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Abstract

We study the limit of a superprocess controlled by a stochastic flow as t → ∞. It is proved
that when d ≤ 2, this process suffers long-time local extinction; when d ≥ 3, it has a limit
which is persistent. The stochastic log-Laplace equation conjectured by Skoulakis and Adler
[7], and studied by this author [12], plays a key role in the proofs, similar to the one played
by the log-Laplace equation in deriving long-term behavior for the standard super-Brownian
motion.

1 Introduction and main results

Suppose that a branching system is affected by a Brownian motionW (t) which applies to every
individual in that system. Between branchings, the motion of the ith particle is governed by
an individual Brownian motion Bi(t) and the common Brownian motion W (t):

dηi(t) = b(ηi(t))dt+ σ1(ηi(t))dW (t) + σ2(ηi(t))dBi(t)

where b : Rd → Rd, σ1, σ2 : Rd → Rd×d are measurable functions, W, B1, B2, · · · are
independent d-dimensional Brownian motions. Each individual, independent of others, splits
into 2 or dies with equal probabilities after its standard exponential time runs out. This system
has been constructed by Skoulakis and Adler [7] (a similar model has been investigated by
Wang [9] and Dawson et al [2]). It is indicated by [7] that there are situations in which a
common background noise would be a natural effect to include in a stochastic model. In fact,
it can be regarded as an outside force which applies to each individual of the system. Because
of the introduction of this outside force, the process no longer has the multiplicative property
which is the key to the successes in the study of the classical superprocesses. To overcome this
difficulty, new tools have to be developed. The aim of this paper is to study the long-term
behavior of this process.
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LetMF (Rd) be the collection of all finite Borel measures on Rd. Let C2
0 (Rd) be the collection

of functions of compact support and continuous derivatives up to order 2. Let C2
0 (Rd)+

consist of the nonnegative elements of C2
0 (Rd). It has been established by Skoulakis and

Adler [7] that the scaling limit of the system is an MF (Rd)-valued superprocess Xt which is
uniquely characterized by the following martingale problem: X0 = µ ∈ MF (Rd) and for any
φ ∈ C2

0 (Rd),

Mt(φ) ≡ 〈Xt, φ〉 − 〈µ, φ〉 −
∫ t

0

〈Xs, Lφ〉 ds (1.1)

is a continuous martingale with quadratic variation process

〈M(φ)〉t =
∫ t

0

(

〈

Xs, φ
2
〉

+
∣

∣

〈

Xs, σ
T
1 ∇φ

〉∣

∣

2
)

ds. (1.2)

Here

Lφ =

d
∑

i=1

bi∂iφ+
1

2

d
∑

i,j=1

aij∂2ijφ,

aij =
∑d

k=1

∑2
`=1 σ

ik
` σ

kj
` , ∂i means the partial derivative with respect to the ith component

of x ∈ Rd, σT1 is the transpose of the matrix σ1, ∇ = (∂1, · · · , ∂d)T is the gradient operator
and 〈µ, f〉 represents the integral of the function f with respect to the measure µ. It was
conjectured in [7] that the conditional log-Laplace transform of Xt should be the unique
solution to a nonlinear stochastic partial differential equation (SPDE). Namely

Eµ

(

e−〈Xt,f〉

∣

∣

∣

∣

∣

W

)

= e−〈µ,y0,t〉 (1.3)

and

ys,t(x) = f(x) +

∫ t

s

(

Lyr,t(x)− yr,t(x)2
)

dr

+

∫ t

s

∇T yr,t(x)σ1(x)d̂W (r) (1.4)

where d̂W (r) represents the backward Itô integral:

∫ t

s

g(r)d̂W (r) = lim
|∆|→0

n
∑

i=1

g (ri) (W (ri)−W (ri−1))

where ∆ = {r0, r1, · · · , rn} is a partition of [s, t] and |∆| is the maximum length of the
subintervals.
This conjecture was confirmed by Xiong [12] under the following conditions (BC) which will be
assumed throughout this paper: f ≥ 0, b, σ1, σ2 are bounded with bounded first and second
derivatives. σT2 σ2 is uniformly positive definite, σ1 has third continuous bounded derivatives.
f is of compact support.
We have proved in Theorem 1.2 in [12] that (1.4) has a unique L2(Rd)+-valued solution in the
following sense: ∀ φ ∈ C∞0 (Rd), ∀ s ≤ t,

〈ys,t, φ〉 = 〈f, φ〉+
∫ t

s

〈yr,t, L∗φ− yr,tφ〉 dr +
∫ t

s

〈

yr,t,∇T (σ1φ)
〉

d̂W (r)
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where L∗ is the dual operator of L given by

L∗φ = −
d
∑

i=1

∂i(b
iφ) +

1

2

d
∑

i,j=1

∂2ij(a
ijφ).

Further, we have shown that (cf. Lemma 2.5 in [12])

E sup
0≤r≤t

‖∂xyr,t‖2L2(Rd) <∞,

where ∂xyr,t is the weak derivative. This then implies that for fixed r and t, yr,t(x) is a
continuous function of x. Furthermore, by Lemma 2.2 in [12], we see that |yr,t(x)| is bounded
by ‖f‖∞, the supremum of f . Theorem 1.4 in [12] implies (1.3). As a consequence, we see
that ys,t in (1.4) is nonnegative since −ys,t is the logarithm of a conditional Laplace transform
of a nonnegative random variable.
Note that in the study of the classical superprocess, the PDE satisfied by the log-Laplace
transform played an important role. In this note, we shall demonstrate that the stochastic
log-Laplace equation (1.4) plays a similar role in the study of the long-term behavior of the
superprocess over a stochastic flow. The main idea is to show that Ee−〈µ,y0,t〉 has a limit by
making use of (1.4) (see also (3.3)).
If the initial measure is finite, then the total mass of Xt is Feller’s branching diffusion which
reaches 0 in finite time. To obtain an interesting long-time limit, we need to consider the
infinite measure case. In Section 3, we construct the process in the state space of tempered
measures by making use of the conditional branching property of this process which is implied
from the conditional log-Laplace formula (1.3). Throughout this paper, we shall assume that
the initial measure µ is infinite.
This article is organized as follows: In Section 2, we consider a diffusion process driven by two
Brownian motions. We shall prove that, given one of the Brownian motions, the conditional
process is still a Markov process. Then, we give sufficient conditions for a σ-finite measure to
be invariant for this conditional process with any realization of the given Brownian motion.
In Section 3 we prove that Xt converges in law to a persistent distribution when the spatial
dimension d ≥ 3. In Section 4, we show that the process becomes extinct locally (eventually)
when d ≤ 2.
The results of this paper (Theorems 10 and 11) are analogous to the corresponding classical
results for super-Brownian motion. Although the proofs are adapted from the classical ones (cf.
[10], [1]), the novelty of this article is its employment of the stochastic log-Laplace equation.
Furthermore, as we point out in Remark 5, the σ-finite invariant measure is not unique.
Therefore, even in the classical superprocess case, the long-term limit is not unique.
Throughout this paper, we use c to represent a constant which can vary from place to place.
We use ξt and ξ(t) to denote the same process whenever it is convenient to do so.

2 Conditional Markov processes and their infinite invari-

ant measures

Let ξ(t) be the diffusion process given by

dξ(t) = b(ξ(t))dt+ σ1(ξ(t))dW (t) + σ2(ξ(t))dB1(t). (2.1)
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In this section, we consider the conditional process of ξ(t) with given W . More specifically,
we give sufficient conditions for an infinite measure to be invariant for this conditional process
with any given W (cf. (2.5)). The existence of such a measure is crucial in next section. In
Proposition 3 we give sufficient conditions for the existence of such invariant measures. In
Remark 4, we give examples where such conditions are satisfied.
Let EW denote the conditional expectation with W given. Let

Fξ
t = σ(ξs : s ≤ t).

Lemma 1 ξ(t) is a conditional Markov process in the following sense: ∀ s < t and f ∈ Cb(Rd),

EW (f(ξ(t))|Fξ
s ) = EW (f(ξ(t))|ξ(s)), a.s.

Proof: For s < t fixed, denote the process {Wr − Ws : r ∈ [s, t]} by W s,t. Since (2.1)
has a unique strong solution, we see that ξ(t) is a function of ξ(s), W s,t and Bs,t

1 . Namely
ξ(t) = G(s, t, ξ(s),W s,t, Bs,t

1 ) for a measurable function G. Therefore

EW (f(ξ(t))|Fξ
s ) = E(f(ξ(t))|Fξ

s ∨ FW
t ) (2.2)

= E
(

E(G(s, t, ξ(s),W s,t, Bs,t
1 )|FW,B1

s ∨ σ(W s,t))

∣

∣

∣

∣

Fξ
s ∨ FW

t

)

.

Since Bs,t
1 is independent of FW,B1

s ∨ σ(W s,t), we see that the conditional expectation

E(G(s, t, ξ(s),W s,t, Bs,t
1 )|FW,B1

s ∨ σ(W s,t))

is simply the expectation of G(s, t, ξ(s),W s,t, Bs,t
1 ) for Bs,t

1 with ξ(s) and W s,t being fixed.
Namely, it is a function of ξ(s) and W s,t, say g(s, t, ξ(s),W s,t). Therefore, we can continue
(2.2) with

EW (f(ξ(t))|Fξ
s ) = E(g(s, t, ξ(s),W s,t)|Fξ

s ∨ FW
t ) (2.3)

= g(s, t, ξ(s),W s,t).

Similarly, we can show that

EW (f(ξ(t))|ξ(s)) = g(s, t, ξ(s),W s,t). (2.4)

The conclusion of the lemma then follows from (2.3) and (2.4).

Given W , denote the conditional transition function by

pW (s, x; t, ·) ≡ PW (ξ(t) ∈ ·|ξ(s) = x).

Note that for A ∈ B(Rd) and t > 0 fixed, pW (s, x; t, A) is measurable in (s, x,W ).
Throughout this paper, we assume that µ is an invariant measure of ξ(t): ∀ s < t, for almost
all given W ,

∫

pW (s, x; t, ·)µ(dx) = µ. (2.5)

It is clear that

g(s, t, x,W s,t) =

∫

Rd

f(y)pW (s, x; t, dy).
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Note that for t > 0 fixed, we can choose a version of g which is continuous in s < t. In fact,
it can be proved that g satisfies an SPDE similar to (1.4) without the quadratic term which
corresponding to the branching there. Therefore, we may and will take a version of pW such
that (with t > 0 fixed) for almost all W , (2.5) holds for all s < t.
Since the condition (2.5) is not easy to verify, we seek sufficient conditions for it to hold. To
this end, we write (2.1) in Stratonovich form:

dξ(t) =
(

b̄(ξ(t))dt+ σ2(ξ(t))dB1(t)
)

+ σ1(ξ(t)) ◦ dW (t) (2.6)

where ◦dW (t) denotes the Stratonovich differential and b̄i = bi − 1
2

∑d
j,k=1 ∂kσ

ij
1 σ

kj
1 .

Intuitively, µ is an invariant measure for ξ(t) with each given realization of W if and only if it
is invariant for both parts of (2.6). Namely, it should be invariant for the diffusion process

dη(t) = b̄(η(t))dt+ σ2(η(t))dB1(t)

and, formally, for the dynamical system

ζ̇(t) = σ1(ζ(t))Ẇt

with each given realization of W .
Let

L̄φ =
d
∑

i=1

b̄i∂iφ+
1

2

d
∑

i,j=1

āij∂2ijφ,

where āij =
∑d

k=1 σ
ik
2 σ

kj
2 .

If µ is finite, it is well-known (cf. Varadhan [8], and Ethier and Kurtz [3], Theorem 9.17)
that µ is invariant for η(t) if and only if µ is absolutely continuous with respect to Lebesgue
measure and L̄∗µ = 0 (denote the Radon-Nickodym derivative by the same notation as the
original measure), where L̄∗ is the dual operator of L̄ given by

L̄∗φ = −
d
∑

i=1

∂i(b̄
iφ) +

1

2

d
∑

i,j=1

∂2ij(ā
ijφ).

Under suitable conditions, it was proved in Xiong [13] that the same statement is true for µ
being a σ-finite measure.
Formally, the second part leads to ∇(σT

1 µ) = 0. Therefore, we conjecture that under a suitable
growth condition, µ is a σ-finite invariant measure for pW for each W if and only if L̄∗µ = 0
and ∇(σT1 µ) = 0.
To investigate this conjecture, we need to study the Wong-Zakai approximation ξε(t) for the
process ξ(t):

dξε(t) =
(

b̄(ξε(t)) + σ1(ξ
ε(t))Ẇ ε

t

)

dt+ σ2(ξ
ε(t))dB1(t)

where Ẇ ε
t = ε−1(W(k+1)ε −Wkε) if kε ≤ t ≤ (k + 1)ε, k = 0, 1, · · · .

Lemma 2 For any c1 > 0, there exists a constant c = c(t) such that for any ε > 0,

Ex exp (−c1|ξε(t)|) ≤ ce−c1|x|.
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Proof: Note that

|ξε(t)| ≥ |x| −Kt−
∣

∣

∣

∣

∫ t

0

σ1(ξ
ε(s))Ẇ ε

sds

∣

∣

∣

∣

−
∣

∣

∣

∣

∫ t

0

σ2(ξ
ε(s))dB1(s)

∣

∣

∣

∣

. (2.7)

By the martingale representation theorem, there is a real-valued Brownian motion B such that

∫ t

0

σ2(ξ
ε(s))dB1(s) = B(τt)

where

τt =

∫ t

|σ2(ξε(s))|2ds ≤ Kt.

It is well-known that for any K1 > 0 and T > 0,

E exp

(

K1 sup
s≤T

|B(s)|
)

<∞.

Therefore,

E exp

(

2c1

∣

∣

∣

∣

∫ t

0

σ2(ξ
ε(s))dB1(s)

∣

∣

∣

∣

)

≤ E exp

(

2c1 sup
s≤Kt

|Bs|
)

<∞. (2.8)

Now we consider
∫ t

0
σ1(ξ

ε(s))Ẇ ε
sds. To simplify the notation, we take d = 1. Let πε(s) = kε

for kε ≤ s < (k + 1)ε. By Itô’s formula, we have

∫ t

0

(σ1(ξ
ε(s))− σ1(ξε(πε(s))))Ẇ ε

sds

=
∑

k

∫ (k+1)ε

kε

(σ1(ξ
ε(s))− σ1(ξε(kε)))dsε−1(W(k+1)ε −Wkε)

=
∑

k

∫ (k+1)ε

kε

∫ s

kε

L̄σ1(ξ
ε(r))drdsε−1(W(k+1)ε −Wkε)

+
∑

k

∫ (k+1)ε

kε

∫ s

kε

σ′1(ξ
ε(r))σ1(ξ

ε(r))drdsε−2(W(k+1)ε −Wkε)
2

+
∑

k

∫ (k+1)ε

kε

∫ s

kε

σ′1(ξ
ε(r))σ2(ξ

ε(r))dB1(r)dsε
−1(W(k+1)ε −Wkε)

≡ I1 + I2 + I3.

As

|I1| ≤
∑

k

cε|W(k+1)ε −Wkε|

≤ cε

(

∑

k

|W(k+1)ε −Wkε|2
)1/2

(t/ε)1/2

≤ ct
√
ε,
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|I2| ≤
∑

k

c|W(k+1)ε −Wkε|2 ≤ ct

and

|I3|2 =

∣

∣

∣

∣

∣

∑

k

∫ (k+1)ε

kε

ε−1((k + 1)ε− r)σ′1(ξε(r))σ2(ξε(r))dB1(r)(W(k+1)ε −Wkε)

∣

∣

∣

∣

∣

2

≤
∑

k

(

∫ (k+1)ε

kε

ε−1((k + 1)ε− r)σ′1(ξε(r))σ2(ξε(r))dB1(r)

)2
∑

k

(W(k+1)ε −Wkε)
2

≤ t

∫ t

0

|ε−1(πε(r) + ε− r)σ′1(ξε(r))σ2(ξε(r))|2dr ≤ c.

we see that
∣

∣

∣

∣

∫ t

0

(σ1(ξ
ε(s))− σ1(ξε(πε(s))))Ẇ ε

sds

∣

∣

∣

∣

≤ c. (2.9)

As
∫ t

0

σ1(ξ
ε(πε(s))))Ẇ

ε
sds =

∫ t

0

σ1(ξ
ε(πε(s))))dWs,

similar to (2.8), we have

E exp

(

2c1

∣

∣

∣

∣

∫ t

0

σ1(ξ
ε(πε(s))))Ẇ

ε
sds

∣

∣

∣

∣

)

<∞. (2.10)

The conclusion of the lemma then follows from (2.7-2.10) and a simple Cauchy-Schwarz argu-
ment.

The following proposition proves the sufficiency of the conditions in our conjecture. It remains
open whether these conditions are necessary.

Proposition 3 Suppose that µ is a nonnegative function and is of derivatives up to order 2
on Rd such that

|∇ log µ(x)| ≤ K(1 + |x|), ∀x ∈ Rd. (2.11)

If L̄∗µ = 0 and ∇(σT1 µ) = 0, then (2.5) holds.

Proof: Let pWε (s, x; t, ·) be the transition probabilities of the Markov process ξε(t) with given
W . Note that the generator of ξε(t) is

Lε
tφ = L̄φ+ (Ẇ ε

t )
Tσ1∇φ.

Now we fix W and ε, and show that µ is a σ-finite invariant measure for pWε by adapting the
proof of [13] to the present time-dependent case.
For any f ∈ C∞0 (Rd)+, take r large enough such that the support of f is contained in S ≡
{x ∈ Rd : |x| < r}. Let

US(t, x) = EW
x f(ξε(t))1τS>t

where τS is the first exit time of ξε(t) from S. Then






∂US

∂t = Lε
tUS (t, x) ∈ (0,∞)× S

US(0, x) = f(x) x ∈ S̄
US(t, x) = 0 x ∈ ∂S.
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Note that

∂

∂t

∫

S

US(t, x)µ(x)dx =

∫

S

Lε
tUS(t, x)µ(x)dx

= −
∫

∂S

µ(x)∇TUS(t, x)ā(x)~ndx

= −
∫

∂S

µ(x)|ā~n|∂US

∂~e
dx (2.12)

where ~n is the inner normal vector, ~e = |ā~n|−1(ā~n) and ∂US

∂~e is the directional derivative. Note
that

~e · ~n = |ā~n|−1~nT ā~n > 0,

so that ~e points to the interior of S. As US(t, x) ≥ 0 for x ∈ S and US(t, x) = 0 for x ∈ ∂S,
we have ∂US

∂~e ≥ 0. Hence, we can continue (2.12) with

∂

∂t

∫

S

US(t, x)µ(x)dx ≤ 0.

Thus
∫

S

US(t, x)µ(x)dx ≤
∫

S

f(x)µ(x)dx.

Taking r →∞, we have
∫

Rd

EW
x f(ξε(t))µ(x)dx ≤

∫

Rd

f(x)µ(x)dx <∞.

Let ρn be a smooth function on Rd such that ρn(x) = 1 for |x| ≤ n, ρn(x) = 0 for |x| ≥ 2n
and

sup
x∈Rd

|∇ρn(x)| ≤ cn−1, sup
x∈Rd, 1≤i,j≤d

∣

∣∂2ijρn(x)
∣

∣ ≤ cn−2.

By (2.11) and the condition (BC), we have

|L̄∗(µρn)(x)|+ |∇T (σ1µρn)(x)| ≤ cµ(x).

Define

un(t) =

∫

Rd

µ(x)ρn(x)EW
x f(ξε(t))dx and u(t) =

∫

Rd

µ(x)EW
x f(ξε(t))dx.

Then

|u′n(t)| =

∣

∣

∣

∣

∫

Rd

µ(x)ρn(x)L
ε
tEW

x f(ξε(t))dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd

(

L̄∗(µρn)(x)−∇T (σ1µρn)(x)Ẇ
ε
t

)

EW
x f(ξε(t))dx

∣

∣

∣

∣

≤ c

∫

|x|≥2n

µ(x)EW
x f(ξε(t))dx ≡ vn(t).

Then vn ∈ C([0, T ]) decreases to 0 as n → ∞. By Dini’s theorem, vn → 0 uniformly for
t ∈ [0, T ]. Therefore, u′n(t) → 0 as n → ∞ uniformly for t ∈ [0, T ]. Note that un(t) → u(t).
Therefore,

u′(t) = lim
n→∞

u′n(t) = 0.
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Namely,
∫

Rd

EW
x f(ξε(t))µ(x)dx =

∫

Rd

f(x)µ(x)dx.

Let F (W ) be a bounded continuous function of W . Then

∫

Rd

Ex(f(ξ
ε(t))F (W ))µ(x)dx =

∫

Rd

f(x)µ(x)dxE(F (W )). (2.13)

By the Wong-Zakai theorem (cf. [11] or [5], P410, Theorem 7.2), we have ξε(t)→ ξ(t) as ε→ 0.
Note that |f(x)| ≤ ce−c1|x| for any c1 > 0. By Lemma 2, apply the dominated convergence
theorem to (2.13), we have

∫

Rd

Ex(f(ξ(t))F (W ))µ(x)dx =

∫

Rd

f(x)µ(x)dxE(F (W )).

This implies the conclusion of the proposition.

Remark 4 1) If b, σ1 and σ2 are constants, then µ = λ, the Lebesgue measure, satisfies the
conditions of Proposition 3 and hence, (2.5) holds.
2) Suppose that σ1(x) = σ̄1(x)I, where σ̄1 is a real-valued function bounded away from 0 and I
is the identity matrix. If µ(dx) ≡ 1

σ̄(x)dx satisfies L̄∗µ = 0, then the conditions of Proposition

3 hold for µ and hence, µ is an invariant measure for the conditional process.

Remark 5 In general, the σ-finite invariant measure is not unique. Suppose that σ2 = I and

b is a constant vector. As being pointed out in [13], µ1(x) = 1 and µ2(x) = e2b
T x are two

solutions to L̄∗µ = 0. For the second condition, we seek σ1 = (σij1 )d×d such that

d
∑

i=1

∂iσ
ij
1 = 0,

d
∑

i=1

∂i(σ
ij
1 e

2bT x) = 0

for j = 1, 2, · · · , d. The existence of such σ1 is clear if d > 2 since there are d2 entries of σ1
and 2d < d2 equations.

3 Non-trivial limit when d ≥ 3

In this section, we extend the process Xt to the space of infinite measures and consider the
long-time behavior of Xt in high spatial dimensions. We shall prove that Xt has a non-trivial
limit in distribution which is, in fact, persistent. The proof is adopted from Wang [10].

Let PW (·) ≡ P (·|W ) be the conditional probability measure. First, we establish the equiva-
lence between the martingale problem (1.1-1.2) and the conditional martingale problem defined
below which is more natural and is easier to handle.

Definition 6 A real valued process Ut (adapted to σ-field Ft) is a P
W -martingale if for any

t > s,

E(Ut|Ft ∨ σ(W )) = Us, a.s.
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Lemma 7 Xt is a solution to the martingale problem (1.1-1.2) if and only if it is a solution
to the following conditional martingale problem (CMP): For all φ ∈ C2

0 (Rd),

Nt(φ) ≡ 〈Xt, φ〉 − 〈µ, φ〉 −
∫ t

0

〈Xs, Lφ〉 ds−
∫ t

0

〈

Xs,∇Tφσ1
〉

dW (s) (3.1)

is a continuous PW -martingale with quadratic variation process

〈N(φ)〉t =
∫ t

0

〈

Xs, φ
2
〉

ds. (3.2)

Proof: Suppose that Xt is a solution to the martingale problem (1.1-1.2). Similar to the
martingale representation Theorem 3.3.6 in Kallianpur and Xiong [6] there exist processes W
and B such that W is a Rd-valued Brownian motion, B is an L2(Rd)-cylindrical Brownian
motion independent of W , and

Mt(φ) =

∫ t

0

〈

Xs,∇Tφσ1
〉

dW (s) +

∫ t

0

〈f(s,Xs)
∗φ, dBs〉L2(Rd) ,

where f(s,Xs) is a linear map from L2(Rd) to S ′(Rd), the space of Schwartz distributions such
that

〈Xt, φ1φ2〉 = 〈f(t,Xt)
∗φ1, f(t,Xt)

∗φ2〉L2(Rd) , ∀φ1, φ2 ∈ S(Rd).

It is then easy to see that Xt solves the CMP (3.1-3.2).
On the other hand, suppose that Xt is a solution to the CMP (3.1-3.2). As Nt(φ) is a PW -
martingale, for s < t, we have

E(Nt(φ)Wt|FX
s ) = E(E(Nt(φ)|σ(W ) ∨ Fs)Wt|FX

s )

= E(Ns(φ)Wt|FX
s )

= Ns(φ)Ws

where FX
t is the σ-field generated byX. Hence the quadratic covariation process 〈N(φ),W 〉t =

0. Therefore,

Mt(φ) = Nt(φ) +

∫ t

0

〈

Xs,∇Tφσ1
〉

dW (s)

is a martingale with quadratic variation process

〈M(φ)〉t = 〈N(φ)〉t +
∫ t

0

∣

∣

〈

Xs,∇Tφσ1
〉∣

∣

2
ds

=

∫ t

0

(

〈

Xs, φ
2
〉

+
∣

∣

〈

Xs,∇Tφσ1
〉∣

∣

2
)

ds.

This proves that Xt is a solution to the MP (1.1-1.2).

Now, we extend the state space of the superprocess to the space of infinite measures. Let
φa(x) = e−a|x|. Define the space of tempered measures of as:

Mtem(Rd) = {µ : ∃a > 0, 〈µ, φa〉 <∞}.
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Let Si, i = 1, 2, · · · , be bounded disjoint subsets of Rd such that Rd = ∪∞i=1Si, and µi(·) =
µ(· ∩Si). Let Xi be a sequence of MF (Rd)-valued processes which are, given W , conditionally
independent and for each i, X i

t is a solution to the CMP (3.1-3.2) with µi in place of µ. Let
Xt =

∑∞
i=1X

i
t . For any a > 0,

E
〈

Xt, e
−a|x|

〉

=

∞
∑

i=1

E
〈

Xi
t , e

−a|x|
〉

=

∞
∑

i=1

E
∫

µi(dx)Exe
−a|ξ(t)|

where the last equality follows from Theorem 5.1 in [12]. By Lemma 2, we have

Exe
−a|ξ(t)| ≤ ce−a|x|.

Therefore, we can continue (3.3) with

E
〈

Xt, e
−a|x|

〉

≤ c

∫

µ(dx)e−a|x| <∞.

Hence, Xt is a well-definedMtem(Rd)-valued process. It is easy to show thatXt solves the CMP
(3.1-3.2), and hence, the MP (1.1-1.2). It is clear that (1.3) remains true for µ ∈Mtem(Rd).

Next, we consider the following SPDE:

ys(x) = f(x) +

∫ s

0

(

Lyr(x)− yr(x)2
)

dr

+

∫ s

0

∇T yr(x)σ1dW (r). (3.3)

Lemma 8

yt(x) =

∫

pW (0, x; t, du)f(u)−
∫ t

0

dr

∫

pW (r, x; t, du)yr(u)
2. (3.4)

Proof: Note that the existence of a solution to (3.4) follows from Picard iteration. Since the
solution to (3.3) is unique, we only need to show that (3.4) implies (3.3). Suppose zt is the
solution to (3.4). Let

TW
s,tf(x) =

∫

pW (s, x; t, du)f(u).

Then

zt(x) = TW
0,tf(x)−

∫ t

0

drTW
r,t (z

2
r )(x)

= f(x) +

∫ t

0

dsLTW
0,sf(x) +

∫ t

0

∇TTW
0,sf(x)σ1dW (s)

−
∫ t

0

dr

(

z2r (x) +

∫ t

r

dsLTW
r,s(z

2
r )(x) +

∫ t

r

∇TTW
r,s(z

2
r )(x)σ1dW (s)

)

.
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By the stochastic Fubini’s theorem (cf. [5], P116, Lemma 4.1), we can continue with

zt(x) = f(x) +

∫ t

0

dsLTW
0,sf(x)−

∫ t

0

ds

∫ s

0

drLTW
r,s(z

2
r )(x)

−
∫ t

0

drz2r (x) +

∫ t

0

∇TTW
0,sf(x)σ1dW (s)

−
∫ t

0

(
∫ s

0

dr∇TTW
r,s(z

2
r )(x)σ1

)

dW (s)

= f(x) +

∫ t

0

dsLzs(x)−
∫ t

0

drz2r (x) +

∫ t

0

σT1 ∇zs(x) · dW (s).

This finishes the proof of (3.4).

Denote the first term on the right hand side of (3.4) by TW
t f(x). Then, it satisfies (3.3)

without the square term. Namely, ∀φ ∈ C∞0 (Rd),

〈

TW
t f, φ

〉

= 〈f, φ〉+
∫ t

0

〈

TW
s f, L∗φ

〉

ds−
∫ t

0

〈

TW
s f,∇T (σ1φ)

〉

dW (s).

Lemma 9

E(TW
t f(x)2) ≤ ct−

d
2

∫

Rd

|f(z)|dz
∫

Rd

|f(z)|p0(t, x, z)dz

where c is a constant and p0 is the transition function of the Brownian motion.

Proof: By Itô’s formula, it is easy to see that ∀φ, ψ ∈ C∞0 (Rd),

d
(〈

TW
t f, φ

〉 〈

TW
t g, ψ

〉)

=

(

〈

TW
t f, L∗φ

〉 〈

TW
t g, ψ

〉

+
〈

TW
t f, φ

〉 〈

TW
t g, L∗ψ

〉

+
〈

TW
t f,∇T (σ1φ)

〉 〈

TW
t g,∇T (σ1ψ)

〉

)

dt

+d(mart.)

Denote (f ∗ g)(x, y) = f(x)g(y). Then

d

dt

〈

E(TW
t f ∗ TW

t g), φ ∗ ψ
〉

=
〈

E(TW
t f ∗ TW

t g),L∗(φ ∗ ψ
〉

(3.5)

where L∗ is the dual operator of L given by

LF (x, y) =
1

2

d
∑

i,j=1

(

aij(x)
∂2F (x, y)

∂xi∂xj
+ aij(y)

∂2F (x, y)

∂yi∂yj
+

d
∑

k=1

σik1 (x)σjk1 (y)
∂2F (x, y)

∂xi∂yj

)

+
d
∑

i=1

(

bi(x)
∂F (x, y)

∂xi
+ bi(y)

∂F (x, y)

∂yi

)

.

Let p(t, (x, y), (z1, z2)) be the transition function of the Markov process generated by L. By
(3.5), we see that

E(TW
t f ∗ TW

t g)(x, y) =

∫

Rd

∫

Rd

f(z1)g(z2)p(t, (x, y), (z1, z2))dz1dz2.
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By Theorem 4.5 in Friedman [4], there exists a constant c such that

p(t, (x, y), (z1, z2)) ≤ cp0(t, x, z1)p0(t, y, z2).

The conclusion of the lemma then follows from the facts that p0(t, x, z1) ≤ ct−
d
2 and

E(TW
t f(x)2) = E(TW

t f ∗ TW
t f)(x, x).

Here is our main result.

Theorem 10 Suppose that d ≥ 3, (2.5) holds and µ has density which is bounded by c1e
c2|x|,

where c1 and c2 are two constants. Then Xt converges in distribution to a limit X∞ as t→∞.
Furthermore, EX∞ = µ.

Proof: By (1.4), we have

yt−s,t(x) = f(x) +

∫ t

t−s

(

Lyr,t(x)− yr,t(x)2
)

dr +

∫ t

t−s

∇T yr,t(x)σ1d̂W (r)

= f(x) +

∫ s

0

(

Lyt−r,t(x)− yt−r,t(x)
2
)

dr +

∫ s

0

∇T yt−r,t(x)σ1dW̄
t(r), (3.6)

where W̄ t(r) =W (t)−W (t− r) and the stochastic integral above is the usual Itô integral.
Recall that ys is given by (3.3). SinceW and W̄ t are both Brownian motions, {ys : 0 ≤ s ≤ t}
and {yt−s,t : 0 ≤ s ≤ t} have the same distribution as stochastic processes. Therefore,

Ee−〈µ,y0,t〉 = Ee−〈µ,yt〉. (3.7)

Note that ys,t and ys are nonnegative (when f ≥ 0), the above expectations are finite.
Taking integral on both sides of (3.4) with respect to the measure µ, by (2.5), we have

〈µ, yt〉 = 〈µ, f〉 −
∫ t

0

〈

µ, y2r
〉

dr. (3.8)

Let t→∞ in (3.8), we obtain

lim
t→∞

〈µ, yt〉 = 〈µ, f〉 −
∫ ∞

0

〈

µ, y2r
〉

dr. (3.9)

Then, as t→∞,

Eµe
−〈Xt,f〉 = Ee−〈µ,y0,t〉 = Ee−〈µ,yt〉 (3.10)

→ E exp

(

−〈µ, f〉+
∫ ∞

0

〈

µ, y2r
〉

dr

)

.

Note that, ∀ f ∈ C2
b (Rd),

Eµ 〈Xt, f〉 = E
(

EW
µ 〈Xt, f〉

)

= E 〈µ, y0,t〉

≤ E
∫

µ(dx)

∫

pW (0, x; t, du)f(u)

=

∫

µ(du)f(u) <∞, (3.11)
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where the second equality follows from Theorem 5.1 in [12], the inequality follows from (3.4)
and the last equality from (2.5). By approximation, we can show that (3.11) still hold if
f(x) = e−a|x|. Therefore, {Xt} is tight in Mtem(Rd). Let X∞ be a limit point. Then, the
Laplace transform of X∞ is given by the limit on the right hand side of (3.10). Therefore, the
limit distribution is unique and hence, Xt converges to X∞ in distribution.
By Fatou’s lemma, we have

E 〈X∞, f〉 ≤ lim inf
t→∞

Eµ 〈Xt, f〉 ≤ 〈µ, f〉 ,

where the second inequality follows from (3.11). On the other hand, by Jensen’s inequality

e−E〈X∞,f〉 ≤ Ee−〈X∞,f〉 = E exp

(

−〈µ, f〉+
∫ ∞

0

〈

µ, y2r
〉

dr

)

and hence

E 〈X∞, f〉 ≥ − logE exp

(

−〈µ, f〉+
∫ ∞

0

〈

µ, y2r
〉

dr

)

.

Replace f by εf , we have

〈µ, f〉 ≥ E 〈X∞, f〉

≥ −ε−1 logE exp

(

−ε 〈µ, f〉+
∫ ∞

0

〈

µ, y2r(εf)
〉

dr

)

= 〈µ, f〉 − ε−1 logE exp

(
∫ ∞

0

〈

µ, y2r(εf)
〉

dr

)

here yr(εf) is defined as in (3.3) with f replaced by εf . We only need to show that

ε−1 logE exp

(
∫ ∞

0

〈

µ, y2r(εf)
〉

dr

)

→ 0 as ε→ 0. (3.12)

By (3.9), we have
∫ ∞

0

〈

µ, y2r(εf)
〉

dr ≤ ε 〈µ, f〉 . (3.13)

Hence

lim
ε→0

ε−1 logE exp

(
∫ ∞

0

〈

µ, y2r(εf)
〉

dr

)

(3.14)

≤ lim
ε→0

Eε−1
(

exp

(
∫ ∞

0

〈

µ, y2r(εf)
〉

dr

)

− 1

)

= E lim
ε→0

ε−1
(

exp

(
∫ ∞

0

〈

µ, y2r(εf)
〉

dr

)

− 1

)

where the last equality follows from (3.13) and the dominated convergence theorem.
By (3.4), we have

∫ ∞

0

〈

µ, y2r(εf)
〉

dr ≤ ε2
∫ ∞

0

〈

µ, (TW
r f)2

〉

dr.

Therefore, by (3.14), we only need to show that
∫ ∞

0

〈

µ,
(

TW
t f(x)

)2
〉

dt <∞, a.s. (3.15)
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Note that

∫ 1

0

〈

µ,
(

TW
t f(x)

)2
〉

dr ≤
∫ 1

0

〈

µ, TW
t f(x)‖f‖∞

〉

dt

= 〈µ, f〉 ‖f‖∞ <∞. (3.16)

On the other hand,

E
∫ ∞

1

〈

µ,
(

TW
t f(x)

)2
〉

dt

≤
∫ ∞

1

ct−
d
2

∫

Rd

|f(z)|dz
∫

Rd

|f(z)|
∫

Rd

ec2|x|p0(t, x, z)dxdzdt

≤ c

∫ ∞

1

t−
d
2 dt

∫

Rd

|f(z)|dz
∫

Rd

|f(z)|ec2|z|dz <∞ (3.17)

where the first inequality follows from Lemma 9 and the second inequality follows from the
well-known fact that

∫

Rd

ec2|x|p0(t, x, z)dx ≤ cec2|z|,

the finiteness in the last step of (3.17) follows from the the compact support property imposed
on f in the condition (BC). This, together with (3.16), implies the almost sure finiteness in
(3.15).

4 Long-time local extinction when d ≤ 2

In this section, we prove the long-term local extinction when d ≤ 2. We adapt the proof of
Dawson et al [1] to our present setup.

Theorem 11 Suppose that d ≤ 2 and (2.5) holds. Further, we assume that

µ << λ and 0 < c1 ≤
dµ

dλ
≤ c2 <∞.

For any bounded Borel set B in Rd, we have

lim
t→∞

Xt(B) = 0, in probability.

Proof: By (1.3) and (3.7), we see that it is sufficient to show

lim
t→∞

〈µ, yt〉 = 0 a.s. (4.1)

By (3.9), the left hand side of (4.1) exists. By Fatou’s lemma, we only need to show that

lim inf
t→∞

E 〈µ, yt〉 = 0.

For ε > 0, choose K such that
∫

|x|2>K

p1(x)dx < ε, (4.2)
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where pt(x) is the density of the normal random vector with mean 0 and covariance matrix
tI. Let c and τ be such that f ≤ cpτ . For t > 0, set

St = {x ∈ Rd : |x|2 ≤ K(t+ τ)}.

Note that by (3.3),

Eyt(x) ≤ f(x) +

∫ t

0

E(Lyr(x))dr.

It is well-known that the above inequality yields

Eyt(x) ≤ c

∫

pt(x− u)f(u)du. (4.3)

By (4.3) and (4.2), since f ≤ cpτ , we have

∫

Sc
t

Eyt(x)µ(dx) ≤ c

∫

Sc
t

pt+τ (x)dx = c

∫

|x|2>K

p1(x)dx < cε. (4.4)

By Jensen’s inequality and (3.8), we have

∫ t

0

|Sr|−1g2(r)dr ≤ cE
∫ t

0

∫

Sr

yr(x)
2dxdr (4.5)

≤ cE
∫ t

0

〈

µ, y2r
〉

dr

≤ 〈µ, f〉 ,

here |Sr| denotes the Lebesgue measure of Sr and g(r) =
∫

Sr
Eyr(x)µ(dx). As

∫ ∞

0

|Sr|−1dr =∞,

it follows from (4.5) that
lim inf
t→∞

g(t) = 0, a.s. (4.6)

By (4.4) and (4.6), we have
lim
t→∞

E 〈µ, yt〉 ≤ cε, a.s..

Since ε is arbitrary, the proof of the statement is complete.
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