, we have speci-
fied a closure condition between the vertical mean
structure in the fluid and the smaller scale turbulent
motions,
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3. The two-layer model

We will explore the details of a two-layer model.
Consider a two-layer fluid governed by the dynamics
derived in the previous section. The equations are
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at ox
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The geometry is indicated in Fig. 1. The velocity
components #;, v; are the instantaneous depth-averaged
velocities for each layer. The subscript 1 refers to the
upper layer and 2 to the lower layer. The layers are
dynamically coupled through pressure gradient forces
and interior stresses. It will be shown later that, for
the chosen value of ¢, the interior stresses play no
important role in the dynamics of the model.

It is possible to consider a variety of problems which
can be solved using the basic model. We are particu-
larly concerned here with the onset of upwelling. As-
sume that at =0, #; and %.-+D are independent of x
and #1=v1=us=v,=0. We shall consider several dif-
ferent bottom topographies. As a standard case, con-
sider a wide (>300 km) flat continental shelf of
constant depth 200 m; let /1 (%,0)=50 m and As(x,0)
=150m. At{=0, an equatorward wind stress (75¢¥= —1)
is impulsively applied. How does /; change as a func-
tion of space and time?
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Fic. 1. Typical geometry for a two-layer model with a free surface and one interface.
The bottom topography is D (x), and /%1 and %, are the thicknesses of each layer of density

p1 and py. The velocities are depth-averaged.

Tor a nonlinear problem, we must resort to numerical
methods of solution. The techniques used are new and
extremely efficient, and they are explained in the next
section.

Boundary conditions are required to close the prob-
lem. At the coast, #;=v1=%s=1v2=0 and %, and %, are
determined from the continuity equation using a one-
sided finite difference. At x= — 0, all of the velocities
vanish and /; and %, are independent of time. In the
computer model, we should utilize a radiational con-
dition or the method of characteristics at some large
but finite distance from the coast. However, empirical
experimentation demonstrated that infinite channel
(no slip) boundary conditions at a considerable distance
(2300 km) from the coast do not affect the solution in
the coastal region.

T T
1
-

7 IN DYNES/CM?

TNt J .
100 0'2

300 W KM
Fic. 2. Wind stress components as a function of distance offshore;
75%is 1 dyn cm™ near the coast; 75 is zero everywhere.

It is practically impossible to obtain oceanographic
estimates of ©(x,f) in upwelling regions. The data just
do not exist. For this simple model, we choose a wind
stress which is independent of time and space for
x€e[0, —200 k] and drops off rapidly in magnitude
200 km off the coast (Fig. 2).

The parameters for the standard case are f=10"1
sec™, g=10% cm sec?, D=0, 75°=0, p=1, 4 =10% cm?
secl, g'=2, ¢=3X10"% We have altered these for
various computer solutions. The importance of the
parameter values will become clearer in the section on
scale analysis.

4. Semi-implicit method

We have designed an extremely efficient numerical
scheme following the example of Kwizak and Robert
(1971). For the present one-dimensional layered model,
the scheme is sufficiently different from Kwizak and
Robert that we shall present the technique in some
detail.

Since the equations contain external gravity waves
as solutions (as well as internal gravity waves), the
garden variety explicit finite-difference schemes require
a time step Af bounded above by Ax/(gH)*, where H is
the total depth of the fluid. The fine resolution
[Ax=0(1 km)] and the deep fluid [H=0(1 km)],
envisioned for realistic simulation of coastal upwelling,
dictate a time-step <1 min, whereas ‘we anticipate
integrating our model for days. Kwizak and Robert
demonstrate that if we choose an implicit scheme for
the terms which govern the physics of the fastest
moving waves, a much larger time step may be utilized.
We elect to treat both the external gravity wave and
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the internal gravity wave modes implicitly. If the
pressure gradient terms in the momentum equations
and the divergence term in the continuity equations
are treated implicitly, then we may use a much larger
time step, say on the order of 1 hr. Application of the
following scheme resulted in a factor of 20 savings in
computer time for the present problem on a CDC 6600;
i.e.,, a 20-min integration time using an explicit finite-
difference scheme is reduced to less than 1 min by
using the semi-implicit method. Identical results were
obtained using both methods.
Consider the model equations in the form

(9141 d

——+g—(n+h+D)=Uy, (19)
at ax

ol Oy 01 0

A Hy— = — b/~ —t— =D, (20)
at dx ox ox
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at ox x
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—+ (Hy+D)—= —h)'——usy—+D—=D,, (22)
at dx ox dx ox

where H; is the mean depth of the upper layer and
H:+D the mean height of the interface between the
two layers. No approximations have been made; U
and U, are all the remaining terms in the x-directed
momentum equations. The linear part of the divergence
term in the continuity equation is retained on the left-
hand side. The primed quantities are defined by

h=h'+H:

. (23)
hzzhz,‘i—H 2
It is important to realize that H; and Hy+D are con-
stants. We will treat the left-hand side of (19)-(22)
implicitly and the right-hand side explicitly. (We have
also made the horizontal diffusive terms implicit using
the Crank-Nicholson method. This is not included
below to simplify the discussion.) The tendencies are
evaluated over 2A¢ and the pressure gradient terms
and the divergence terms are averaged between time
levels (n—1) At and (n+1) AL
The time-differenced equations are

n+1

0
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All spatial derivatives are replaced by second-order
finite differences. The subscripts j and » imply for any
scalar ¢ that

¢ =q(~ jAx, nAl). (28)

All of the right-hand side terms, defined now as L;
(i=1, 2, 3, 4), are “known” at any time level in the
calculations. We wish to find (u1,20,h1,/2) *** for all j
at time level (n+1) At. Kwizak and Robert recommend
elimination of the velocities and the solution of coupled
Helmholtz equations for %; and /. Since we have
homogeneous boundary conditions for #; and u., we
elect to eliminate %; and /s from the above and obtain

62%2 n+1 (92%1 n+1
m,-"“—b,: :' —I—(c—a),:—] =d,
dx? 1 0x? 1; :

82141 nt1
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H
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where a=gH A2, b=g(H,+D) A8, ¢=g' H\A#, and d
and e are a linear combination of the L;. These equa-
tions are coupled one-dimensional, Helmholtz equa-
tions in the unknowns #,"*' and #,"*' for all space
points j. When the spatial derivatives are replaced by
standard second-order finite differences, the resulting
algebraic equations are tridiagonal and are easily solved
by the special “up-down” variant of Gaussian elimina-
tion. In practice, we solve (29) and (30) iteratively by
solving (30) for u;;#** using “‘up-down” and then (29)
for uz;7*1. Only a few scans are needed for convergence.

The y-directed momentum equations are solved using
well known techniques—Ileap-frog for time differences,
a quadratic-averaging method known as Scheme F from
Grammeltvedt (1969) for the advective terms, Crank-
Nicholson for the diffusive terms, and centered-in-time
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Coriolis terms. We believe it unnecessary to repeat
these well-known finite-difference schemes here.

5. Flat shelf case

A simple flat shelf case is used to explore the basic
physics of our model of the onset of upwelling. This
standard model is integrated numerically until %; ap-
proaches zero near the wall. The solutions are shown
in Figs. 3-10. The fluid is initially at rest with ;=50 m,
he=150 m for all x.

In Tig. 3, the height anomaly of the interface and
free surface are shown after 4 days. Near the shore in
a width of 20 km or so, the interface height anomaly
is order 10 m. The free surface anomaly is order —20
cm. Offshore, where 75 approaches zero, a negative
height anomaly is calculated. We shall refer to positive
height anomalies as upwelling and negative as down-
welling. We shall demonstrate that the downwelling 1s
simple Ekman pumping which occurs when curl £5 is

HEIGHT IN METERS

0 20 KM e >
Fic. 3. Interface height anomaly after 4 days as a function of x.
Upwelling is indicated by positive height anomaly near the shore.

Downwelling is found centered at 210 km. The dashed line is the
free surface anomaly.
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Fic. 4. Velocity profiles as a function of x after 4 days. The long-
shore flow #; exhibits a jet near 10 km offshore. 'The lower layer
velocity profiles are dashed. The longshore velocities are baro-
tropic between 50-150 km: 3 <0, us>0.
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F1G. 5. Interface height anomaly after 10 days. The interface
has almost surfaced near the shore. The downwelling is centered
near 210 km. The dashed line is the free surface anomaly.
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 Ite. 6. Velocity profiles as a function of % after 10 days. Dashed
lines are lower layer velocity components. A strong surface jet
occurs near x=0. The longshore velocities are barotropic between

50~-150 km.

TIME IN DAYS

300

F1c. 7. Contours of u as a function of time and space. The
inertial oscillations are visible. The minimum #; is O(—3 cm
sec™). The inertial oscillations decay in time in the forced region.
The countour interval is 1 cm sec,
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TIME IN DAYS

T16. 8. Baroclinic velocity v1 —vs contoured as a function of x and
t. The heavy contour at x=0 indicates the presence of the jet. In
the barotropic region, inertial oscillations of amplitude O(2 cm
sec™!) are found. The contour interval is 5 cm sec™.

negative. The dynamics of the upwelling at the wall
are more complicated.

In Fig. 4, the four velocity components are shown
after 4 days as a function of space. The upper layer
flow is offshore (#:1<0); the lower layer is onshore
(42>0) as expected with forcing by an equatorward
wind stress in a rotating system. The longshore veloci-
ties are essentially southward everywhere. No substan-
tial poleward flowing undercurrent is present. Near the
coast, an equatorward flowing baroclinic jet is found
in the upper layer. This is an important discovery.
The dynamics of this jet will be discussed subsequently.
The longshore flow is barotropic from 50-200 km. It
will be shown to have dynamics similar to those of the
coastal jet discussed by Charney (1955) in reference to
the Gulf Stream and by Csanady (1968) relative to the
coastal currents in a model Great Lake. Offshore, when
75 approaches zero, the flow becomes baroclinic.

In Fig. 5, the interface height anomaly after 10 days
is shown. The upwelling zone is order 30 km wide and

et e . 20

VELOCITY IN CM/SEC

L 1 -6
360 300 KM T o o0
Fic. 9. Upper layer velocity v as a function of x for each day.

After 10 days, ;= —64 cm sec™? in the jet. The uneven spacing of
the lines is indicative of the inertial oscillation.
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T1c. 10. Interface height anomaly for each day as a function of x.
After 10 days, =2 m at the wall and 65m near 210 km.

the height anomaly is almost 50 m, i.e., %; is approach-
ing zero. The downwelling occurs 200 km offshore.
The free surface anomaly is order —50 cm. It is im-
portant here to recognize that the upwelling occurs in
a narrow (10-30 km) region against the coastal wall.

In Fig. 6, the velocities are shown after 10 days. The
baroclinic jet, confined to the upper layer, is still the
most striking feature. The longshore flow is barotropic
from 50-150 km offshore. The baroclinic region at
200 km coincides with the region of non-zero wind-
stress curl. Let us emphasize that the baroclinic region
near 200 km may be shifted offshore as far as desired
by appropriate redefinition of the wind-stress vector.
In this paper, we are concerned only with the near-
shore ocean circulation induced by steady winds. The
influence of the large-scale ocean circulation dynamics
is not considered. )

In Fig. 6, the onshore flow in the lower layer is
order 1 cm sec™. The offshore Ekman transport is
order —2 cm sec™l. As in the real ocean, the velocities
exhibit strong inertial oscillations. In Fig. 7, an «, ¢
plot of u; clearly shows the presence of the inertial
oscillations. The inertial oscillations in the two layers
are completely out of phase (Fig. 8). Schott (1971) has
shown that inertial motions in an ‘“‘almost two-layered”
North Sea were highly coherent between the layers but
180° out of phase. The inertial oscillations in #; can be
detected in Fig. 9 where v, is plotted for each day.

Fig. 10 illustrates the time evolution of %;. The
upwelling region is order 30 km wide near the coast.

Let us review the dynamics which lead to the de-
veloped flow seen in Figs. 3-10. At =0, the equator-
ward stress drives an equatorward longshore velocity
91<0. The Coriolis force rotates the flow 90° and off-
shore Ekman transport occurs, such that #;<0. Due
to the presence of the coast, a one-sided divergence
occurs and /; decreases. Continuity requires compen-
sating flow from below; thus, /4. increases. Hence, we
observe a shoreward transport #,>0 in the lower layer.
Far offshore where the wind-stress curl becomes nega-
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tive, downwelling occurs through Ekman pumping.
Except for the presence of the baroclinic jet and the
narrowness of the upwelling region, this description is
basically the classical Ekman (1905) physics. To ex-
plore the dynamics further, we find it instructive to
non-dimensionalize the problem.

6. Non-dimensional two-layer model

On a coastal shelf, we expect ¢ priori that there will
be different velocity scales for » and v in each layer.
Let primed quantities by non-dimensional; we define
the scaling parameters.

(ui0i) = (U5, Vi) (i w)

x=Lx'
t=T1
hi=H i (31)

(+52,750) = (o, 7) (5,75

H
(lrt+hat-D)s =E(h1'+h2'+D')z

We adopt the usual practice of dropping primes
immediately.
Scaling the continuity equations implies that

U2Hz’—_ U1H1, (32)
T=L/U, (33)

where T is the time for the interface to surface. The
former just demonstrates conservation of mass. We
need to define several non-dimensional numbers:

R:=V.;/(fL) [Rossby number ] )
F=gH/(LfV)

[Rossby number/external Froude number ]
Fr=g'H\/(LfV>) [

[Rossby number/internal Froude number]{"
Ey=A/(pL?f) [a horizontal Ekman number |
Ep=1/(pfU:H,) [an Ekman drift]
A;=U;/V; [velocity aspect ratios ] J

(34)

The scaling is appropriate to the upwelling region next
to the coast.

The scaled momentum equations for the two-layer
model are

6u1 6M1 6
R4 12[——-!-%1—‘:, +F1—(u+h,+D)
ot dx ox

62

. (35)

ar
=un+—75h '+ Epd;s
dx?

pH1

(91)1 67}1 a 2‘1}1
Rl[——._}—“l_] =—wu+EprSth'+ EpA 1—1*2’ (36)

ot dx dx
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H2 Jus dus a o7y
R2A 22[_ —_‘I—%z—‘] +F2"— (/Z1+112+D) —FI——
H, o! dx ax ax
(')21/52
=‘Z)2+EHA2—, (37)
dx?
H, 9v, 7, 0%y
Rz[—‘ —+%2—:l =—uy+Egds—. (38)
H, ot dx Jdx?

The interior and bottom stress terms are quite small,
O(1072) or less, and the reader can easily demonstrate
this after we deduce the size of the important scales in
the problem. Thus, they do not appear above. We
have demonstrated this numerically by calculating the
magnitude of each term as a function of space and time.

We expect a priori that the velocity aspect ratios
A ;K1 for each layer. The longshore flow will be directly
coupled to the wind and is supported dynamically by
the offshore pressure gradient. The numerical solutions
tell us that L is order 10-30 km, which means that
Ly is order 1073; this yields the geostrophic balance
from (35) and (37)

a
Fr—(l+hs+D) =, (39)
dx
] I
Fz—(}l1+h2+D)—F[—_=‘v2. (40)
ox ax

This implies F1=1, Fy—Fr=1.If V1is 50 cm sec! and
L =30 km, we obtain

H=15cm
Va=17 cm sec™ (near the shore) }. (41)
V.=V, (away from the shore)

The free surface depression near the coast is 15 cm
and in the region of baroclinic low V,<V; as found
numerically. Both longshore velocities are balanced
geostrophically, but the baroclinic pressure gradient
dramatically reduces the surface flow with depth. The
jet must be confined to the surface layer.

Using the same scales, we find Ry=1/6 and R,=1/18.
As in most geophysical problems, the Rossby number
is somewhat less than unity. If we accept that, away
from the shore-bound upwelling region, 75¥ must be
balanced by the Ekman drift, then for this regime
Ep=1, which implies U1=2 cm sec™ as found numeri-
cally. Near the shore, however, u; approaches zero
and the balance must be

87)1 6‘2)1 327)1
Rll:———_*_ul_:l = —ur+LEprSuh 1+ Egd ™' —, (42)
at ox Jx?
where Ry~ 1/6, Ep=1, Ey~1073, A{ "~ 25. This region
should be rescaled and matched to the outer Ekman
drift solution. But here we believe it sufficient to display
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the multiple balance. The horizontal friction term is
required to bring the longshore flow to zero at the wall.
Therefore, on the shore side of the jet, v., will be
important. The acceleration term must be important
in the vicinity of the jet. In the steady state, there
cannot be any jet. (This has been found numerically
for large ¢, but not shown here.)

The presence of the jet depends on two important
physical processes which are included in this model,
but not in previous models of coastal upwelling. First,
the wind stress may not vanish near the coast as in
Hidaka (1954) and Hsueh and Kenney (1972). Secondly,
the upwelling model must be truly time-dependent and
not steady state as in Yoshida (1967) and Hidaka.
Since the jet is observed in nature (Mooers, 1970;
Mooers et al., 1972), it is a real feature of coastal
upwelling.

The scaling thus far has not clearly supported the
dynamical basis for the jet; however, a potential vor-
ticity argument does. Consider the equations

(9‘2)1 6’01 7Y
——tu—F fuy =—o, (43)
at Jax H;p
dh 0
———+—(lu1) =0, (44)
al  ox
00 02 3
—Fsus—+ fus =0, 453)
at dx
6112
—t—(hous) =0 (46)
ot X
The potential vorticity equations are
61)1
iy
d| dx
(ﬂL /’L] J
6‘2)2
2y
d | ox 0 48)
atl om0

where the curl of the wind stress near the coast has
been neglected. Since the fluid is at rest initially, we
may integrate once and obtain

v, Ii—hio

———f( >=o, (49)
ox h10

3 fa—Ii

—ff—f< i 2°)=o, (50)
ox h20

where kg and /o are the initial profiles of /1 and /..
When upwelling occurs near the coast, &1/h10<1 and
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ho/hso>1. Therefore, v1 must be a minimum at the
coast and »; must be a maximum. This says that the
jet and the upwelling region have the same width
scale! Near the shore, the barotropic pressure gradient
must increase since v; 1s geostrophic. This demonstrates
the real importance of the free surface in the problem.
When horizontal friction is included, the minimum in
vy will be displaced away from the shore a distance

AVt

1

(1)

This estimate is obtained by setting KA1 =1. Since
A decreases in the jet region, the estimate for Ly is a
lower bound. This scaling predicts that the jet must
vanish as we approach the equator. If 4 is large enough
(10® cm? sec™) to permit the viscous boundary layer
to envelop the entire upwelling region, no jet will
develop. These conclusions have been verified numeri-
cally. It is our thesis that horizontal eddy viscosity
must not be allowed to play a dominant role in more
complicated models of coastal upwelling, since real
physical features of the circulation will be smeared
away.

For the o momentum equation, the outer balance is

H2 avg

— —— = — 1y

52
Hy ot 2
The onshore flow is balanced by the tendency term
when H,>H,. Since the Ekman drift offshore will
always be confined to a thin upper layer even in a
continuously stratified ocean, this balance must be
valid. The absence of the longshore pressure gradient
to balance %, confuses our physical argument. Garvine
(1971) allows a constant (but small) longshore pressure
gradient for his steady-state model. However, a con-
sequence of his model is that the vertical integral of
the longshore flow must vanish. This is rarely observed.
He does obtain a deep poleward flowing countercurrent
which does not appear in our model. From our model,
we conclude that the commonly observed deep counter-
current is produced by the large-scale circulation
(Pedlosky, 1969 ; Durance and Johnson, 1970) and not
by the local wind-induced upwelling. This is, of course,
sheer speculation which must be tested in fully three-
dimensional models of coastal upwelling.

Near the shore, i.e., where (|x|<5 km), v2,, must
increase to bring vz to zero at the wall, as for the upper
layer. There are two balances for the lower layer
y-directed momentum equation: an outer inertial solu-
tion and an inner solution dominated by friction.

In summary, the longshore velocities v1, 72 are
balanced geostrophically by a 15-cm surface slope in
30 km. The baroclinic pressure gradient reduces the
flow in the lower layer. The offshore Ekman drift is
2 cm sec™t. The tendency terms for vy, vy are important
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TABLE 1. Values of parameters and scaling

variables.
Uy 2 cm sec™! f 1074 sec™!
Us; % cmsec! ¢ 10% cm sec™?
V) 50 cm sec™! g 2 cm sec™2
Vs 17 cm sec™! A 108 cm? sec™t
H, 5X10% cm T 1 dyn cm™2
H, 15X 10 cm p 1 gmcm™
H 15 cm c 3 X104
L 30 km Ax 1 km
T 10 days At 30 min

a 1071

in the dynamics of the model. The time scale T=L/U,
is order 10 days or larger. This means that the inter-
face, originally at 50 m, will surface in about 10 days.
This implies an average vertical velocity of 3X10~* cm
sec. In the real ocean, the decrease of temperature
with depth will allow appearance of cold upwelled
water almost immediately after the onset of upwelling.
However, our solution implies that it will take several
days for a subsurface thermocline or pycnocline to
appear at the surface as an oceanic front.

The assumed values of the parameters and the
deduced values of the scaling variables are given for
convenience in Table 1. The reader should realize that
if a larger value of the bottom drag coefficient ¢ is used,
bottom friction will be important in the », momentum
equation. We have tried to reduce the dynamic role
of bottom friction in our upwelling model by keeping
¢ small. The kinematic role of bottom friction has been
retained. In the numerical solutions given in this paper,
the interface surfaces (and the computations are termi-
nated) before bottom or internal stresses play any
appreciable role in the dynamics of the problem.

The downwelling occurs through Ekman pumping.
Far offshore, the balance in (36) can only be

Mlhlszy, (53)
whose curl is
Ouihy 915 ol
= = . (54)
adx dx dat

Since curl £<0 offshore, %, must increase; thus, down-
welling is simulated. If = varies in x, the downwelling
will be distributed offshore according to (54). In our
model, the upwelling at the coast is driven by a narrow
band of wind stress of east-west extent greater than
30 km, but the downwelling occurs due to the wind-
stress curl.

7. Sharp-shelf case

The second numerical solution to be discussed is a
fictitious sharp-shelf case (Fig. 11). Suppose that the
200 m depth continental shelf is wide (>300 km), but
shoreward of 100 km there exists a shallow inshore
shelf of depth 64 m. We assume that the undisturbed
pycnocline is at 50 m. Over the shallow shelf, the lower
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DEPTH IN METERS

300 260 KM il;O ¢
F1G. 11. Geometry for the sharp-shelf case. The upper layer is

50 m thick initially. The lower layer is 14 m thick near the coast
and 150 m thick offshore.

layer is only 14 m thick, whereas seaward of 100 km it
is 150 m thick. The wind stress profile is identical to
the standard case (Fig. 2).

The numerical solutions are shown in Figs. 12-16.
In Fig. 12, the velocity profiles after 10 days’ integra-
tion are shown. The effect of the shelf is clearly seen.
The upper layer flow offshore (#;) is unchanged. The
compensating onshore flow in the lower layer increases
as the sea bottom rises near 100 km. The longshore
velocities are barotropic between 50-150 km. A weak
nearshore jet in 2; is still evident. At 210 km, the wind
stress curl creates a secondary baroclinic region. In
Fig. 13, the height anomaly for the upper layer is
shown as a function of time. A weak secondary up-
welling region is found at 100 km. The potential
vorticity argument, (49), easily explains the dynamics
of the secondary upwelling region. After a few days,
this actually decreases, but at the shore the upwelling
is still occurring. Comparing Figs. 10 and 13, we ob-
serve that the presence of the bottom topography

VELOCITY IN CM/SEC

- 0-'00

I16. 12. Velocity profiles after 10 days for the sharp-self case.
The lower layer velocity profiles are dashed. The longshore flow
exhibits a slight jet in the upper layer and is essentially barotropic
from 50-150 km.
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Fic. 13. Interface height anomaly profiles for each day. After 10
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F1c. 14. Profiles of v, each day for the sharp-shelf case. The uneven
spacing of the lines indicates the inertial oscillations.
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¥1c. 15. Contours of v1—v; as a function of time and space for
the sharp-shelf case. The contour interval is 5 cm sec™. The am-
plitude of the inertial oscillation at 150 km is 02 cm sec™).
The solid line at the coast indicates the baroclinic_jet.

delays the upwelling at the coast. In the standard case,
h1=2 m after 10 days, but ;=19 m in the sharp-shelf
case after 10 days. The downwelling in this case also
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I'16. 16. Contours of #; as a function of time and space for the
sharp-shelf case. The contour interval is 1 cm sec™. The inertial
oscillations near 150 km have an amplitude of 2 cm sec™.

occurs offshore at 210 km in response to the negative
wind stress curl.

The evolution of #; is shown in Fig. 14. The uneven
spacing of the lines indicates the presence of the inertial
oscillations. These are seen more clearly in Fig. 15
where the baroclinic velocity v-vs is contoured as a
function of time. It is of interest to observe that the
amplitude of the inertial oscillation is damped over the
shelf. In Fig. 16, #, is contoured on the x, ¢ plane. The
strong inertial oscillations are primarily observed be-
tween 100-200 km. At 6 days (when the secondary
upwelling has diminished at the edge of the shelf), the
pattern of the inertial oscillations is affected by a
shoreward propagating internal wave.

8. Oregon coast case

There is some value in integrating a case with
bottom topography similar to the Newport, Oregon
region, since considerable amounts of direct current
observations have been acquired in this area by Oregon
State University. In Fig. 17, the simulated topography

700

DEPTH IN METERS

800

930

306 200 o' 900

KM 100

Fic. 17. Bottom topography for the simulated Oregon Coast
case. The upper layer is 15 m thick initially. The lower layer is
1 km thick offshore. )
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Fic. 18. Velocity profiles after 3 days for the Oregon Coast case.
The lower layer velocity profiles are dashed. A narrow jet in 2
is centered at 5 km offshore.

for this case is shown. The shelf drops off to 200 m by
30 km offshore and to 1 km depth at 100 km offshore.
In this example, we choose the upper layer to be only
15 m thick. This is necessary to avoid a major re-
programming effort. Sielecki and Wurtele (1970) have
shown how to integrate the shallow water equations
in a basin with sloping sides. Their ideas are being left
for future work.

We adopt the same wind stress profile (Fig. 2) with
0.5 amplitude in 75%. The velocity profiles after 3 days
are shown in Fig. 18. The longshore jet is narrow,
0(15 km). The solution is essentially barotropic from
50-150 km. In Fig. 19, the height anomaly is shown as
a function of time. Since the upper layer is quite thin
(15 m) initially, the interface has almost surfaced in
3 days. The downwelling occurs, as predicted, at 210
km offshore.

HEIGHT IN METERS

'
Lol

L . N
300 235 KM 100 0

F16. 19. Interface height anomaly for the Oregon Coast case
after 3 days. The interface has risen at the coast to within 1 m of
the surface. Downwelling occurs offshore at 210 km.

O'BRIEN AND H. E. HURLBURT 25

9. Critique

We have idealized coastal upwelling in this paper.
Even within the framework of our layered model, it
is possible to vary many parameters. We have run
numerous solutions, 0(100), varying bottom topog-
raphy, wind stress, stratification, latitude, frictional
constants, etc. Space does not permit a full disclosure
of these results. There are some comments, however,
that are appropriate.

Our simple two-layer model has no realistic steady-
state solution. Examination of (14) and (17) will con-
vince the reader that the only steady-state solution is
u1=u,=0 everywhere. The longshore velocities are
geostrophic and the three y-directed vertical and hori-
zontal stresses must balance. Clearly, the role of the
north-south pressure gradient must be included to
balance non-zero x-directed motion in a realistic steady
state. Since steady-state motion never occurs in the
real ocean and we are concerned with the onset of
upwelling over a few days, we do not regard this as a
serious problem. Tt is our intention to develop fully
three-dimensional models in the future.

In real eastern boundary currents, a deep pole-
ward flowing countercurrent is almost always present
(Wooster and Reid, 1963). Our model has no mechan-
ism for producing a countercurrent. Huyer (1971) has
shown that during a period of strong upwelling off the
Oregon Coast the countercurrent is greatly diminished.

Hidaka (1954) reported that upwelling is a maximum,
when the wind is equatorward but with an angle 21°
offshore. We do not concur. In our stratified model,
the maximum rate of upwelling occurs when the wind
is only slightly offshore [O(5°)]. As f decreases and
we approach the equator, this angle increases; at 4N
the angle is O(30°) (solutions not shown). The wind
angle for maximum upwelling is an unknown function
of latitude, stratification, depth of the upper mixed
layer, and time.

10. Summary

A two-layer numerical model of coastal upwelling in
a stratified ocean on an f plane has been solved. A
geostrophic baroclinic surface jet has been discovered
and explained dynamically by a potential vorticity
argument. The coastal upwelling and the jet are shown
to be confined to within 30 km of the coast.

Considerable experimentation can be done with the
model described here. We have performed many nu-
merical experiments varying the parameters of the
model. Solutions with several layers and time-depen-
dent winds have been obtained, but these must be
reported elsewhere. It seems essential that the next
generation of numerical models of coastal upwelling
must be three-dimensional to explore the dynamic role
of the north-south pressure gradient and the north-
south divergence.
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