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Abstract

In 1981, J. Hawkes conjectured the exact form of the Hausdorff gauge function for the boundary

of supercritical Galton-Watson trees under a certain assumption on the tail at infinity of the total

mass of the branching measure. Hawkes’s conjecture has been proved by T. Watanabe in 2007

as well as other precise results on fractal properties of the boundary of Galton-Watson trees. The

goal of this paper is to provide an elementary proof of Hawkes’s conjecture under a less restrictive

assumption than in T. Watanabe’s paper, by use of size-biased Galton-Watson trees introduced by

Lyons, Pemantle and Peres in 1995.

1 Introduction.

Fractal properties of the boundary of supercritical Galton-Watson trees have been intensively stud-

ied since the seminal paper by R.A. Holmes [9], who first studied the exact Hausdorff measure

of a specific case, and since the paper by J. Hawkes [8] who determined the growth number of a

Galton-Watson tree in the general case and proved that the Hausdorff dimension of its boundary

is the logarithm of the mean of the offspring distribution (see also Lyons [14] for a simple proof).

The problem of finding an exact Hausdorff function in the general setting has been studied by Q.

Liu [11] who considered a large class of offspring distributions. Packing measure, thin and thick

points as well as multifractal properties of the branching measure have been also investigated by

Q. Liu [13, 12], P. Moerters and N. R. Shieh [16, 17] and T. Watanabe [20].

In the cases studied by Q. Liu [11], the corresponding Hausdorff measure coincides with the

branching measure. This was predicted by J. Hawkes [8] who conjectured the general form of

the Hausdorff gauge function for the boundary of supercritical Galton-Watson trees under a nat-

ural assumption on the right tail of the distribution of the total mass of the branching measure.

This long standing conjecture has been recently solved by T. Watanabe in [21]: in this paper,
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T. Watanabe provides necessary and sufficient conditions for the existence of an exact Hausdorff

measure that is absolutely continuous with respect to the branching measure as well as precise

results on several important examples. The goal of our paper is to provide an elementary proof of

Hawkes’s conjecture that holds true under a less restrictive assumption than in Watanabe’s paper

and that relies on size-biased Galton-Watson trees that have been introduced in [15] by R. Lyons,

R. Pemantle and Y. Peres.

Let us briefly state Hawkes’s conjecture (we refer to Section 2 for more formal definitions). To

simplify notation, we assume that all the random variables that we consider are defined on the

same probability space (Ω,F ,P) that is assumed to be complete and sufficiently large to carry as

many independent random variables as we need. Let ξ = (ξ(k), k ∈ N) be a probability distribu-

tion on N that is viewed as the offspring distribution of a Galton-Watson tree T . Informally, T
is the family-tree of a population stemming from one ancestor and evolving randomly as follows:

each individual of the population has an independent random number of children distributed in

accordance with the offspring distribution ξ. We assume that the ancestor is at generation 0, its

children are at generation 1, their children are at generation 2... and so on; if we denote by Zn(T )
the number of individuals at generation n, then (Zn(T ) ; n ≥ 0) is a Galton-Watson Markov chain

with offspring distribution ξ that starts at state 1. To avoid trivialities, we assume that ξ(1) < 1.

Let us set

m=
∑

k∈N
kξ(k) ∈ [0,∞] and f (r) =

∑

k∈N
ξ(k)rk , r ∈ [0,1] . (1)

The function f is the generating function of ξ. It is convex and the equation f (r) = r has at most

two roots in [0,1]. We denote by q the smallest one (1 being obviously the largest one). Standard

results on Galton-Watson Markov chains imply that P(#T < ∞) = q. Morever q = 1 iff m ≤ 1.

Therefore, if m> 1, P(#T =∞)> 0. We shall make the following assumptions on ξ:

m ∈ (1,∞) and
∑

k≥2

k log(k)ξ(k) < ∞ . (2)

We suppose m > 1 because we want to study T on the event {#T =∞}. The second assumption

on ξ is motivated by the following result known as Kesten-Stigum’s Theorem that asserts that,

under (2), we have

lim
n→∞

Zn(T )
mn

=W a.s. and in L1(Ω,F ,P) . (3)

Consequently, W has unit expectation: E[W] = 1. Moreover, 1{W>0} = 1{#T =∞} almost surely and

the exact rate of growth of T is n 7→ mnW . We refer to the original paper by Kesten and Stigum

[10] and to the paper by R. Lyons, R. Pemantle and Y. Peres [15] for an elementary proof of (3).

The distribution of W is of great interest and it is known to have a positive continuous density on

(0,∞) and an atom at 0 of mass q (see Athreya and Ney [3], Chapter II).

We view T as an ordered rooted tree. Namely, we take the ancestor of the population as the root

and we associate a rank of birth with any individual. In this way we can label each individual

by a finite word of positive integers (i1, . . . , in): the length n of the word is the generation of

the labelled individual and ik represents the birth-rank of its ancestor at generation k. The set

of words created in this way completely encodes T which can be therefore viewed as a random

subset of the set of finite words written with positive integers. We denote by U the set of finite

words written by positive integers. We are interested in the infinite boundary of T that is the set

of all infinite lines of descent in T . We denote by ∂ T the boundary of T . Let us assume that ∂ T
is non-empty (which is equivalent to assume that #T is infinite); we denote by N∗ = N\{0} the

set of positive integers; to each infinite line of descent we associate an infinite N∗-valued sequence
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(in ; n ≥ 1) such that for any n ≥ 1, the finite word (ik ; 1 ≤ k ≤ n) is the label of the individual

at generation n belonging to the infinite line of descent. Therefore, we can view ∂ T as a random

subset of the set of N∗-valued and N∗-indexed sequences that we denote by ∂U. We equip ∂U

with the metric δ defined as follows: if u = (ik ; k ≥ 1) and v = ( jk ; k ≥ 1) are two elements of

∂U, then δ(u,v) = exp(−n), where n is the largest integer m such that u and v agree on the first

m terms (n is taken as 0 if i1 6= j1). The resulting metric space (∂U,δ) is complete and separable

and ∂ T is actually a random compact subset of ∂U.

Hawkes’s conjecture concerns the problem of finding a gauge function g such that the g-Hausdorff

measure of ∂ T is positive and finite. One natural candidate for such a measure is the branching

measure M that is a finite random measure on ∂U associated with ∂ T such that M(∂ T ) = W

a.s. Roughly speaking, M is the most spread out measure on ∂ T (we refer to Section 2 for

more details on M). Before stating more precisely the conjecture, let us briefly recall standard

definitions about Hausdorff measures: we restrict our attention to g-Hausdorff measures with

sufficiently regular gauge function g; more precisely, we say that g is a regular function if firstly,

there exists an interval (0, r0) on which g is right-continuous non-decreasing, secondly, lim0 g = 0

and thirdly, there exists C > 1 such that g(2r)≤ C g(r), for any r ∈ (0, r0/2) (this last assumption

is often called the "doubling condition" though some authors use the term of "blanketed" Hausdorff

function). Then, the g-Hausdorff measure on (∂U,δ) is defined as follows: for any A ⊂ ∂U and

for any ǫ ∈ (0, r0), we first set

H (ǫ)
g
(A) = inf

(∑

n∈N
g
�
diam(Cn)
�

; A⊂
⋃

n∈N
Cn and diam(Cn)≤ ǫ , n ∈ N

)
,

where diam(C) = sup{δ(u,v) ; u,v ∈ C} stands for the diameter of a subset C ⊂ ∂U; then the

g-Hausdorff measure is given byHg (A) = limǫ→0 H (ǫ)
g
(A) ∈ [0,∞].

• Hawkes’s conjecture. Let ξ be a probability measure on N that satisfies (2). Let T be a Galton-

Watson tree with offpring distribution ξ. Let W be defined by (3). We set

F(x) := − logP(W > x) . (4)

We first assume that F is regularly varying at ∞; more precisely, we suppose that F is of the

following form:

F(x) = x bℓ(x) (5)

where b > 0 and ℓ is slowly varying function at∞. We denote by F−1 the right-continuous inverse

of F : F−1(x) = inf{y ≥ 0 : F(y)> x } and we set

g(r) = r logm F−1
�

log log1/r
�

, r ∈ (0, e−1) . (6)

Then, Hawkes [8] p.382 conjectured that under (5), there exists cξ ∈ (0,∞) that only depends on

ξ such that

Hg (∂ T ) = cξW a.s. (7)

As already mentioned, this result has been solved by T. Watanabe (2007) in Theorem 1.6 [21]

under the following assumption that is weaker than (5): for any sufficiently large x

A−1 x bℓ(x)≤ F(x)≤ Ax bℓ(x) , (8)

where A is a constant larger than one. The paper by T. Watanabe [21] contains other general

results. (Actually, Watanabe’s proof of Hawkes’s conjecture is a consequence of Theorem 1.2 [21]
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that provides a general criterion to decide whether the branching measure is an exact Hausdorff

measures with a regular gauge function.) The goal of this paper is to give an alternative short

proof of Hawkes’s conjecture under a less restrictive assumption than (8) and by use of different

techniques that we claim to be elementary.

Theorem 1.1. Let ξ be a probability measure on N which satisfies (2). Let T be a Galton-Watson

tree with offpring distribution ξ. Let W be defined by (3); let F be defined by (4) and let g be defined

by (6). We assume

sup
x∈[1,∞)

F−1(2x)

F−1(x)
<∞ . (9)

Then, there exists cξ ∈ (0,∞) that only depends on ξ such that

P−a.s. for M−almost all u : lim sup
r→0

M(B(u, r))

g(r)
= c−1

ξ
, (10)

where B(u, r) stands for the open ball in (∂U,δ) with center u and radius r. Furthermore, we have

P−a.s Hg ( · ∩ ∂ T ) = cξ ·M , (11)

where M stands for the branching measure associated with ∂ T .

Remark 1.1. Let us prove that (9) is a weaker assumption than (8). Indeed, assume that (9) is not

satisfied, then there exists a sequence xn ∈ [1,∞), n ∈ N, increasing to ∞ such that F−1(2xn) ≥
nF−1(xn), for any n ∈ N. Recall that W has a positive density on (0,∞), so that F is continuous and

increasing. Thus, if one sets yn = F−1(xn), one easily gets

2F(yn+p)≥ F(nyn+p) , n, p ∈ N.

Suppose that F satisfies (8). Then, (yn, n ∈ N) tends to∞ and the previous inequality entails

2A · y b
n+p
ℓ(yn+p)≥ A−1 · nb y b

n+p
ℓ(nyn+p) , n, p ∈ N.

Fix n such that nb > 2A2. Then, the previous inequality rises a contradiction since

lim
p
ℓ(yn+p)/ℓ(nyn+p) = 1,

by definition of slow variation functions. �

Remark 1.2. Let us briefly discuss (9) for further uses. It is easy to prove that (9) is equivalent to

the following:

∃a > 0 , F−1(sx)≤ 2asaF−1(x) , s, x ∈ [1,∞) . (12)

Therefore, F satisfies

2−1s1/a F(x)≤ F(sx) , s ≥ 2a, x ≥ F−1(1) . (13)

Consequently, P(W > y) ≤ exp(−C y1/a), for any y ≥ 2a F−1(1), where C = 2−1(F−1(1))−1/a. This

implies that E[W n] <∞ for any n ≥ 1, which is equivalent to
∑

k≥0 knξ(k) <∞ for any n ≥ 1, by

a standard result (see Rem.3, p. 33 in [3] or Theorem 0 in Bingham and Doney [4]). Thus, (9) is

much stronger than (2). �
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Remark 1.3. There is no known necessary and sufficient condition expressed in terms of ξ for F to

satisfy (9) (neither for (8) nor (5)). However specific cases have been considered by Q. Liu and T.

Watanabe: see [11] and [21]. Let us also mention that when (11) holds true, there is no simple

general closed formula giving cξ in terms of ξ. The avaible results characterizing cξ are either quite

involved or they require the knowledge of the distribution of W: see Theorem 1.1 in [21] for a general

characterization of cξ; see Liu (Theorem 1[11]) or Watanabe (Theorem 1.6 [21]) when the support

of ξ is bounded; see also Watanabe (Theorem 1.6 [21]) when F satisfies (8). �

2 Notation and basic definitions.

Let us start with basic notation: we denote by N the set of nonnegative integers and by N∗ the set

of positive integers; let U =
⋃

n∈N(N
∗)n be the set of finite words written with positive integers,

with the convention (N∗)0 = {∅}. Let u = (ik ; 1 ≤ k ≤ n) ∈ U; we set |u| = n that is the length

of u, with the convention |∅| = 0. Words of unit length are identified with positive integers. For

any m ∈ N we set u|m = (ik ; 1 ≤ k ≤ n∧m), with the convention u|0 = ∅; observe that u|m = u if

m ≥ n. Let v = ( jk; 1 ≤ k ≤ m) ∈ U, we define u ∗ v ∈ U by the word (ℓk ; 1 ≤ k ≤ n+m) where

ℓk = ik if k ≤ n and ℓk = jk−n if k > n: the word u ∗ v is the concatenation of u and v (observe

that ∅ ∗ u = u ∗∅ = u). We next introduce the genealogical order � by writing u � v iff v||u| = u.

For any u, v ∈ U, we denote by u∧ v the �-maximal word w such that w � u and w � v. For any

u ∈ U, we denote by Uu the �-successors of u. Namely, Uu is the set of words u ∗ v where v varies

in U. On Uu, we define the u-shift θu by θu(u ∗ v) = v.

Definition 2.1. A subset T ⊂ U is a tree iff it satisfies the following conditions.

• Tree(1): If u ∈ T, then u|m ∈ T, for any m ∈ N (in particular ∅ belongs to T).

• Tree(2): For any u ∈ U, there exists ku(T ) ∈ N∪ {−1} such that the following properties hold

true.

– If ku(T ) = −1, then u /∈ T.

– If ku(T ) = 0, then T ∩Uu = {u}.
– If ku(T )≥ 1, then the set of words

�
u ∗ i ; 1≤ i ≤ ku(T )

	
is exactly the set of words v ∈ T

such that |v|= |u|+ 1 and u� v. �

Note that u 7→ ku(T ) is uniquely determined by T . If we view T as the family tree of a population

whose ∅ is the ancestor, then ku(T ) represents the number of children of u ∈ T . We denote by T

the class of subsets of U satisfying Tree(1) and Tree(2). More precisely, this definition provides a

canonical coding of finite-degree ordered rooted trees. For sake of simplicity, any element T in T

shall be called a tree.

For any m ∈ N and any T ∈ T, we set T|m = {u ∈ T : |u| ≤ m}. Observe that T|m is a finite tree.

For any word u ∈ U and any tree T , we define the u-shift of T by

θuT = θu

�
T ∩Uu

�
= {v ∈ U : u ∗ v ∈ T }.

We see that θuT is empty iff u /∈ T . If u ∈ T , then θuT represents the subtree that starts at u (or

the set of the descendents of u). Observe that in any case, θuT is a tree according to Definition

2.1. For any u ∈ T , we define the tree T cut at vertex u as the following subset of U:

CutuT = T\(Uu\{u}).
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Observe that u ∈ CutuT and that CutuT is a tree; CutuT represents the set of individuals that are

not strict descendents of u. Next, for any T ∈ T and any n ∈ N, we set

Zn(T ) = #{u ∈ T : |u|= n } ∈ N.

In the graph-terminology Zn(T ) is the number of vertices of T at distance n from the root. If we

view T as the family tree of a population whose ancestor is ∅ and whose genealogical order is �,

then Zn(T ) is the number of individuals at the n-th generation.

We denote by ∂U the set (N∗)N
∗

of the N∗-valued and N∗-indexed sequences. Let u = (ik ; k ≥ 1)

be in ∂U. For any m ≥ 0, we set u|m = (ik ; 1 ≤ k ≤ m) ∈ U, with convention u|0 = ∅. If

v ∈ ∂U\{u}, then we denote by u∧ v the �-maximal finite word w such that u||w| = v||w| = w; we

also set u∧ u= u. We equip ∂U with the following ultrametric δ given by

δ(u,v) = exp (−|u∧ v|) .

The resulting metric space (∂U,δ) is separable and complete and we denote by B(∂U) its Borel

sigma-field. For any r ∈ (0,∞) and for any u ∈ ∂U, we denote by B(u, r) the open δ-ball with

center u and radius r. We shall often use the notation

n(r) = ⌊(− log(r) )+⌋+ 1 , (14)

where (·)+ stands for the positive part function and ⌊·⌋ for the integer part function. Observe that

B(u, r) = ∂U if r > 1; if r ∈ (0,1], B(u, r) is the set of v such that v|n(r) = u|n(r). This has several

consequences. Firstly, any open ball is also a closed ball. Secondly, we have B(v, r) = B(u, r) for

any v in B(u, r); therefore there is only a countable number of balls with positive radius; more

precisely for any u ∈ U, we set

Bu =
n

v ∈ ∂U : v||u| = u
o

. (15)

Then,

{B(u, r) ; r ∈ (0,∞) , u ∈ ∂U }=
�

Bu ; u ∈ U
	

.

Thirdly, for any pair of balls either they are disjoint or one is contained in the other. We shall

further refer to these properties as to the specific properties of balls in ∂U.

Let T ⊂ T. We define the boundary ∂ T by the set
¦

u ∈ ∂U : u|n ∈ T , n ∈ N∗
©

. Obviously, ∂ T

is empty iff T if finite; moreover, since T|m is finite for any m ∈ N, an easy diagonal-extraction

argument implies that ∂ T is a compact set of (∂U,δ).

We equip T with the sigma field G generated by the subsets

Au := {T ∈ T : u ∈ T} , u ∈ U . (16)

For any u ∈ U, it is easy to check that the function T 7→ ku(T ) is G -measurable. Moreover

T 7→ θuT , u 7→ Cutu(T ) are (G ,G )-measurable and for any n ∈ N, T 7→ Zn(T ) is G -measurable.

Recall that we suppose throughout the paper that all the random variables we need are defined

on the same probability space (Ω,F ,P). Then, a random tree T is a function from Ω to T that

is (F ,G )-measurable. We shall concentrate our attention on a particular class of random trees

called Galton-Watson trees that can be recursively defined as follows.

Definition 2.2. Let ξ = (ξ(k) ; k ∈ N) be a probability on N. A random tree T is said to be a

Galton-Watson tree with offspring distribution ξ (a GW(ξ)-tree for short) if its distribution on (T,G )
is characterized by the following conditions.
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• GW(1): the N-valued random variable k∅(T ) is distributed in accordance with ξ.

• GW(2): If ξ(k) > 0, then under P
�
· |k∅(T ) = k
�
, the first generation subtrees θ1T , . . . ,θkT

are independent with the same distribution as T under P. �

This recursive definition induces a unique distribution on (T,G ): we refer to Neveu [18] for a

proof.

Recall that we assume (2) and recall (3). Then, for any u ∈ U we set Wu := lim supm−nZn(θuT ).
Definition 2.2 easily implies that for any u ∈ U, the random variables

�
Wu∗v ; v ∈ U
�

under P( · |u ∈
T ) have the same distribution as the random variables

�
Wv ; v ∈ U
�

under P. Therefore, we almost

surely have

∀u ∈ U Wu = lim
n→∞

m−nZn(θuT )<∞ and 1{Wu>0} = 1{∂ (θuT ) 6=;}. (17)

Moreover, since for any n ≥ 1 and for any u ∈ U, Zn(θuT ) is the sum of the Zn−1(θu∗iT )’s over

i ∈ N∗, we a.s. have

∀u ∈ U , Wu =m−1
∑

i∈N∗
Wu∗i . (18)

Denote byM f (∂U) the set of finite measures on (∂U,B(∂U)); equipM f (∂U) with the topology

of weak convergence. Then, a random finite measure on (∂U,B(∂U)) is an function from Ω to

M f (∂U) that is measurable with respect to F and to the Borel sigma-field ofM f (∂U). Thanks to

(18), the collection of random variables (Wu ; u ∈ U) allows to define a random finite measure M

on (∂U,B(∂U)) that is characterized by the following properties.

• BM(1): Almost surely, M is diffuse and its topological support is ∂ T .

• BM(2): Almost surely, for any u ∈ U, M(Bu) = m−|u|Wu, where we recall notation Bu from

(15).

This defines the branching measure associated with T . It is in some sense the most spread out

measure on ∂ T ; it is a natural candidate to be a Hausdorff measure on ∂ T . Actually, Theorem

1.1 is proved by applying to M the following Hausdorff-type comparison results of measures.

Proposition 2.1. Let µ ∈ M f (∂U). Let g : (0, r0) → (0,∞) be a right-continuous and non-

decreasing function such that lim0 g = 0 and such that there exists C > 1 that satisfies g(2r)≤ C g(r),

for any r ∈ (0, r0/2). Then, for any Borel subset A⊂ ∂U, the following assertions hold true.

• (i) If lim supr→0
µ(B(u,r))

g(r)
≤ 1 for any u ∈ A, thenHg(A)≥ C−1µ(A).

• (ii) If lim supr→0
µ(B(u,r))

g(r)
≥ 1 for any u ∈ A, thenHg(A)≤ Cµ(A).

This is a standard result in Euclidian spaces: see Lemmas 2 and 3 of Rogers and Taylor [19] for the

original proof. We refer to [6] for a general version in metric spaces (more precisely, we refer to

Theorem 4.15 [6] in combination with Proposition 4.24 [6]). We shall actually need the following

more specific result.

Lemma 2.2. Let µ ∈ M f (∂U). Let g : (0, r0) → (0,∞) be a right-continuous and non-decreasing

function such that lim0 g = 0 and such that there exists C > 1 that satisfies g(2r) ≤ C g(r), for any

r ∈ (0, r0/2). First assume that there is κ ∈ (0,∞) such that the following holds true.

For µ−almost all u , lim sup
r→0

µ(B(u, r))

g(r)
= κ . (19)
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Next, assume that there is κ0 ∈ (0,κ) such that:

Hg

��
u ∈ ∂U : lim sup

r→0

g(r)−1µ(B(u, r))≤ κ0

��
= 0 (20)

Then,Hg( · ∩ suppµ) = κ−1µ, where suppµ stands for the topological support of µ.

Remark 2.1. Such a result holds true thanks to the specific properties of the balls of (∂U,δ); this

can be extended to general Polish spaces if µ satisfies a Strong Vitali Covering Property: see Edgar [6]

for a discussion of this topic. Lemma 2.2 is probably known, however the author is unable to find a

reference. That is why a brief proof is provided below. �

Proof of Lemma 2.2: recall from (15) notation Bu, u ∈ U; if A is a non-empty subset of ∂U that is

not reduced to a point, then there exists u ∈ U such that A⊂ Bu and diam(Bu) = e−|u| = diam(A).

This allows to take the set of balls as the covering set in the definition ofHg , which then coincides

with the so-called spherical g-Hausdorff measure. Let us denote by E the set of all u ∈ ∂U where

the limsup in (19) holds. Then (19) implies that µ(∂U\E) = 0. Let K be a compact subset of

suppµ. Since two balls of ∂U are either disjoint or one contains the other, then for any p ≥ 1,

there exists a finite sequence of pairwise disjoint balls Bu
p

1
, ... , Bu

p
np

with respective diameters

r
p

i
= exp(−|up

i
|)≤ p−1, 1≤ i ≤ np, such that

∀1≤ i ≤ np , K ∩ Bu
p

i
6= ; , K ⊂

np⋃

i=1

Bu
p

i
and lim

p→∞

np∑

i=1

g(r
p

i
) =Hg(K) .

Since K ⊂ suppµ and K ∩ Bu
p

i
6= ;, then µ(Bu

p

i
) > 0, and it makes sense to define a function fp on

∂U by

fp(u) =

np∑

i=1

1B
u

p
i

(u)
g(r

p

i
)

µ(Bu
p

i
)

.

Observe that
∫

fpdµ =
∑np

i=1
g(r

p

i
). Next, for any u ∈ K ∩ E, denote by jp(u) the unique index

i ∈ {1, . . . , np} such that u ∈ Bu
p

i
. Observe that fp(u) is equal to g(r

p

jp(u)
)/µ(B(u, r

p

jp(u)
)). Moreover,

we have

∀u ∈ K ∩ E , lim inf
p→∞

g(r
p

jp(u)
)

µ(B(u, r
p

jp(u)
))
≥ lim inf

r→0

g(r)

µ(B(u, r))
= κ−1 .

Then, Fatou’s lemma implies

κ−1µ(K ∩ E)≤
∫

K∩E

lim inf
p→∞

fp(u)µ(du)≤ lim inf
p→∞

∫

∂U

fp(u)µ(du) =Hg(K) ,

which entails

κ−1µ(K)≤Hg(K) . (21)

Let us prove the converse inequality. Thanks to the specific properties of the balls of (∂U,δ), for

any η ∈ (0,1), we can find a sequence of pairwise disjoint balls (B(un, rn) ; n ∈ N)whose diameters

are smaller than η, such that un ∈ K ∩ E for any n ∈ N and such that the following holds true:

K ∩ E ⊂
⋃

n∈N
B(un, rn) and g(rn)≤ (1+η)κ−1µ(B(un, rn)) , n ∈ N.
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This implies that for any η ∈ (0,1),

H (η)
g
(K ∩ E)≤ (1+η)κ−1µ(Kη), (22)

where Kη = {u ∈ ∂U : δ(u, K)≤ η}. By letting η go to 0, standard arguments entail

Hg(K ∩ E)≤ κ−1µ(K) . (23)

We next have to prove that Hg(suppµ ∩ (∂U\E) ) = 0: let b > a > 0; we set Ea,b = {u ∈
suppµ : lim supr→0 g(r)−1µ(B(u, r)) ∈ [a, b)}. Proposition 2.1 (ii) implies that Hg(Ea,b) ≤
Ca−1µ(Ea,b). Therefore Hg(Ea,b) = 0 if a > κ or if 0 < a < b < κ and (20) easily entails

Hg(suppµ ∩ (∂U\E) ) = 0. This, combined with (21) and (23), entails that for any compact set

K ,Hg(K ∩ suppµ) = κ−1µ(K) and standard arguments complete the proof. �

3 Size biased trees.

We now introduce random trees with a distinguished infinite line of descent that are called size-

biased trees and that have been introduced by R. Lyons, R. Pemantle and Y. Peres in [15] to provide

a simple proof of Kesten-Stigum theorem. To that end, let us first set some notation: let T ∈ T be

such that ∂ T 6= ;. Let u ∈ ∂ T . We set

Gr(T,u) =
n

v ∈ T\{∅} : v 6= u||v| and v||v|−1
= u||v|−1

o
.

Gr(T,u) is the set of individuals of T whose parent belongs to the infinite line of descent de-

termined by u but who do not themself belong to the u-infinite line of descent (namely, such

individuals have a sibling on the u-infinite line of descent). In other words, Gr(T,u) is the set of

the vertices where are grafted the subtrees stemming from the u-infinite line of descent.

Let ξ be an offspring distribution that satisfies (2). The size-biased offspring distribution ξ is the

probability measure bξ given by bξ(k) = kξ(k)/m, k ≥ 0. We define a probability distribution ρ on

N
∗ ×N∗ by

ρ(k,ℓ) = 1{k≤ℓ}m
−1ξ(ℓ) = 1{k≤ℓ}ℓ

−1bξ(ℓ) , k,ℓ≥ 1 ,

and we call ρ the repartition distribution associated with ξ.

Definition 3.1. Let (T ∗,U∗) : Ω→ T× ∂U be a (F ,G ⊗B(∂U))-measurable function; (T ∗,U∗) is

a ξ-size-biased Galton-Watson tree (adGW(ξ)-tree for short) iff the following holds.

• Size-bias(1): for any n≥ 0, U∗|n ∈ T
∗. Moreover, if we set U∗ = (i∗

n
; n ∈ N∗), then the sequence

of N∗ ×N∗-valued random variables (i∗
n

; kU∗|n−1
(T ) ), n≥ 1 is i.i.d. with distribution ρ.

• Size-bias(2): conditional on the sequence ( (i∗
n

; kU∗|n−1
(T ) ) ; n≥ 1), the subtrees θuT , where u

ranges in Gr(T ∗,U∗), are i.i.d. GW(ξ)-trees. �

The size-biased tree T ∗ can be informally viewed as the family-tree of a population containing

two kinds of individuals: the mutants and the non-mutants; each individual has an independent

offspring: the non-mutants’s one is distributed according to ξ and the mutants’s one according to
bξ; moreover, the ancestor is a mutant and a mutant has exactly one child who is a mutant (its

other children being non-mutants); the rank of birth of the mutant child is chosen uniformly at

random among the progeny of its mutant genitor; so there is only one mutant per generation and

U∗ represents the ancestral line of the mutants.
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Size-biased trees have been introduced Lyons, Pemantle and Peres [15]. In this paper, the authors

mention related constructions: we refer to their paper for a detailed bibliographical account.

When m≤ 1, the size-biased tree T ∗ has one single infinite line of descent and it is called a sintree

after Aldous [2]. Such a biased tree is related to (sub)critical Galton-Watson trees conditioned on

non-extinction: see Grimmett [7], Aldous and Pitman [1] and also [5] for more details.

The name "size-biased tree" is explained by the following elementary result (whose proof is left to

the reader): let G1 : T×U→ [0,∞) and G2 : T→ [0,∞) be two measurable functions. Then, for

any n≥ 0, we have

E



∑

u∈T :|u|=n

G1

�
CutuT ; u
�

G2(θuT )

 =mn E
h

G1

�
CutU∗|n

T ∗ ; U∗|n

�i
E
�

G2(T )
�

, (24)

with the convention that a sum over an empty set is null. This immediately entails

P
�
T ∗|n ∈ dT
�
=

Zn(T )

mn
P
�
T|n ∈ dT
�

,

which explains the name "size-biased" tree. Recall notation M for the branching measure. We

derive from (24) the following key-lemma.

Lemma 3.1. Let ξ be an offspring distribution that satisfies (2). Let (T ∗,U∗) be adGW(ξ)-tree and

let T be a GW(ξ)-tree. Let G : T× ∂U→ [0,∞) be G ⊗B(∂U)-measurable. Then,

E

�∫

∂U

M(du)G(T ;u)

�
= E
�

G(T ∗;U∗)
�

. (25)

Proof: let us first assume that G(T ;u) = G(T|n;u|n). Recall that M(θuT ) = m−nWu. Then, observe

that ∫

∂U

M(du)G(T ;u) =
∑

u∈T :|u|=n

G(T|n,u|n)m
−nWu .

Since E[Wu | u ∈ T ] = 1, (24) implies (25). Recall notation Au, u ∈ U from (16). The previous

result implies that (25) holds true for functions G of the form 1C where C belong to P :

P = {(Au1
∩ . . .∩ Aup

)× Bv ; p ∈ N∗ , v,u1, . . . ,up ∈ U} ,

which is a pi-system generating G ⊗B(∂U). Then, a standard monotone-class argument entails

the desired result. �

Let us apply Lemma 3.1 to our purpose: let T be a GW(ξ)-tree and let u ∈ ∂ T ; recall notation

Gr(T ,u) from the beginning of the section. It is easy to prove that for any r ∈ (0,1],

M(B(u, r)) =
∑

p≥0

∑

v∈Gr(T ,u)
|v|=n(r)+1+p

m−p−n(r)−1Wv , (26)

where we recall that n(r) = ⌊− log(r)⌋+1. Let (T ∗,U∗) be adGW(ξ)-tree. For any v ∈ Gr(T ∗,U∗),
we set

W ∗
v
= lim sup

n→∞

Zn(θvT ∗)
mn

.
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By Size-bias(2), observe that conditional on theN∗×N∗-valued sequence ( (i∗
n

; kU∗|n−1
(T ∗) ) ; n≥ 1),

the random variables (W ∗
v

; v ∈ Gr(T ∗,U∗) ) are i.i.d. with the same distribution as W . Next, for

any n≥ 1, we set

Yn =
∑

v∈Gr(T ∗,U∗)
|v|=n

W ∗
v

and Xn =
∑

p≥0

m−pYp+n .

Lemma (3.1) combined with (26) implies that for any measurable nonnegative function G on the

set of real valued cadlag functions on (0,1], one has

E

�∫

∂U

M(du)G
��

M(B(u,r))
�

r∈(0,1]

��
= E
�

G
��

m−n(r)−1Xn(r)+1

�
r∈(0,1]

��
. (27)

Observe that B(u, r) is empty and n(r) = ∞ if r = 0, that is why the radius r ranges in (0,1]

in (27). Note that (Yn ; n ≥ 1) is an i.i.d. sequence of random variables; thus, the Xn’s have the

same distribution. We provide two (rough) bounds of the tail at ∞ of Y1 and X1 that are needed

in the proof section: recall notation F from the introduction; the first bound is a straightforward

consequence of the definitions:

P(X1 > x)≥ P(Y1 > x)≥ C0 P(W > x) = C0 exp(−F(x)) . (28)

where C0 := (1− bξ(1)) = P(k{∅}(T ∗)≥ 2) is a positive constant. Next observe that

E

�∫

∂U

M(du)G (M(B(u, 1)) )

�
= E




k;(T )∑

i=1

m−1Wi G(m−1Wi)


 = E
�

W G(m−1W )
�

.

Therefore (27) with r = 1 entails

E
�

W G(m−1W )
�
= E
�

G
�

m−2X2

��
= E
�

G
�

m−2X1

��
.

Cauchy-Schwarz inequality and the previous identity both imply the following:

P(X1 >m x) = E[W 1{W>x}]≤ C1 exp (−F(x)/2) , (29)

where we have set C1 :=
p

E
�

W 2
�

, which is finite if F satisfies (13), as noticed in Remark 1.2.

4 Proof of Theorem 1.1.

First observe that (28) implies that P(Yn > F−1(log n)) ≥ C0n−1. Since the Yn’s are independent,

the converse of Borel-Cantelli lemma entails that Yn is larger than F−1(log n) for infinitely many n

almost surely. Now, since Xn ≥ Yn, we easily get

P−a.s. lim sup
n→∞

m−nXn

g(e−n)
≥ 1 , (30)

where we recall that g is given by (6). Next (29) implies that P(Xn >m F−1(3 log n))≤ C1 · n−3/2.

Then, Borel-Cantelli combined with (12) gives

P−a.s. lim sup
n→∞

m−nXn

g(e−n)
≤ 6am . (31)
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Kolmogorov 0-1 law combined with (30) and (31) imply that lim supr→0 g(r)−1m−n(r)−1Xn(r)+1 is

a.s. equal to a constant κ= c−1
ξ

that is positive and finite, which entails (10) by (27).

Let us prove (11): by Lemma 2.2, we only need to prove that there exists κ0 > 0 such that

Hg

��
u ∈ ∂ T : lim sup

r→0

g(r)−1M(B(u, r))< κ0

��
= 0 . (32)

Recall that M(B(u, r)) =m−n(r)Wu|n(r)
. Thus, if we set

En0
=

§
u ∈ ∂ T : ∀n≥ n0 , Wu|n

<m−1 F−1(
1

2
log n)

ª

then, an easy argument using (12) entails that Claim (32) is true with κ0 = 4−am−1 as soon as

almost surely the following holds:

∀n0 ≥ 2 , Hg

�
En0

�
= 0 . (33)

Let us prove (33): to that end, we set for any N > n0:

Jn0,N =

§
v ∈ T : |v|= N ; ∀n ∈ {n0, . . . , N} , Wv|n

<m−1 F−1(
1

2
log n)

ª
.

Thus, {Bv ; v ∈ Jn0,N} is a (e−N )-cover of En0
and H (e−N )

g

�
En0

�
≤ g(e−N )#Jn0,N . We now estimate

g(e−N )#Jn0,N . First observe that

E
�

g(e−N )#Jn0,N

�
= g(e−N )E



∑

u∈T :|u|=N

1{∀n∈{n0,...,N} , Wu|n<m−1 F−1( 1
2 log n)}


 . (34)

Let us now compute the right hand side of the last display thanks to (24): (18) entails that a.s. for

any u ∈ T such that |u|= N , and for any n ∈ {n0, . . . , N}, one has Wu|n
= Gn(θuT )+Kn(Cutu(T )),

where have set Gn(θuT ) =m−(N−n)Wu and

Kn(Cutu(T )) =
N∑

p=n+1

m−(p−n)
∑

v∈T : |v|=p
v 6=u|p , v|p−1=u|p−1

Wv .

Then, (34) and (24) entail

E
�

g(e−N )#Jn0,N

�
= F−1(log N)P

�
∀n ∈ {n0, . . . , N} , X ∗

n
<m−1 F−1(

1

2
log n)

�
,

where X ∗
n
=m−(N−n)W ′+

∑N
p=n+1

m−(p−n)Yp and where W ′ is distributed as W and is independent

of the Yn’s. Recall that the Yn’s are i.i.d. and observe that X ∗
n
≥ m−1Yn+1 for any n0 ≤ n < N .

Therefore, (28) implies

P

�
∀n ∈ {n0, . . . , N} , X ∗

n
<m−1F−1(

1

2
log n)

�
≤

N−1∏

n=n0

P

�
Yn+1 < F−1(

1

2
log n)

�

≤
N−1∏

n=n0

�
1− C0n−1/2
�

≤ exp

�
− 1

2
C0

�p
N −pn0

��
.

Since (12) implies F−1(log N) ≤ F−1(1)(2 log N)a, we easily get limN→∞ g(e−N )#Jn0,N = 0, which

completes the proof of (33) and thus of (11). �
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