
Chapter 5

B-SPLINE CURVES

Most shapes are simply too complicated to define using a single Bézier curve. A spline curve is
a sequence of curve segments that are connected together to form a single continuous curve. For
example, a piecewise collection of Bézier curves, connected end to end, can be called a spline curve.
Overhauser curves are another example of splines. The word “spline” can also be used as a verb, as
in “Spline together some cubic Bézier curves.”

The word “spline” comes from the ship building industry, where it originally meant a thin strip
of wood which draftsmen would use like a flexible French curve. Metal weights (called “ducks”) were
placed on the drawing surface and the spline was threaded between the ducks as in Figure 5.1. We

Figure 5.1: Spline and ducks.

know from basic structures theory that the bending moment M is an infinitely continuous function
along the spline except at a duck, where M is generally only C0 continuous. Since the curvature of
the spline is proportional to M (κ = M/EI), the spline is everywhere curvature continuous.

Curvature continuity is an important requirement for the ship building industry, as well as for
many other applications. For example, railroad tracks are always curvature continuous, or else the
train would experience severe jolts. Car bodies are G2 smooth, or else the reflection of straight lines
would bend sharply.

While C1 continuity is straightforward to attain using Bézier curves (for example, popular design
software such as Adobe Illustrator use Bézier curves and automatically impose tangent continuity
as you sketch), C2 and higher continuity is cumbersome. This is where B-spline curves come in. In
practical terms, B-spline curves can be thought of as a method for defining a sequence of degree n
Bézier curves that join automatically with Cn−1 continuity, regardless of where the control points
are placed.

Whereas an open string of m Bézier curves of degree n involve nm + 1 distinct control points
(shared control points counted only once), that same string of Bézier curves can be expressed using
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46 CHAPTER 5. B-SPLINE CURVES

only m + n B-spline control points (assuming all neighboring curves are Cn−1). The most basic
operation you need to understand about B-splines is how to extract the contituent Bézier curves.
That understanding will provide you with a good working knowledge of B-spline curves.

5.1 Polar Form

Dr. Lyle Ramshaw of DEC Systems Research Center has developed a way of understanding B-
splines based on what he calls polar forms [38, 39, 40]. This contrasts with the approach taken by
conventional textbooks which begin by studying the B-spline basis functions. Experience has shown
that Ramshaw’s method allows students to attain a working knowledge of B-spline curves much
faster, and to retain that “closed-book” knowledge far longer, than with traditional methods.

Ramshaw refers to this labeling scheme as polar form. In polar form, control points are referred
to as polar values. These notes summarize the properties and applications of polar form, without
delving into derivations. The interested student can study Ramshaw’s papers.

All of the important algorithms for Bézier and B-spline curves can be derived from the following
four rules for polar values.
1. For degree n Bézier curves over the parameter interval [a, b], the control points are relabeled
Pi = P(u1, u2, . . . un) where uj = a if j ≤ n− i and otherwise uj = b. For a degree two curve over
the interval [a, b],

P0 = P(a, a); P1 = P(a, b); P2 = P(b, b).

For a degree three Bézier curve,

P0 = P(a, a, a); P1 = P(a, a, b);

P2 = P(a, b, b); P3 = P(b, b, b),

and so forth. Figure 5.2 shows two cubic Bézier curves labeled using polar values. The first curve is

P(0,0,0)

P(0,0,2)

P(0,2,2)

P(2,2,2)

P(2,2,3)

P(2,3,3)
P(3,3,3)

Figure 5.2: Bézier curves labeled using polar form.

defined over the parameter interval [0, 2] and the second curve is defined over the parameter interval
[2, 3]. Note that P(t, t, . . . , t) is the point on a Bézier curve corresponding to parameter value t.
2. For a degree n B-spline with a knot vector (explained later) of

[t1, t2, t3, t4, . . .],
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the arguments of the polar values consist of groups of n adjacent knots from the knot vector, with
the ith polar value being P(ti, . . . , ti+n−1), as in Figure 5.3.

P(1,2,3)

P(2,3,4)
P(3,4,5)

P(4,5,6)
P(5,6,7)

P(6,7,8)

t=3 t=4

t=5t=6

Knot Vector = [1,2,3,4,5,6,7,8]

Figure 5.3: B-spline curve labeled using polar form.

3. A polar value is symmetric in its arguments. This means that the order of the arguments can be
changed without changing the polar value. For example,

P(1, 0, 0, 2) = P(0, 1, 0, 2) = P(0, 0, 1, 2) = P(2, 1, 0, 0), etc.

4. Given P(u1, u2, . . . , un−1, a) and P(u1, u2, . . . , un−1, b) we can compute P(u1, u2, . . . , un−1, c)
where c is any value:

P(u1, u2, . . . , un−1, c) =

(b− c)P(u1, u2, . . . , un−1, a) + (c− a)P(u1, u2, . . . , un−1, b)
b− a

P(u1, u2, . . . , un−1, c) is said to be an affine combination of P(u1, u2, . . . , un−1, a) and P(u1, u2,
. . . , un−1, b). For example,

P(0, t, 1) = (1− t)×P(0, 0, 1) + t×P(0, 1, 1),

P(0, t) =
(4 − t)×P(0, 2) + (t− 2)×P(0, 4)

2
,

P(1, 2, 3, t) =
(t2 − t)×P(2, 1, 3, t1) + (t− t1)×P(3, 2, 1, t2)

(t2 − t1)
.

What this means geometrically is that if you vary one parameter of a polar value while holding all
others constant, the polar value will sweep out a line at a constant velocity, as in Figure 5.4.

5.1.1 Subdivision of Bézier Curves

To illustrate how polar values work, we now show how to derive the de Casteljau algorithm using
only the first three rules for polar values.

Given a cubic Bézier curve defined over the parameter interval [0, 1], we wish to split it into
Bézier curves over the intervals [0, t] and [t, 1]. The control points of the original curve are labeled

P(0, 0, 0), P(0, 0, 1), P(0, 1, 1), P(1, 1, 1).
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P
P P(0,c,d)

P(1,c,d)
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P(3,c,d)
P(4,c,d)

P(5,c,d)
P(6,c,d)

P

Figure 5.4: Affine map property of polar values.

The subdivision problem amounts to finding polar values

P(0, 0, 0), P(0, 0, t), P(0, t, t), P(t, t, t),

and
P(t, t, t), P(t, t, 1), P(t, 1, 1), P(1, 1, 1).

These new control points can be derived by applying the symmetry and affine map rules for polar
values. Refering to Figure 5.5, we can compute

STEP 1.

P(0, 0, t) = (1− t)×P(0, 0, 0) + (t− 0)×P(0, 0, 1);

P(0, 1, t) = (1− t)×P(0, 0, 1) + (t− 0)×P(0, 1, 1);

P(t, 1, 1) = (1− t)×P(0, 1, 1) + (t− 0)×P(1, 1, 1).

STEP 2.

P(0, t, t) = (1− t)×P(0, 0, t) + (t− 0)×P(0, t, 1);

P(1, t, t) = (1− t)×P(0, t, 1) + (t− 0)×P(t, 1, 1);

STEP 3.

P(t, t, t) = (1− t)×P(0, t, t) + (t− 0)×P(t, t, 1);

5.2 Symmetric polynomials

The polar form of a Bézier curve is based on the notion of symmetric polynomials. The idea is
to represent a degree m polynomial in one variable, p(t), as a polynomial in n ≥ m variables,
p[t1, . . . , tn], that is degree one in each of those variables and such that

p[t, . . . , t] = p(t).

The polynomial is said to be symmetric because we require that the value of the polynomial will not
change if the arguments are permuted. For example, if n = 3, we require that p[a, b, c] = p[b, c, a] =
p[c, a, b] etc.
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t = .6
P(0) = P(0,0,0)

P(0,0,1)

P(0,1,1)

P(1) = P(1,1,1)

P(0,0,t)

P(0,t,1)

P(t,1,1)
P(0,t,t) P(t,t,1)

P(t) = P(t,t,t)

Figure 5.5: Subdividing a cubic Bézier curve.

A symmetric polynomial has the form

p[t1, . . . , tn] =
n∑

i=0

cipi[t1, . . . , tn]

where

p0[t1, . . . , tn] = 1; pi[t1, . . . , tn] =
∑n

j=1 tjpi−1[t1, . . . , tj−1, tj+1, . . . , tn]
n

, i = 1, . . . n.

For example,
p[t1] = c0 + c1t1,

p[t1, t2] = c0 + c1
t1 + t2

2
+ c2t1t2,

p[t1, t2, t3] = c0 + c1
t1 + t2 + t3

3
+ c2

t1t2 + t1t3 + t2t3
3

+ c3t1t2t3,

and
p[t1, t2, t3, t4] = c0 + c1

t1 + t2 + t3 + t4
4

+ c2
t1t2 + t1t3 + t1t4 + t2t3 + t2t4 + t3t4

6

+c3
t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4

4
+ c4t1t2t3t4.

The symmetric polynomial b[t1, . . . tn] for which p[t, . . . t] = p(t) is referred to as the polar form or
blossom of p(t).

Example Find the polar form of p(t) = t3 + 6t2 + 3t + 1.
Answer: p[t1, t2, t3] = 1 + 3 t1+t2+t3

3 + 6 t1t2+t1t3+t2t3
3 + t1t2t3.

Theorem For every degree m polynomial p(t) there exists a unique symmetric polynomial p[t1, . . . , tn]
of degree n ≥ m such that p[t, . . . , t] = p(t). Furthermore, the coefficients bi of the degree n Bernstein
polynomial over the interval [a, b] are

bi = p[a, . . . , a︸ ︷︷ ︸
n−i

, b, . . . , b︸ ︷︷ ︸
i

]
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Example Convert p(t) = t3 +6t2 +3t+1 to a degree 3 Bernstein polynomial over the interval [0, 1].
We use the polar form of p(t): p[t1, t2, t3] = 1 + 3 t1+t2+t3

3 + 6 t1t2+t1t3+t2t3
3 + t1t2t3. Then,

b0 = p[0, 0, 0] = 1, b1 = p[0, 0, 1] = 2, b2 = p[0, 1, 1] = 5, b3 = p[1, 1, 1] = 11.

5.3 Knot Vectors

A knot vector is a list of parameter values, or knots, that specify the parameter intervals for the
individual Bézier curves that make up a B-spline. For example, if a cubic B-spline is comprised of
four Bézier curves with parameter intervals [1, 2], [2, 4], [4, 5], and [5, 8], the knot vector would be

[t0, t1, 1, 2, 4, 5, 8, t7, t8].

Notice that there are two (one less than the degree) extra knots prepended and appended to the knot
vector. These knots control the end conditions of the B-spline curve, as discussed in Section 5.7.

For historical reasons, knot vectors are traditionally described as requiring n end-condition knots,
and in the real world you will always find a meaningless additional knot at the beginning and end of
a knot vector. For example, the knot vector in Figure 5.3 would be [t0, 1, 2, 3, 4, 5, 6, 7, 8, t9], where
the values of t0 and t9 have absolutely no effect on the curve. Therefore, we ignore these dummy
knot values in our discussion, but be aware that they appear in B-spline literature and software.

Obviously, a knot vector must be non-decreasing sequence of real numbers. If any knot value is
repeated, it is referred to as a multiple knot. More on that in Section 5.5. A B-spline curve whose
knot vector is evenly spaced is known as a uniform B-spline. If the knot vector is not evenly spaced,
the curve is called a non-uniform B-spline.

5.4 Extracting Bézier Curves from B-splines

We are now ready to discuss the central practical issue for B-splines, namely, how does one find
the control points for the Bézier curves that make up a B-spline. This procedure is often called the
Böhm algorithm after Professor Wolfgang Böhm [8].

Consider the B-spline in Figure 5.3 consisting of Bézier curves over domains [3, 4], [4, 5], and
[5, 6]. The control points of those three Bézier curves have polar values

P(3, 3, 3), P(3, 3, 4), P(3, 4, 4), P(4, 4, 4)

P(4, 4, 4), P(4, 4, 5), P(4, 5, 5), P(5, 5, 5)

P(5, 5, 5), P(5, 5, 6), P(5, 6, 6), P(6, 6, 6)

respectivly. Our puzzle is to apply the affine and symmetry properties to find those polar values
given the B-spline polar values.

For the Bézier curve over [3, 4], we first find that P(3, 3, 4) is 1/3 of the way from P(2, 3, 4) to
P(5, 3, 4) = P(3, 4, 5). Likewise, P(3, 4, 4) is 2/3 of the way from P(3, 4, 2) = P(2, 3, 4) to P(3, 4, 5).
See Figure 5.6.

Before we can locate P(3, 3, 3) and P(4, 4, 4), we must find the auxilliary points P(3, 2, 3) (2/3
of the way from P(1, 2, 3) to P(4, 2, 3)) and P(4, 4, 5) (2/3 of the way from P(3, 4, 5) to P(6, 4, 5))
as shown in Figure 5.7. Finally, P(3, 3, 3) is seen to be half way between P(3, 2, 3) and P(3, 3, 4),
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P(3,3,4) P(5,3,4)
P(2,3,4)

P(3,4,4)
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P(4,5,6)
P(5,6,7)

P(6,7,8)

P(3,3,3)
P(4,4,4)

t=5t=6

Knot Vector = [1,2,3,4,5,6,7,8]

Figure 5.6: First step in Böhm algorithm.
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Figure 5.7: Second step in Böhm algorithm.



52 CHAPTER 5. B-SPLINE CURVES

and P(4, 4, 4) is seen to be half way between P(3, 4, 4) and P(4, 4, 5).
Note that the four Bézier control points were derived from exactly four B-spline control points;

P(5, 6, 7) and P(6, 7, 8) were not involved. This means that P(5, 6, 7) and P(6, 7, 8) can be moved
without affecting the Bézier curve over [3, 4]. In general, the Bézier curve over [ti, ti+1] is only
influenced by B-spline control points that have ti or ti+1 as one of the polar value parameters. For
this reason, B-splines are said to possess the property of local control, since any given control point
can influence at most n curve segments.

5.5 Multiple knots

If a knot vector contains two identical non-end-condition knots ti = ti+1, the B-spline can be
thought of as containing a zero-length Bézier curve over [ti, ti+1]. Figure 5.8 shows what happens
when two knots are moved together. The Bézier curve over the degenerate interval [5, 5] has polar
values P(5, 5, 5), P(5, 5, 5), P(5, 5, 5), P(5, 5, 5), which is merely the single point P(5, 5, 5). It can be

P(1,2,3)

P(2,3,4.5) P(3,4.5,5)

P(4.5,5,6)P(5,6,7)
P(6,7,8)

t=3 t=4.5

t=5t=6

Knot Vector = [1,2,3,4.5,5,6,7,8]

P(1,2,3)

P(2,3,4.9) P(3,4.9,5)

P(4.9,5,6)P(5,6,7)
P(6,7,8)

t=3
t=4.9
t=5t=6

Knot Vector = [1,2,3,4.9,5,6,7,8]

P(1,2,3)

P(2,3,5) P(3,5,5)

P(5,5,6)P(5,6,7)
P(6,7,8)

t=3

t=5t=6

Knot Vector = [1,2,3,5,5,6,7,8]

Figure 5.8: Double knot.

shown that a multiple knot diminishes the continuity between adjacent Bézier curves. The continuity
across a knot of multiplicity k is generally n− k.

5.6 Periodic B-splines

A periodic B-spline is a B-spline which closes on itself. This requires that the first n control points
are identical to the last n, and the first n parameter intervals in the knot vector are identical to the
last n intervals as in Figure 5.9.

5.7 Bézier end conditions

We earlier noted that a knot vector always has n − 1 extra knots at the beginning and end which
do not signify Bézier parameter limits (except in the periodic case), but which influence the shape
of the curve at its ends. In the case of an open (i.e., non-periodic) B-spline, one usually chooses
an n-fold knot at each end. This imposes a Bézier behavior on the end of the B-spline, in that the
curve interpolates the end control points and is tangent to the control polygon at its endpoints. One
can verify this by noting that to convert such a B-spline into Bézier curves, the two control points
at each end are already in Bézier form. This is illustrated in Figure 5.10.
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Figure 5.9: Periodic B-spline.
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Knot Vector = [0,0,0,1,3,4,4,4]

Figure 5.10: Bézier end condition.
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Initial After Knot Insertion

Knot Vector:    [(0,0,0,1,3,4,4,4)] [(0,0,0,1,2,3,4,4,4)]

Control Points: P(0,0,0)
P(0,0,1)

P(0,1,3)

P(1,3,4)

P(3,4,4)
P(4,4,4)

P(0,0,0)
P(0,0,1)
P(0,1,2)

P(1,2,3)

P(2,3,4)
P(3,4,4)
P(4,4,4)

Figure 5.11: Before and after.
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P(1,3,4)

P(0,0,0)

P(0,0,1)

P(0,1,2)

P(1,2,3)

P(2,3,4)
P(3,4,4)

P(4,4,4)

t=0

t=1

t=2

t=3
t=4

Old   Knot Vector = [0,0,0,1,3,4,4,4]
New Knot Vector = [0,0,0,1,2,3,4,4,4]

Figure 5.12: Knot insertion.

5.8 Knot insertion

A standard design tool for B-splines is knot insertion. In the knot insertion process, a knot is added
to the knot vector of a given B-spline. This results in an additional control point and a modification
of a few existing control points. The end result is a curve defined by a larger number of control
points, but which defines exactly the same curve as before knot insertion.

Knot insertion has several applications. One is the de Boor algorithm for evaluating a B-spline
(discussed in the next section). Another application is to provide a designer with the ability to add
local details to a B-spline. Knot insertion provides more local control by isolating a region to be
modified from the rest of the curve, which thereby becomes immune from the local modification.

Consider adding a knot at t = 2 for the B-spline in Figure 5.10. As shown in Figure 5.11, this
involves replacing P(0, 1, 3) and P(1, 3, 4) with P(0, 1, 2), P(1, 2, 3), and P(2, 3, 4). Figure 5.12 shows
the new set of control points, which are easily obtained using the affine and symmetry properties of
polar values.
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New Knot Vector = [0,0,0,1,2,2,2,3,4,4,4]

Figure 5.13: De Boor algorithm.

Note that the continuity at t = 2 is C∞.

5.9 The de Boor algorithm

The de Boor algorithm provides a method for evaluating a B-spline curve. That is, given a parameter
value, find the point on the B-spline corresponding to that parameter value.

Any point on a B-spline P(t) has a polar value P(t, t, . . . , t), and we can find it by inserting knot
t n times. This is the de Boor algorithm. Using polar forms, the algorithm is easy to figure out.

The de Boor algorithm is illustrated in Figure 5.13.

5.10 Explicit B-splines

Section 2.12 discusses explicit Bézier curves, or curves for which x(t) = t. We can likewise locate
B-spline control points in such a way that x(t) = t. The x coordinates for an explicit B-spline are
known as Greville abscissae. For a degree n B-spline with m knots in the knot vector, the Greville
abscissae are given by

xi =
1
n

(ti + ti+1 + . . . + ti+n−1); i = 0 . . .m− n. (5.1)

5.11 B-spline hodographs

The first derivative (or hodograph) of a B-spline is obtained in a manner similar to that for Bézier
curves. The hodograph has the same knot vector as the given B-spline except that the first and last
knots are discarded. The control points are given by the equation

Hi = n
(Pi+1 −Pi)

ti+n − ti
(5.2)

where n is the degree.
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5.12 Knot Intervals

B-spline curves are typically specified in terms of a set of control points, a knot vector, and a degree.
Knot information can also be imposed on a B-spline curve using knot intervals, introduced in [44] as
a way to assign knot information to subdivision surfaces. A knot interval is the difference between
two adjacent knots in a knot vector, i.e., the parameter length of a B-spline curve segment. For
even-degree B-spline curves, a knot interval is assigned to each control point, since each control point
in an even-degree B-spline corresponds to a curve segment. For odd-degree B-spline curves, a knot
interval is assigned to each control polygon edge, since in this case, each edge of the control polygon
maps to a curve segment.

While knot intervals are basically just an alternative notation for representing knot vectors, knot
intervals offer some nice advantages. For example, knot interval notation is more closely coupled to
the control polygon than is knot vector notation. Thus, knot intervals have more geometric meaning
than knot vectors, since the effect of altering a knot interval can be more easily predicted. Knot
intervals are particularly well suited for periodic B-splines.

Knot intervals contain all of the information that a knot vector contains, with the exception
of a knot origin. This is not a problem, since the appearance of a B-spline curve is invariant
under linear transformation of the knot vector—that is, if you add any constant to each knot the
curve’s appearance does not change. B-splines originated in the field of approximation theory and
were initially used to approximate functions. In that context, parameter values are important, and
hence, knot values are significant. However, in curve and surface shape design, we are almost never
concerned about absolute parameter values.

For odd-degree B-spline curves, the knot interval di is assigned to the control polygon edge
Pi—Pi+1. For even-degree B-spline curves, knot interval di is assigned to control point Pi. Each
vertex (for even degree) or edge (for odd degree) has exactly one knot interval. If the B-spline is
not periodic, n−1

2 “end-condition” knot intervals must be assigned past each of the two end control
points. They can simply be written adjacent to “phantom” edges or vertices sketched adjacent to
the end control points; the geometric positions of those phantom edges or vertices are immaterial.
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Knot Vector = [1,2,3,4,6,9,10,11]

P0

P1
P2

P3P4
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d3=3
d4=1
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t=3 t=4

t=6
t=9

Knot Vector = [1,2,3,4,6,9,10,11]

Figure 5.14: Sample cubic B-spline

Figure 5.14 shows a cubic B-spline curve. The control points in Figure 5.14.a are labeled with
polar values, and Figure 5.14.b shows the control polygon edges labeled with knot intervals. End-
condition knots require that we hang one knot interval off each end of the control polygon. Note
the relationship between the knot vector and the knot intervals: Each knot interval is the difference
between two consecutive knots in the knot vector.

For periodic B-splines, things are even simpler, since we don’t need to deal with end conditions.
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Figure 5.15 shows two cubic periodic B-splines labelled with knot intervals. In this example, note
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P3P4

d0= 1
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d2= 1

d3= 1

d4= 1

P0

P1

P2

P3P4

d0= 2
d1= 3

d2= 2

d3= 1

d4= 1

Figure 5.15: Periodic B-splines labelled with knot intervals

that as knot interval d1 changes from 1 to 3, the length of the corresponding curve segment increases.
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Figure 5.16: Periodic B-splines with double and triple knots.

Figure 5.16 shows two periodic B-splines with a double knot (imposed by setting d0 = 0) and a
triple knot (set d0 = d1 = 0).

In order to determine formulae for operations such as knot insertion in terms of knot intervals,
it is helpful to infer polar labels for the control points. Polar algebra [37] can then be used to create
the desired formula. The arguments of the polar labels are sums of knot intervals. We are free to
choose any knot origin. For the example in Figure 5.17, we choose the knot origin to coincide with
control points P0. Then the polar values are as shown in Figure 5.17.b.

The following subsections show how to perform knot insertion and interval halving, and how to
compute hodographs using knot intervals. These formulae can be verified using polar labels. The
expressions for these operations written in terms of knot vectors can be found, for example, in [23].

5.12.1 Knot Insertion

Knot intervals provide an easy-to-remember method for performing knot insertion. For a cubic
B-spline, begin by splitting each edge Pi–Pi+1 of the control polygon into three segments whose
lengths are proportional to di−1, di, and di+1 as shown in Figure 5.18a. (for periodic B-splines, the
subscript values are all modulo the number of edges in the control polygon). For a B-spline of even
degree 2n, each edge is split into 2n segments whose lengths are proportional to di−n, . . . , di+n−1
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Figure 5.17: Inferring polar labels from knot intervals.
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Figure 5.18: Knot insertion on a cubic B-spline.

and for a B-spline of odd degree 2n + 1, each edge is split into 2n + 1 segments whose lengths are
proportional to di−n, . . . , di+n.

Knot insertion in terms of knot intervals can be thought of as splitting a knot interval at some
fraction t ∈ [0, 1]. For example, suppose we wish to split knot interval d1 in Figure 5.18a at t = 1

3 .
We simply find each occurrence of d1 on the control polygon edges, insert a control point 1

3 of the
way along each segment labelled d1, and replace the control points P1 and P2 with A, B and C as
shown in Figure 5.18.b.

Knot removal is the inverse of knot insertion. Thus, given the control polygon in Figure 5.18.b,
knot removal would produce the control polygon in Figure 5.18.a. Knot removal is possible only
when two adjacent curve segments are Cr with r > n − m where n is the degree and m is the
multiplicity of the knot; thus it is not generally possible to perform knot removal. We will say that
a control polygon which cannot undergo knot removal is in minimal form, and the minimal form of
a B-spline control polygon results when all knots have been removed that can be.

5.12.2 Interval Halving

Subdivision surfaces such as the Catmull-Clark scheme are based on the notion of inserting a knot
half way between each existing pair of knots in a knot vector. These methods are typically restricted
to uniform knot vectors. Knot intervals help to generalize this technique to non-uniform B-splines.
Using knot intervals, we can think of this process as cutting in half each knot interval. For a quadratic
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non-uniform B-spline, the interval halving procedure is a generalization of Chaikin’s algorithm, but
the placement of the new control points becomes a function of the knot interval values. If each knot
interval is cut in halve, the resulting control polygon has twice as many control points, and their
coordinates Qk are:

Q2i =
(di + 2di+1)Pi + diPi+1

2(di + di+1)

Q2i+1 =
di+1Pi + (2di + di+1)Pi+1

2(di + di+1)
(5.3)

as illustrated in Figure 5.19.

Pi-1

Pi

Pi+1

di-1

di-1

di di

di+1

di+1

di/2 di/2
di+1/2

Q2i-1 Q2i
Q2i+1

Figure 5.19: Interval halving for a non-uniform quadratic B-spline curve.

For non-uniform cubic periodic B-spline curves, interval halving produces a new control point
corresponding to each edge, and a new control point corresponding to each original control point.
The equations for the new control points Qk generated by interval halving are:

Q2i+1 =
(di + 2di+1)Pi + (di + 2di−1)Pi+1

2(di−1 + di + di+1)
(5.4)

Q2i =
diQ2i−1 + (di−1 + di)Pi + di−1Q2i+1

2(di−1 + di)
(5.5)

as shown in Figure 5.20.

Pi-1

Pi

Pi+1

Q2i-1

Q2i
Q2i+1

di-1

di

di+1di-2

di-1/2 di/2

Figure 5.20: Interval halving for a non-uniform cubic B-spline curve.

Note that each new knot interval is half as large as its parent.

5.12.3 Hodographs

The derivative P′(t) of a B-spline is called its hodograph. The hodograph of a degree n B-spline
P(t) with knot intervals di and control points Pi is a B-spline of degree n − 1 with the same knot
intervals di and with control points Qi where

Qi = ci(Pi+1 −Pi). (5.6)
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The scale factor ci is the inverse of the average value of n neighboring knot intervals. Specifically, if
the curve is even-degree n = 2m, then

ci =
n

di−m+1 + . . . + di+m

and if the curve is odd degree n = 2m + 1

ci =
n

di−m + . . . + di+m

5.12.4 Degree elevation

Ramshaw [37] presented an elegant insight into degree elevation using polar form. The symmetry
property of polar labels demands that

f(a, b) =
f(a) + f(b)

2
; f(a, b, c) =

f(a, b) + f(a, c) + f(b, c)
3

; (5.7)

f(a, b, c, d) =
f(a, b, c) + f(a, b, d) + f(a, c, d) + f(b, c, d)

4
; etc. (5.8)

The procedure of degree elevation on a periodic B-spline that is labeled using knot intervals
results in two effects. First, an additional control point is introduced for each curve segment.
Second, if the sequence of knot intervals is initially d1, d2, d3, . . ., the sequence of knot intervals on
the degree elevated control polygon will be d1, 0, d2, 0, d3, 0, . . .. The zeroes must be added because
degree elevation raises the degree of each curve segment without raising the continuity between curve
segments,

Degree elevation of a degree one B-spline is simple: merely insert a new control point on the
midpoint of each edge of the control polygon. The knot intervals are as shown in Figures 5.21.a and
b.

.
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Figure 5.21: Degree elevating a degree one and degree two B-spline.

Degree elevation for a degree two B-spline is illustrated in Figures 5.21.c and d. The new control
points are:

Pi,j =
(2di + 3dj)Pi + diPj

3di + 3dj
. (5.9)
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Figure 5.22: Degree elevating a degree three B-spline.

Figure 5.22 illustrates degree elevation from degree three to four. The equations for the new
control points are:

Pi,i+1 =
(di + 2di+1)Pi + (2di−1 + di)Pi+1

2(di−1 + di + di+1)

Qi =
di

4(di−2 + di−1 + di)
Pi−1+

(
di−2 + di−1

4(di−2 + di−1 + di)
+

di + di+1

4(di−1 + di + di+1)
+

1
2

)
Pi+

di−1

4(di−1 + di + di+1)
Pi+1

5.13 Split-Interval Notation

A useful variation of knot interval notation is split-knot-interval notation in which a knot interval is
split into a sequence of two or more non-negative knot intervals which sum to the original interval.
Figure 5.23.a shows a periodic cubic B-spline whose top edge has a knot interval of 3. In Figure 5.23.b,
that knot interval is divided and the edge is labeled with two knot intervals 1,2. Figure 5.23.c shows
an equivalent representation in which the knot interval has actually been split by performing knot
insertion, as discussed in Section 5.12.1. We will refer to this as the expanded form of the split-interval
notation

1

3

1

1
a. Original knot intervals

1

1,2

1

1
b. Split interval

1

1
2

1

1
c. Expanded form.

Figure 5.23: Cubic B-spline with two knot intervals on one edge.
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A degree n B-spline is comprised of curve segments that meet with continuity Cn−r where r is
the multiplicity of the knot. Curve segments mapped to in split-interval notation are C∞.

2

2

2

2
a. Original knot intervals

2

1,0,0,1

2

2
b. Split interval

2

1
0 0

1

2

2
c. Expanded form.

Figure 5.24: Four knot intervals on one edge of a cubic B-spline, expressing the de Boor algorithm.

A second example is presented in Figure 5.24. Here, the knot interval on the top edge is split
into four intervals in Figure 5.24.b. The expanded form contains a triple knot. This is actually
a way of denoting the de Boor algorithm using split interval notation. Using the terminology in
Section 5.12.1, the control polygon in Figure 5.24.a is the minimal form of the control polygon in
Figure 5.24.c.

5.14 Cubic B-Splines

The most common B-splines are probably those of degree three. This section presents closed-form
expressions for the useful operations of conversion between Bézier and B-spline curves and knot
insertion.

5.14.1 Splitting a B-spline into Bézier Curves

Cubic B-splines are defined by specifying n > 3 control points P1, . . . ,Pn, and a knot vector
[k−2, . . . , kn+1], which is a sequence of non-decreasing real numbers.

Every cubic B-spline with n control points can be decomposed into n − 3 cubic Bézier curves.
Conventionally, Bézier curves use the parameter range 0 ≤ t ≤ 1. For the ith Bézier curve in a B-
spline, the parameter range is ki ≤ t ≤ ki+1. As far as the appearance of a Bézier curve is concerned,
for four given control points, a Bézier curve defined over the range ki ≤ t ≤ ki+1 looks identical to
one defined over the parameter interval 0 ≤ t ≤ 1. So if one knows how to plot a cubic Bézier curve,
all one needs to know to plot a B-spline is how to extract the control points of each of the n − 3
Bézier curves comprising it.

Figure 5.25 shows the ith Bézier curve (whose control points are labelled Q0, Q1, Q2, Q3) of
a sample B-spline (whose control points are labelled Pi−1 . . .Pi+4). The Bézier control points are
obtained using the formulas:

Q1 =
(ki+2 − ki)Pi+1 + (ki − ki−1)Pi+2

ki+2 − ki−1
(5.10)
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Figure 5.25: Extracting a Bézier curve from a B-spline.

Q0 =
ki+1 − ki

ki+1 − ki−1

(ki+1 − ki)Pi + (ki − ki−2)Pi+1

ki+1 − ki−2
+

ki − ki−1

ki+1 − ki−1
Q1 (5.11)

Q2 =
(ki+2 − ki+1)Pi+1 + (ki+1 − ki−1)Pi+2

ki+2 − ki−1
(5.12)

Q3 =
ki+1 − ki

ki+2 − ki

(ki+3 − ki+1)Pi+2 + (ki+1 − ki)Pi+3

ki+3 − ki
+

ki+2 − ki+1

ki+2 − ki
Q2 (5.13)

Notice from equations 5.10–5.13 that if ki = ki+1, Bézier curve i collapses to a single point:

Q0 = Q1 = Q2 = Q3 =
(ki+2 − ki)Pi+1 + (ki − ki−1)Pi+2

ki+2 − ki−1
(5.14)

Thus, a B-spline with n control points can always be thought of as being made up of n − 3 Bézier
curves, but some of those curves might be degenerate (zero length).

5.14.2 Knot Insertion

To insert a new knot kj , first find where it fits in the knot vector by locating index i such that

ki ≤ kj ≤ ki+1.

Then, replace control points Pi+1 and Pi+2 with the three control points

PA =
(ki+1 − kj)Pi + (kj − ki−2)Pi+1

ki+1 − ki−2
(5.15)

PB =
(ki+2 − kj)Pi+1 + (kj − ki−1)Pi+2

ki+2 − ki−1
(5.16)

PC =
(ki+3 − kj)Pi+2 + (kj − ki)Pi+3

ki+3 − ki
. (5.17)

Of course, this requires renumbering of the control points Pj , j > i + 2. The B-spline before knot
insertion is identical to the one after knot insertion, except that the later has one additional knot
and control point.
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Figure 5.26: Knot insertion.

5.14.3 Combining Bézier curves into a B-spline

Here we suggest how to convert a string of cubic Bézier curves into a single B-spline. The process
initializes by assigning the first four B-spline control points to be the control points of the first Bézier
curve, and the knot vector is initially [0, 0, 0, 0, 1, 1, 1, 1].

Thereafter, each subsequent Bézier curve is analyzed to determine what order of continuity exists
between it and the current B-spline, and it is appended to the B-spline as follows. Assume that at
some step in this process, the B-spline has a knot vector [ki−3, ki−2, ki−1, ki, ki+1, ki+1, ki+1, ki+1]
with ki−2 ≤ ki−1 ≤ ki < ki+1, and the B-spline control points are labelled

P1, . . . ,Pn−3, Pn−2, Pn−1, Pn.

The control points of the Bézier curve to be appended are

Q0 = Pn, Q1, Q2, Q3.

Then, depending on the continuity order between the B-spline and the Bézier curve, the B-spline
after appending the Bézier becomes

Continuity Knot Vector Control Points
C0 [. . . , ki−2, ki−1, ki, ki+1, ki+1, ki+1, e, e, e, e] . . . , Pn−3, Pn−2, Pn−1, Pn, Q1, Q2, Q3

C1 [. . . , ki−2, ki−1, ki, ki+1, ki+1, e, e, e, e] . . . , Pn−3, Pn−2, Pn−1, Q1, Q2, Q3

C2 [. . . , ki−2, ki−1, ki, ki+1, e, e, e, e] . . . , Pn−3, Pn−2, Pα, Q2, Q3

C3 [. . . , ki−2, ki−1, ki, e, e, e, e] . . . , Pn−3, Pβ , Pγ , Q3

C0 continuity occurs if control points Pn−1, Pn, and Q1 are not collinear. If they are collinear, then
the value of knot e is chosen so as to satisfy

|[Pn −Pn−1](ki+1 − ki)− [Q1 −Pn](e− ki+1)| < TOL

This provides for C1 (not merely G1) continuity. TOL is a small number which is needed to account
for floating point error. An appropriate value for TOL is the width of the reverse map of a pixel
into world space.



5.15. B-SPLINE BLENDING FUNCTIONS 65

C2 continuity occurs if, in addition to C1 continuity, the relationship

|(Pn−2 −Q2)(ki+1 − ki−1)(ki+1 − e) + (Pn−1 −Pn−2)(e− ki−1)(ki+1 − e) + (Q2 −Q1)(ki − e)(ki+1 − ki−1)| < TOL.

is satisfied. We can then compute

Pα =
(ki+1 − e)Pn−2 + (e− ki−1)Pn−1

ki+1 − ki−1
=

(ki+1 − ki)Q2 + (e− ki+1)Q1

e− ki
.

C3 continuity occurs if, further, the relationship∣∣∣∣Pα − (e− ki+1)Pβ + (ki+1 − ki−1)Pγ

e− ki−1

∣∣∣∣ < TOL

is satisfied, where

Pβ =
(e− ki−2)Pn−2 + (ki−1 − e)Pn−3

ki−1 − ki−2

and
Pγ =

(ki+1 − ki)Q3 + (ki − e)Q2

ki+1 − e

5.15 B-spline blending functions

For completeness, this section discusses B-spline blending functions. Normally, those blending func-
tions themselves are referred to as B-splines.

A degree zero B-spline curve is defined over the interval [ti, ti+1] using one control point, P0. Its
blending function, which we will denote B0

i (t) is simply the step function

b0
i (t) =

{
1 if ti ≤ t ≤ ti+1

0 otherwise.

The curve B0
i (t)P0 consists simply of the discrete point P0.

Blending functions for higher degree B-splines are defined using the recurrence relationship:

Bk
i (t) = ωk

i (t)Bk−1
i (t) + (1− ωk

i+1(t))B
k−1
i+1 (t) (5.18)

where

ωk
i (t) =

{ t−ti
ti+k−1−ti

if ti &= ti+k−1

0 otherwise.
A degree one B-spline curve is defined over the interval [ti, ti+1] using two control points, which

we will denote as polar values P(ti) and P(ti+1). The curve is simply the line segment joining the
two control points:

P(t) =
ti+1 − t

ti+1 − ti
P(ti) +

t− ti
ti+1 − ti

P(ti+1).

A single degree n B-spline curve segment defined over the interval [ti, ti+1] with knot vector
{. . . , ti−1, ti, ti+1, ti+2, . . .} has n + 1 control points written as polar values

P(ti+1−n, . . . , ti), . . . ,P(ti+1, . . . , ti+n)

and blending functions Bn
i (t) which are obtained from equation 5.18. The equation for the curve is:

P(t) =
n+i∑
j=i

Bn
j+1−nP(tj+1−n, . . . , tj) (5.19)
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